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Abstract

Scalar fields are widely used in cosmology, in particular to emulate dark energy, for
example in quintessence models, or to explain dark matter, in particular within the
fuzzy dark matter model. In addition many scenarios involving primordial scalar fields
which could have driven inflation or baryogenesis are currently under scrutiny. In this
article, we study the impact of such scalar fields on Big-Bang nucleosynthesis and derive
constraints on their parameters using the observed abundance of the elements.
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1 Introduction

The nature of dark energy and dark matter is still an unresolved mystery of cosmology. The
questions of baryon asymmetry in the Universe, baryogenesis and inflation also necessitate
new phenomena in the early Universe. Many cosmological models for such phenomena
involve scalar fields. In addition, with the discovery of a Standard Model Higgs boson [1,2]
the existence of fundamental scalar fields has been proven.

The current cosmological observations can be explained by assuming the existence of
cold dark matter (CDM) and of a cosmological constant Λ [3], forming the cosmological
standard model ΛCDM. The cosmological constant currently represents about two-third of
the present total energy density in the Universe, whereas CDM and baryons constitute the
remaining energy density. CDM is a pressureless component, and the cosmological constant
has a negative pressure and constant density. At the time of recombination and emission
of the cosmic microwave background (CMB), the dominating energy density was that of
radiation, and the baryon and CDM densities were subdominant but left specific imprints on
the CMB, and the cosmological constant was completely negligible. Before recombination,
radiation is assumed to dominate, and in the very early Universe the expansion is expected
to be exponential during the inflation period.

Typical inflation models [4,5] involve a scalar field, the inflaton, which is dominated by
its potential, leading to a constant scalar field density, which decayed at a later stage into
Standard Model particles.

Similarly, the cosmological constant can be replaced by a dark energy with a nearly
constant density today [6–12]. Contrary to the cosmological constant, dark energy is driven
by a dynamical mechanism. Quintessence models for example aim at explaining dark energy
with a cosmological field [6, 7]. The form of its potential is clearly unknown, and many
different potentials have been studied and confronted to observations, and a large variety
of models are still compatible with observational data.

Typical dark matter models involve weakly-interacting massive particles (WIMPs),
which can be scalar particles still undiscovered at colliders and dark matter detection ex-
periments. Models for dark matter can also be based on other kinds of scalar fields. This
is for example the case of fuzzy dark matter [13] or spintessence [14], in which the scalar
field oscillates quickly, acquiring in average a pressureless matter behaviour. At galactic
scales, is can form a galactic halo through Bose-Einstein condensation, whose typical size is
given by the Compton wavelength of the scalar field. Such models need a quadratic term in
the potential with mass as low as 10−23 eV, and therefore the scalar field does not behave
like particles. Such models have the advantage of not having the so-called cuspy halo and
missing satellite problems [15].

On the other hand, the dark fluid model [16–18] describe a cosmological component
which behaves at galactic scales as dark matter and at large scales like dark energy, replacing
both components by a single one. Such a model can rely on a scalar field with a specific
potential [19–21].

Other scalar fields could have appeared in the early Universe, for example being the
manifestation of extra-dimensions (moduli [22–25], dilatons [26, 27], ...) or high energy
theories. They may have driven phenomena such as inflation or leptogenesis, and are
expected to have decayed much before recombination.

In this article, we study the effects of cosmological scalar fields at the time of Big-Bang
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nucleosynthesis (BBN), where they could have affected the formation of heavy nuclei. We
obtain constraints on scalar field models confronting the obtained abundance of the elements
to observational constraints. We also compute the abundance of lithium-7 and show that
cosmological scalar field cannot help solving the so-called lithium problem [28].

We restrict our study to scalar fields with standard kinetic terms and positive potentials
within the cosmological standard model, therefore disregarding more exotic cases such as
Chaplygin gas [10, 17], phantom energy [8, 11, 29] or k-essence [30, 31]. We also do not
consider scalar particles, but only scalar fields which have a large Compton wavelength.

The article is organized as follows: we derive first the master equations for the evolution
of the scalar field, and present the BBN equations and observational constraints. We then
study the evolutions of scalar fields of dark energy, dark matter and dark fluid. We finally
derive constraints on such models using BBN constraints.

2 Master equations

In this section, we establish the equations which describe the evolution of a scalar field
during BBN and which will allow us to compute the abundance of the elements and to set
limits on the scalar field scenarios using observational constraints. In the following, we will
use natural units with c = ~ = 1.

The cosmological parameters needed for our study are summarized in Table 1.

Parameter Definition Observational value

ωb = Ω0
bh

2 Baryon cosmological parameter 0.02237± 0.00015

ωc = Ω0
ch

2 Cold dark matter cosmological parameter 0.1200± 0.0012

ΩΛ Cosmological constant parameter 0.6847± 0.0073

H0 Hubble constant in km/s/Mpc 67.36± 0.54

zeq Redshift of matter-radiation equality 3391± 60

Table 1: Main cosmological parameters [3] used in our study. Ω0
X is defined as the ratio of

the current energy density of component X over the present critical density, and h is the
reduced Hubble constant h = H0/(100 km/s/Mpc).

2.1 Cosmological scalar field

We consider a real and neutral scalar field φ described by the following Lagrangian density

Lφ =
1

2
gµν∂µφ∂νφ+ U(φ) , (1)

where the first term is the usual kinetic term, gµν the inverse metric and U the potential
of the scalar field defined positive. The total action is given by [32]:

S =
1

16πG

∫
d4x
√
−gR−

∫
d4x

[√
−gLE

]
, (2)

where G is the Newton constant, g the determinant of the metric, R the scalar curvature
and LE the total energy Lagrangian density.
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The variation of the action with respect to the scalar field gives the Klein-Gordon
equation:

�φ =
1√
−g

∂µ
√
−ggµν∂νφ =

dU

dφ
, (3)

and the variation with respect to the metric the Einstein equations:

Gµν = 8πGTµν , (4)

where Gµν is the Einstein tensor and Tµν is the total stress-energy tensor. The contribution
of the scalar field to the stress-energy tensor is given by:

T φµν =
2√
−g

δ (
√
−gLφ)

δgµν
= ∂µφ∂νφ− gµνLφ . (5)

The previous equations are valid in any metric. To study the dynamics of a scalar field in
a homogeneous background Universe, we adopt the Friedmann-Lematre-Robertson-Walker
(FLRW) metric, assuming a flat geometry, such that dτ2 = −dt2 + a2(t)d~r 2 where a(t) is
the scale factor at cosmological time t and ~r are the comoving coordinates. Within this
metric, the Klein-Gordon and Einstein equations become:

H2 =
8πG

3
(ρφ + ρother) ,

2Ḣ + 3H2 = −8πG (Pφ + Pother) ,

φ̈+ 3Hφ̇+
dU

dφ
= 0 ,

(6)

where the energy density and pressure of the scalar field are given by

ρφ =
1

2

(
dφ

dt

)2

+ U(φ) ,

Pφ =
1

2

(
dφ

dt

)2

− U(φ) .

(7)

ρother and Pother are the sums of the densities and pressures of the other cosmological
components, H = ȧ/a is the Hubble parameter, and a is the scale factor. The constant a0

is the present value of the scale factor, that we set in the following to a0 = 1 to simplify the
equations.

The Universe being in adiabatic expansion, the equation of state of the cosmological
component i is defined by the parameter

wi =
Pi
ρi
. (8)

In the standard cosmological model, the different components of the total energy density
are radiation, matter and cosmological constant. All of these constituents can be described
by perfect fluids with equations of state wγ = 1/3 for radiation, wm = 0 for matter and
wΛ = −1 for a cosmological constant.

For the scalar field, two specific behaviours can be forecast:

• wφ = 1 when the scalar field has a dominant kinetic term φ̇� U(φ),

• wφ = −1 when the scalar field has a dominant potential term U(φ)� φ̇.
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2.2 Big Bang Nucleosynthesis

In the cosmological standard model, before the beginning of BBN the expansion of the
Universe is dominated by radiation. The dominating species are photons γ, electrons and
positrons e∓, baryons b, neutrinos ν and antineutrinos ν̄, and dark matter χ. In presence of
a scalar field, the total energy density and pressure of the primordial plasma can be written
as

ρtot = ργ + ρν,ν̄ + ρb + ρe∓ + ρχ + ρφ ,

Ptot = Pγ + Pν,ν̄ + Pe∓ + Pφ ,
(9)

where the baryon and dark matter densities can be considered as pressureless.
The link between temperature and time is given by the conservation of the total radiation

entropy, namely:
dsrad

dt
= −3Hsrad . (10)

The different chemical elements are in interaction through nuclear reactions of the type

Ni
AiZi +Nj

AjZj +Nk
AkZk ↔ Nl

AlZl +Nm
AmZm +Nn

AnZn , (11)

where the Ni are the number of nuclei Zi which enter the reaction and Ai their atomic
numbers. The evolution of the number of each of the elements is driven by the Boltzmann
equations:

dYi
dt

= Ni

∑
j,k,l,m,n

(
−
Y Ni
i Y

Nj
j Y Nk

k

Ni!Nj !Nk!
Γijk→lmn +

Y Nl
l Y Nm

m Y Nn
n

Nl!Nm!Nn!
Γlmn→ijk

)
, (12)

where Γijk→lmn and Γlmn→ijk are the forward and reverse reaction rates of Eq. (11).
BBN occurs for scale factor of about aBBN ∼ 10−10 and a temperature scale of TBBN ∼

1 MeV, and the abundance of the elements after BBN can be obtained by integrating
simultaneously Eqs. (6), (7) and (9)–(12).

2.3 Observational constraints

We compute the abundance of the elements using the public code AlterBBN [33,34], which
has been modified to incorporate different kinds of scalar fields. We will compare the
abundances to the following set of observational measurements [35]:

Yp = 0.245±×0.003 ,

2H/H = (2.569± 0.027)× 10−5 ,

3He/H = (1.1± 0.2)× 10−5 .

(13)

The exclusion is obtained via a χ2 analysis at 95% C.L.
In addition, the observations of the lithium-7 abundance give [35]:

7Li/H = (1.6± 0.3)× 10−10 . (14)

Whereas the observations of the previous abundances are compatible with the predictions
in the cosmological standard model, the 7Li abundance shows a discrepancy of more than
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3σ between the observations and the predictions, which are about a factor three too large.
We will check in the following analysis whether the presence of a scalar field can explain
this discrepancy.

3 Dark energy scalar fields

Cosmological scalar fields are often used to mimic dark energy, and typical models include
quintessence [12, 36]. In this section, we consider such a scalar field, and the cosmological
constant is set to zero in the equations and replaced by the scalar field. Since all cosmological
observations are currently compatible with a simple cosmological constant, the main features
of such scenarios are a scalar field density close to the dark energy value in the present
Universe, an equation of state wφ ≈ −1, and a negligible density at the recombination time.
We will consider several cases of quintessence scalar fields [12]: scaling freezing model,
tracking freezing model and thawing model. For each of them, we choose the parameters
and initial conditions so that the scalar field density equals the cosmological constant density
today.

To solve the evolution equations, we follow [37] and define the reduced variables:

x =
φ̇√

6MPH
,

y =

√
U(φ)√

3MPH
,

ur =

√
ρr√

3MPH
,

um =

√
ρm√

3MPH
,

uφ =

√
ρφ√

3MPH
,

(15)

where ρr, ρm and ρφ refer to radiation, matter and dark energy densities, respectively, and
MP is the Planck mass. With such definitions, the background evolution is given by:

x′ =
3

2
x (Π− 2x) +

√
3

2
λy2 ,

y′ =
3

2
Πy −

√
3

2
λyx ,

u′m =
3

2
(Π− 1)um ,

u′r =
3

2

(
Π− 4

3

)
ur ,

u′φ =
3

2
Πuφ ,

(16)

with
3

2
Π =

3

2

(
2x2 + u2

m +
4

3
u2
r

)
= − Ḣ

H2
,

x2 + y2 + u2
r + u2

m + u2
φ = 1 ,

(17)

where the prime denotes a derivative with respect to the logarithm of the scale factor
N = ln a and λ = −MPU

′/U . This system of equations is particularly useful to obtain
fixed point solutions in the evolution of the scalar field.
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Figure 1: Evolution of the scalar field density for an single exponential potential, as a
function of the scale factor. The solid curves for the scalar field have been obtained for
fixed point initial conditions and the dashed curve for arbitrary initial conditions. In the
fixed point case, the evolution of the scalar field density follows the dominant energy density.

3.1 Scaling freezing models

We first consider the case of a single exponential potential [38]:

U(φ) = V exp

(
−λ φ

MP

)
, (18)

where V and λ are constant parameters. The density evolution of the scalar field is given
by the system of equations (17). The fixed point solutions for the scalar field respect x′ = 0
and y′ = 0. In the case where the evolution of the Universe is dominated by a barotropic
fluid with a pressure such as Pf = (f − 1)ρf where f is constant, we have:

x =
φ̇√

6MPH
=

√
3

2

f

λ
,

y =

√
U(φ)√

3MPH
=

(
3(2− f)f

2λ2

)1/2

,

(19)

and the fixed point solutions are given by:

8πG

3H2

(
φ̇2

2
+ V exp

(
−λ φ

MP

))
=

3f

λ2
. (20)

These fixed point solutions are the only ones which are stable, as discussed in [38]. Therefore
during the radiation-domination era we have:(

H

H0

)2

' Ω0
r =⇒ Ωφ =

ρφ
ρc

=
4Ω0

r

λ2
a−4 , (21)

and during the matter-domination era:

H2

H2
0

' Ω0
ma
−3 =⇒ Ωφ =

ρφ
ρc

=
3Ω0

m

λ2
a−3 , (22)
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Figure 2: Evolution of the scalar field in the scaling freezing model with a double exponential
behaving like dark energy. V1 and V2 have been fixed to retrieve the cosmological constant
value today. The left panel shows the evolution of its density, matter density and radiation
density as functions of the scale factor. The right panel shows the evolution of the scalar
field equation of state wφ = Pφ/ρφ as a function of the scale factor. The curves have been
drawn for different values of λ1, and for λ2 = 0.

where ρc is the critical density. Thus the evolution of the scalar field density will follow
that of the dominating density. The evolution of the scalar field is shown as a function of
the scale factor in Fig. 1. As expected the scalar field density follows the evolution of the
dominating density and is inversely proportional to λ2 for fixed point solutions. For λ = 10,
two curves are drawn, one with fixed point initial conditions and the other one for arbitrary
initial conditions. In the latter case the scalar field is first dominated by its kinetic term and
its density is proportional to a−6, it then reaches a plateau whose height depends on the
value of V and the initial values of φ and of φ̇. This kind of behaviour does not depend on
the form of the potential and will be studied in more detail in the next section. Ultimately,
the scalar field reaches the fixed point behaviour.

At the time of BBN (a ∼ 10−10), since the radiation is dominating, the scalar field
density decreases with an exponent equal to nφ = 4 for fixed point solutions and nφ = 6 for
other initial conditions.

The problem of the exponential potential, however is that, because of its tracking be-
haviour, it does not lead to a correct present-time behaviour with wφ ≈ −1, and the single
exponential potential is generally considered as excluded [39].

We therefore turn towards the more flexible double exponential potential [40], which
appears as a prototypical scaling freezing model:

U(φ) = V1exp

(
−λ1

φ

MP

)
+ V2exp

(
−λ2

φ

MP

)
, (23)

where V1,2 and λ1,2 are constant parameters. Such a model can be motivated by compactifi-
cations in superstring models. The left panel of Fig. 2 shows the evolution of the scalar field
density for λ2 = 0 and for different values of λ1. The initial conditions have been chosen in
order to obtain fixed point solutions. The right panel shows the evolution of the equation
of state wφ = Pφ/ρφ. During the radiation-dominated era, we have wφ = wr = 1/3. During
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Figure 3: Evolution of the scalar field in the tracking freezing model with inverse power-low
potential behaving like dark energy. M has been fixed to retrieve the cosmological constant
value today. The left panel shows the evolution of scalar field, matter and radiation densities
as functions of the scale factor. The right panel shows the evolution of the equation of state
wφ = Pφ/ρφ as a function of the scale factor. The curves have been drawn for different
values of the exponent p and for two different initial conditions.

the matter-dominated era we have wφ = wm = 0. It is only recently that the second term
in the potential (23) is dominating, leading to an equation of state wφ = −1. Therefore a
double exponential can explain the recent acceleration of the expansion of the Universe.

To summarize, within the model under consideration, at the epoch of BBN the scalar
field has a radiation-like behaviour with wφ = 1/3 for fixed point solutions, whereas with
generic initial conditions either the kinetic term dominates leading to wφ = 1, or the
potential dominates leading to a plateau with wφ = −1.

3.2 Tracking freezing models

We now consider the inverse power-low potential [41]:

U(φ) = M4

(
MP

φ

)p
, (24)

where M is a constant mass scale and p a positive exponent. Contrary to the exponential
case, the potential is diverging when the scalar field becomes close to zero.

The left panel of Fig. 3 shows the evolution of the scalar field density for two values of
p and different initial conditions. In the early Universe, the scalar field is dominated by
its kinetic energy and the equation of state is wφ = 1. After this period the scalar field
density is constant with wφ = −1. As can be seen in the figure, the duration of the constant
behaviour period strongly depends on initial values of scalar field and can even extend to
the present period, or stop and reach an intermediate equation of state with ωφ ∼ −0.5 with
a negligible density. Finally the two curves (dashed and solid) for the same value of p are
identical and determine the value of the dark energy density today and its equation of state.

To summarize, in this scenario we found that during BBN the scalar field can either be
dominated by its kinetic term with wφ = 1, or behave like radiation with wφ = 1/3, or have
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Figure 4: Evolution of the scalar field in a thawing model with pseudo-Nambu-Goldstone
potential behaving like dark energy, for different choices of initial conditions and parameters.
µ has been fixed to retrieve the cosmological constant value today. The left panel shows the
evolution of the scalar field, matter and radiation densities as functions of the scale factor.
The right panel shows the evolution of the equation of state wφ = Pφ/ρφ as a function of
the scale factor. The curves have been drawn up to a = 10 for different initial conditions.

a negligible density.

3.3 Thawing models

We now consider the pseudo-Nambu-Goldstone potential [42]:

U(φ) = µ4 (1 + cos(φ/fa)) , (25)

where µ and fa are constant parameters.
Figure 4 shows the behaviour of the scalar field for different initial conditions and choices

of µ and fa, as a function of the scale factor. We explicitly plotted the evolution up to a = 10,
which corresponds to the future, in order to better visualize the behaviour changes at late
time. If the initial value of φ̇ is non-zero, the scalar field is first dominated by its kinetic
term. Then the scalar field becomes constant. At the present period, a ≈ 1, the scalar field
starts to evolve and wφ increases and starts to oscillate. This behaviour is called “thawing”
as opposed to the “freezing” behaviour of the previous models. For larger values of φi/MP

the field starts oscillating earlier. The averaged value of wφ is close to 0, and the scalar field
therefore behaves like matter. At the time of BBN, we observe that the scalar field is gener-
ally dominated by its kinetic term leading to wφ = 1, or has a constant but negligible density.

To summarize, quintessence scalar fields at BBN time have generally three different
behaviours:

• a dominating kinetic term leading to wφ = 1,

• a tracking radiation-like behaviour with wφ = 1/3,

• a constant behaviour with wφ = −1, which often corresponds to a negligible density.
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Intermediate behaviours are still possible, but in our set-up they always corresponds to
negligible densities during BBN.

4 Dark matter scalar fields

In this section, we consider the case of a scalar field with a matter-like behaviour in the
present Universe. We therefore have the cosmological constant density set to its observa-
tional values, and the cold dark matter density is replaced by the scalar field density. We
thus expect the scalar field density to have between recombination and today the same
density as the observed cold dark matter one, and a matter-like behaviour corresponding
to wφ = 0.

Two separate cases can occur. First, if the scalar field is associated to a mass term with
a large mass, dark matter can then be composed of scalar particles. Second, if the mass is
very small, the Compton wavelength is large, and the scalar field will have only large scale
effects. We consider only the latter case in the following.

Let us consider the case of an oscillating scalar field, similarly to the case of the pseudo-
Nambu-Goldstone potential at late times. If the timescale T of the studied phenomena is
much longer than the oscillation period of typical frequency ωeff , but much shorter than the
conformal Hubble time H−1, i.e. H−1 � T � ωeff , the averaged equation of state is [43]:

wφ =
〈Pφ〉
〈ρφ〉

=
〈φ′2/(2a2)− U(φ)〉
〈φ′2/(2a2) + U(φ)〉

=
〈U ′(φ)φ− 2U(φ)〉
〈U ′(φ)φ+ 2U(φ)〉

+O
(
H
ωeff

)
, (26)

where the prime corresponds to the derivative with respect to the conformal time η, defined
as dt = a dη, and 〈...〉 the average over the time interval T . For example, if we take a
power-law potential U(φ) = λ|φ|n/n, we can show that wφ ' (n − 2)/(n + 2). Then, the
conservation of the stress-energy tensor ρ′φ + 3(1 + wφ)Hρφ = 0 gives:

〈ρφ〉 = ρ0a
−3(1+wφ) = ρ0a

−6n/(n+2) . (27)

As a consequence, a quadratic term in the potential leads to a matter-like behaviour.

4.1 Quadratic potential: fuzzy dark matter

Fuzzy dark matter [13] has recently come back into the light [44] as a potential alternative
to WIMP models. It features a quadratic potential such that:

U(φ) =
1

2
m2φ2 . (28)

As explained before, such a potential can give to the scalar field a matter-like behaviour.
Observations of galaxy rotation curves can be used to constrain the value of the mass
m [45]. At galactic scales, the scalar field can be described as a Bose-Einstein condensate
in gravitational interaction with baryonic matter, and a value of m compatible with the
observations is of the order of 10−24− 10−23 eV. For the potential (28) in the homogeneous
Universe, the Klein-Gordon equation is given by [46]:

φ̈+ 3Hφ̇+m2φ = 0 . (29)
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Figure 5: Evolution of the fuzzy dark matter scalar field, associated to a quadratic potential
with a mass m = 10−24 eV, as a function of the scale factor. Baryon, radiation and
cosmological constant densities follow the standard values of the ΛCDM model. The density
of the scalar field has been calculated for different values of φ̇ at a = 10−12. For each value
of φ̇, we have chosen the initial value of φ in order to obtain a matter-like behaviour starting
before the observed zeq of Table 1 and a present scalar field density equal to the observed
cold dark matter density.

It is convenient to define the dimensionless time t̃ = mt, the dimensionless Hubble constant
H̃ = H/m and u = a3/2φ. With this change of variables, the Klein-Gordon equation reads:

ü+

(
1− 3

4

ȧ2

a2
− 3

2

ä

a

)
u = 0 . (30)

Two cases can be considered:

• assuming H̃ � 1, one can transform equation Eq. (30) into

v′′ − a′′

a
v = 0 , (31)

with ′ = d/dη derivative with respect to dimensionless conformal time (dt̃ = a dη)
and v = a−1/2u = aφ. In the radiation-domination era, the Friedmann equation gives
a′′ = 0. Then, we have dη ∝ da and v = α1a+ β1, where α1 and β1 are two constants
of integration. The scalar field density reads:

ρφ =
φ̇2

2
+
m2φ2

2
= m2

(H0

√
Ω0
r

a

d

da

(v
a

))2

+
1

2

(v
a

)2

 =
m2H2

0 Ω0
rβ

2
1

a6
+
m2

2

(
α1 +

β1

a

)2

.

(32)

• assuming H̃ � 1 and ˙̃H � 1, the solution of Eq. (30) is much simpler. Indeed, the
energy E = u̇2/2 + u2/2 is conserved and we obtain

ρφ =
φ̇2

2
+
m2φ2

2
=
m2E

a3
. (33)

12



Figure 6: Evolution of a scalar field with self-interaction coupling behaving like dark matter,
as a function of the scale factor. Baryon, radiation and cosmological constant densities follow
the standard values of the ΛCDM model. In the left panel the scalar field density is drawn
with m = 1.2 × 10−20 eV, λ = 10−81 and φ = 9.5 × 1029 eV−4, φ̇ = 1.3 × 1017 eV−3 for
a = 10−12. In the right panel the scalar field density is drawn for different values of λ.
For each value of φ̇, we have chosen the initial value of φ in order to obtain a matter-like
behaviour starting before the observed zeq of Table 1 and a present scalar field density equal
to the observed cold dark matter density.

Thus the background evolution of scalar field gives a matter-like behaviour.

Figure 5 shows the evolution of the baryon, radiation, cosmological constant and scalar
field densities for different initial conditions. In the early Universe the scalar field density
is dominated by its kinetic energy and the potential is completely negligible. So a3dφ/dt is
conserved and the scalar field density is proportional to a−6. As dφ/dt decreases, at some
point the field density becomes dominated by the potential and the field density is therefore
constant as long as H > m. For H < m, the scalar field oscillates quickly and its energy
density evolves like dark matter.

As discussed earlier, the end of the plateau corresponds to the equality H2 ' m2, or
equivalently to a ' (H2

0

√
Ω0
r/m)1/4 ' 3.7×10−6. Its beginning depends on the initial value

of φ̇ and is given by the solution of the equation:(
1 +

H0

√
Ω0
rφi

a2
i φ̇i

)
a3 − aia2 −

aiH0

√
Ω0
r

m
= 0 , (34)

where the subscript i indicates the initial time. So the plateau begins before a ' 2.4×10−8,
which corresponds to a negligible value of φi.

In conclusion, because of the plateau, the fuzzy dark matter scalar field density remains
negligible during BBN.

4.2 Self-interaction coupling

We extend the previous analysis by adding a quartic term to it [45,47]:

U(φ) =
1

2
m2φ2 +

1

4
λφ4 . (35)
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The dimensionless constant λ represents a self-interaction coupling. With the same notation
as in the previous subsection, the Klein-Gordon equation becomes:

v′′ +

(
a2 − a′′

a
+

λ

m2
v2

)
v = 0 . (36)

Three different cases can be considered:

• assuming λφ2 � H2 and H̃ � 1, the Klein-Gordon equation is the same as Eq. (31)
and we obtain similar results.

• assuming λφ2 � H2 and λφ2 � m2, during the radiation-domination era, the Klein-
Gordon equation becomes:

v′′ +
λ

m2
v3 = 0 . (37)

In this case the quadratic part of potential does not contribute to the evolution of
field density. The energy E = v′2/2 + λv4/(m2) is conserved and we obtain:

ρφ =
φ̇2

2
+
λφ4

4
=
m2E

a4
+
m2u

2a4

(
H2

0 Ω0
r

a2
v −

2H0

√
Ω0
r

a
v′

)
. (38)

Therefore the background behaviour of the scalar field is radiation-like.

• assuming λφ2 � m2 and H̃ � 1, ˙̃H � 1, the Klein-Gordon equation is the same as
in Eq. (30) and we obtain similar results.

Figure 6 shows the evolution of the baryon, radiation, cosmological constant and scalar
field densities. As expected the difference with the results of the previous subsection is
a radiation-like behaviour of the scalar field. In the left panel, we have chosen a mass
m = 1.2 × 10−20 eV, and we see that the scalar field density is not negligible during BBN
and its evolution is dominated by the self-interaction coupling. Such a mass is however
disfavoured by the CMB and large-scale structure data, which impose [44]:

10−26 < m/eV < 10−23.3 ,

10−111 < λ < 10−98 .
(39)

In the right panel of Fig. 6, we have chosen parameter values compatible with these con-
straints, and we see that the scalar field density is negligible during BBN. More generally,
scanning over the parameters and imposing the constraints (39), we showed that the scalar
field density is always negligible at the BBN epoch.

4.3 Polynomial potential

The previous results can be extended to the case of an arbitrary polynomial potential.
The BBN constraints then depend on which term of the potential is dominating at BBN
time. Following Eq. (27), if the dominating term is φn, the scalar field density evolves as
ρφ ∝ a−6n/(n+2), meaning that the exponent is within the range [−6, 0]. For example, if the
dominating term is φ6, Eq. (27) gives ρφ ∝ a−4.5. However, since the matter-like behaviour
should hold at recombination time, it can be expected that the scalar field density is also
negligible at BBN time.
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Figure 7: Evolution of a scalar field with an exponential potential behaving like dark matter,
as a function of the scale factor. Baryon, radiation and cosmological constant densities follow
the standard values of the ΛCDM model. The scalar field density has been calculated for
different initial values. For each value of φ̇, we have chosen α in order to obtain a matter-
like behaviour starting before the observed zeq of Table 1 and a present scalar field density
equal to the observed cold dark matter density.

4.4 Exponential potential

We now consider the following potential:

U(φ) = αρc
[
exp

(
βφ2

m2

)
− 1

]
, (40)

where ρc is the critical density, and α and β are two dimensionless constants. This potential
is built in order to have a minimum at zero in absence of scalar field. Similarly to the previ-
ous cases, we want the scalar field to start behaving like dark matter before recombination
in order to agree with the CMB data. In the late Universe, the scalar field is expected to
have a small value, so that the potential becomes via a Taylor expansion:

U(φ) = ρc
(
αβ

m2
φ2 +

1

2

αβ2

m4
φ4 + ...

)
, (41)

where the dominant term is quadratic. We therefore recover the fuzzy dark matter potential
with possibly a non-negligible quartic term. Constraints on fuzzy dark matter impose the
mass of the scalar field to be around 10−24 eV. In consequence we choose 2αβ = m4/ρc.
With this relation there is only one free parameter for this potential. Figure 7 shows the
scalar field density evolution for different initial conditions. For each initial scalar field
value we have chosen α to obtain the same value of the radiation-matter equality as in the
ΛCDM scenario, so that α ' 5 × 1015. We found that with an exponential potential, only
two behaviours are possible during BBN: either a kinetic term domination with wφ = 1, or
a potential term domination leading to a constant density with wφ = −1.
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Figure 8: Evolution of a spintessence complex scalar field with a mass term behaving like
dark matter, as a function of the scale factor. Baryon, radiation and cosmological constant
densities follow the standard values of the ΛCDM model. We have chosen φ̇ = 1.3 × 1017

eV−3 for a = 10−12, and we set the initial value of φ in order to obtain a matter-like
behaviour starting before the observed zeq of Table 1 and a present scalar field density
equal to the observed cold dark matter density.

4.5 Complex scalar field: Spintessence

Until now we have only considered the case of a real scalar field. In this subsection we study
a complex scalar field with a U(1)-symmetric potential [14]. The potential will be given by
U(φ†φ). For a complex scalar field:

φ(t) =
σ(t)√

2
exp(iθ(t)) , (42)

where σ(t) is the amplitude and θ(t) the phase, the system of equations (6) is replaced by:

d2σ

dt2
+ 3H

dσ

dt
+ U ′

(
σ2

2

)
σ − ω2σ = 0 ,

dω

dt
σ + 3Hωσ + 2ω

dσ

dt
= 0 ,

H2 = H2
0

(
Ω0
ba
−3 + Ω0

ra
−4 +

ρφ
ρc

)
,

(43)

with ω(t) = dθ/dt and

ρφ =
σ̇2

2
+
ω2σ2

2
+ U

(
σ2

2

)
. (44)

The first two terms of the density constitute the kinetic part. The second equation is the
imaginary part of the Klein-Gordon equation and implies the conservation of the U(1)–
charge per comoving volume Q = ωσ2a3. We can rewrite the first equation and the scalar
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field density as:
d2σ

dt2
+ 3H

dσ

dt
+ U ′

(
σ2

2

)
σ − Q2

σ3a6
= 0 ,

ρφ =
σ̇2

2
+

Q2

2σ2a6
+ U

(
σ2

2

)
.

(45)

We consider now the evolution of the scalar field density for a polynomial potential of
order 4:

U(φ†φ) = U0 +m2φ†φ+ λ(φ†φ)2 =
1

2
m2σ2 +

1

4
λσ4 . (46)

Figure 8 shows the evolution of the scalar field density for different values of the charge
per comoving volume Q as a function of the scale factor. We consider first the case where
the self-coupling λ is zero. When Q is zero we find the exact same result of the case of the
real scalar field. In the early Universe, when Q increases the Klein-Gordon equation gives
the conservation of a3dσ/dt. At this time, the kinetic terms which depend on the values
of σ̇2 and Q2 dominates, giving an equation of state wφ = 1. The behaviour then changes
and the density becomes constant. We can see that the height of the plateau increases with
the charge per comoving volume. The transition between the plateau and the dark matter
behaviour, which is given by H ' m for Q = 0, will also increase. In conclusion, the second
term in Eq. (44) acts as an extra mass term and the evolution of the complex scalar field
density has the same behaviour as a real scalar field. Similar conclusions are obtained for
a non-zero self-coupling, and the scalar field has a negligible density at the time of BBN.

To summarize, the density of dark matter scalar fields is generally dominated by the kinetic
part at the epoch of BBN, leading to an equation of state wφ = 1 and an evolution such
that ρφ ∝ a−6. However, the density is generally negligible at this time. We also saw that
non-standard potentials such as polynomials can lead to other behaviours. It is however
important to keep in mind that a scalar field with a heavy mass term can behave like dark
matter even during the BBN epoch, having an average equation of state wφ = 0 and an
evolution such that ρφ ∝ a−3.

5 Dark fluid scalar fields

In dark fluid models, dark energy and dark matter are considered to be different manifes-
tations of a unique cosmological component called dark fluid. In Ref. [18] constraints from
supernovæof type Ia, cosmic microwave background, large scale structures on such models
are considered. In this section, we will study the background evolution of a dark fluid
scalar field. We choose the parameters and initial conditions so that the present density
of the scalar field is equal to the sum of the cold dark matter and cosmological constant
densities, and that the scalar field density behaves like the cold dark matter density at the
recombination epoch.

We consider here a simple dark fluid potential, which is the sum of fuzzy dark matter
potential and a cosmological constant:

U(φ) = U0 +
1

2
m2φ2. (47)
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Figure 9: Evolution of the dark fluid scalar field with a simple potential, aimed at replacing
both dark matter and dark energy. Baryon, radiation and cosmological constant densities
follow the standard values of the ΛCDM model. We have chosen φ = 1.5× 1029 eV−4 and
φ̇ = 1.3× 1017 eV−3 for a = 10−12. The initial value of φ has been chosen in order to have
a dark matter behaviour at the time of recombination.

The constant potential U0 can give a dark energy behaviour when U0 = ρcrΩΛ and the
quadratic potential can provide the dark matter behaviour. The dark fluid density appears
as the sum of the fuzzy dark matter and cosmological constant densities. U0 is therefore
fixed to the cosmological constant value, and the mass m is in the range of 10−24 − 10−23

eV to be in agreement with galactic observations. Figure 9 illustrates the evolution of the
scalar field energy density. At the time of BBN, the scalar field is dominated by its kinetic
term, giving an equation of state wφ = 1. We checked that once the parameters are fixed
to comply with the assumptions of the model and the astrophysical and cosmological data,
only marginal changes are possible to the scenario described in the figure. The scalar field
density will therefore have a negligible influence at the BBN epoch. On the other side,
since the scalar field also has a dark energy behaviour today, it means that if the potential
contains quintessence potential terms, results similar to the ones of dark energy scalar fields
described in Section 3 can also be obtained.

6 Decaying scalar fields

In the early Universe, cosmological scalar such as inflatons [48,49], dilatons [26,27], moduli
[22–25], ..., could have existed and given birth to specific phenomena such as inflation or
leptogenesis. Their common features is that do not exist any more, at least in non-negligible
proportions. We can therefore assume that these scalar fields decayed at a period prior to
recombination, so that they did not imprint the CMB.

Contrary to the cases studied in the previous sections, decaying scalar fields are not
constrained by observations of the present Universe, and generally neither by observations
of the CMB. Any potentials are therefore possible, with any behaviours. If such scalar
fields decay much before BBN, they will have no effect either on BBN or recombination.

18



Figure 10: Evolution of the decaying scalar field density, matter density and radiation
density as functions of the scale factor (left) and of the temperature (right), for a reheating
temperature of 1 MeV displayed by the vertical black lines. In absence of decay, the scalar
field density evolves as a−n. The initial densities of the scalar field have been chosen so that
ρφ = ργ at T = 10 MeV for different values of n.

If they decay after BBN, either their densities are negligible and they have no effect on
the cosmological history, or their densities are high enough to impact BBN by modifying
the expansion rate and the decay has to occur soon enough in order to escape constraints
from CMB. In the latter case, the scalar fields can be considered as stable during BBN,
with a constant equation of state wφ ∈ [−1, 1], meaning a density scaling as ρφ ∝ a−n, with
n ∈ [0, 6].

We consider now the case of a scalar field decaying at the BBN epoch. To simplify the
analysis, we assume an instantaneous thermalization with the thermal bath, and a dominant
decay into radiation.

The Klein-Gordon equation becomes:

φ̈+ 3Hφ̇+
dU

dφ
= −Γφρφ , (48)

and the total radiation entropy receives an injection such that:

∂srad

∂t
= −3Hsrad +

Γφρφ
T

, (49)

where Γφ is the decay width of the scalar field.
We assume here that the scalar field potential is a power law, such as during BBN and

in absence of decay, it evolves as
ρφ = ρ0

φa
−n , (50)

where n is a constant parameter between 0 and 6. The Klein-Gordon equation can thus be
rewritten as:

dρφ
dt

= −nHρφ − Γφρφ . (51)

Following [50,51] we define the reheating temperature TRH of the scalar field as:

Γφ =

√
4π3geff(TRH)

45

T 2
RH

MP
, (52)
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where geff is the number of effective energy degrees of freedom of radiation. The model is
therefore defined by three parameters: the exponent n, the reheating temperature TRH and
the initial scalar field density.

Figure 10 shows the evolution of the scalar field as a function of the scale factor or the
temperature, for a reheating temperature of 1 MeV. The scalar field density at the initial
temperature Ti = 10 MeV has been chosen so that ρφ = ργ for n = 3, 4, 6. Since the decay
of the scalar field induces a reheating by increasing the radiation density, the initial value of
the matter density has been adjusted in order to obtain the observed baryon-to-photon ratio
from the CMB. This effect can be seen in the left panel of the figure, where the evolution of
the densities is shown as a function of the scale factor: the radiation density increases at a
scale factor corresponding to the reheating temperature. This is the reason why the photon
density is different for each choice of n. In the right panel where the evolution is shown as
a function of the temperature, this effect translates into a decrease of the matter density,
which is equivalent to lowering the baryon over radiation ratio to obtain the value derived
from the CMB observations. This is also the reason why the matter density appears as
different for each choice of n.

We see that after reheating, the decrease of the scalar field accelerates and its density
drops very quickly, increasing simultaneously the radiation density. It can therefore be
expected that a decaying scalar field can modify BBN for TRH ∈ [1, 10] MeV.

7 BBN constraints on cosmological scalar fields

In the previous sections, we have studied the cosmological behaviours of a broad range of
scalar fields. We have seen that stable and decaying scalar fields have different consequences
and study them separately.

7.1 Stable scalar fields

Stable scalar fields have in general a constant equation of state during BBN, with wφ ranging
from −1 to +1 corresponding to a density varying as a−n with n ∈ [0, 6]. The most standard
values are 1 (kinetic term domination) and 1/3 (radiation-like behaviour), corresponding to
densities scaling as the inverse of the scale factor with an exponent 6 and 4, respectively.

In the cases when wφ < 0, since the scalar field density decreases more slowly than
radiation, if the scalar field density is not completely negligible, it will start dominating the
expansion of the Universe during or after BBN, and can even affect the CMB.

In presence of a scalar field, the expansion rate given by the Friedmann equation will be
modified during BBN. Two extreme cases can be considered. The first one corresponds to
a scalar field density negligible with respect to the photon density at T ∼ 1 MeV. We will
obtain in this case the same results as in the standard cosmological model. The opposite case
is the domination of the scalar field density at BBN time, which will modify the abundance
of the elements via Hubble rate modification.

Figure 11 shows Yp and the abundances of 2H, 3He and 7Li for different values of
the exponent n and the scalar field density at T ∼ 1 MeV. The dashed lines correspond to
exclusions by the individual constraints for each element at 95% C.L. Using the χ2 approach
we obtain at 95% C.L.:
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Figure 11: From top to bottom, values of Yp,
2H/H, 3He/H and 7Li/H, as a function of

the decrease exponent n and the initial scalar field density (normalized to photon density)
at T = 1 MeV, (left) with a logarithm scale on the y-axis and for n ≤ 3, and (right) with
a linear scale on the y-axis and for n ≥ 3. The dashed lines represent the individual BBN
constraints at 95% C.L. Except for 7Li, the excluded region is above the lines.
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• for nφ = 0 (constant density, potential domination), BBN constraints exclude:

ρφ(1 MeV) & 2× 10−7 ργ(1 MeV) . (53)

• for nφ = 3 (matter-like behaviour), BBN constraints exclude:

ρφ(1 MeV) & 0.005 ργ(1 MeV) . (54)

• for nφ = 4 (radiation-like behaviour), BBN constraints exclude:

ρφ(1 MeV) & 0.11 ργ(1 MeV) . (55)

• for nφ = 6 (kinetic term domination), BBN constraints exclude:

ρφ(1 MeV) & 1.40 ργ(1 MeV) . (56)

We also see that the 7Li abundance can be modified by the scalar field, but as we can
see from Fig. 11, there is no region where the predictions for Y p, 2H, 3He and 7Li can be
simultaneously in agreement with their observational values.

In terms of physical models, scalar fields behaving like matter (fuzzy dark matter, ...)
do not affect BBN and no constraint can be found. For quintessence or dark field models
on the other hand, Eq. (55) applies for tracking scenarios with fixed points solutions, or
Eq. (56) in more general scenarios with generic initial conditions. For more exotic scenarios,
BBN constraints can be obtained from Fig. 11.

7.2 Decaying scalar fields

We now turn to the case of decaying scalar fields. As discussed before, if the scalar field
decays after BBN, the constraints that we just obtained as still valid. On the other hand, if
the decay is finished when BBN starts, the scalar field will have a negligible density which
will have no effect on BBN.

We now turn to the case of decaying scalar fields with reheating temperatures below
10 MeV. We consider scalar fields which evolve as ρφ ∝ a−n in absence of decay, for n =
0, 3, 4, 6.

In Figure 12, we present the abundance of the elements for n = 0, 3 as functions of the
reheating temperature TRH and the ratio of the scalar field density to the photon density
at T = 10 MeV4. The same plots are obtained with n = 4, 6 in Fig. 13. The dashed lines
correspond to exclusions by the individual constraints for each element at 95% C.L. Using
the χ2 approach at 95% C.L. we obtain the following results:

• for n = 0, the compatible parameter region corresponds to large reheating tempera-
tures and small densities. Indeed, before the decay, the density of the scalar field is
constant, meaning that it will dominate and accelerate the expansion over the radia-
tion density, which decreases as T 4. This model is therefore strongly constrained, so
that only a small fraction of constant scalar field can be allowed.

4It is important to note that the initial densities of the decaying scalar fields are fixed at T = 10 MeV,
contrary to the case of stable scalar fields where the initial temperature was T = 1 MeV.
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Figure 12: From top to bottom, values of Yp,
2H/H, 3He/H and 7Li/H, as functions of

the reheating temperature TRH and the initial scalar field density (normalized to photon
density) at T = 10 MeV, for (left) a constant density n = 0, and (right) a matter-like
behaviour n = 3. The dashed lines represent the individual BBN constraints at 95% C.L.
Except for 7Li, the excluded regions are above the lines.
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Figure 13: From top to bottom, values of Yp,
2H/H, 3He/H and 7Li/H, as functions of

the reheating temperature TRH and the initial scalar field density (normalized to photon
density) at T = 10 MeV, for (left) a radiation-like behaviour n = 4, and (right) a dominating
kinetic term n = 6. The dashed lines represent the individual BBN constraints at 95% C.L.
Except for 7Li, the excluded regions are above the lines.
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• for n = 3, since the scalar field has a matter-like behaviour, if the scalar field density
dominates the expansion, the expansion rate is smaller before its decay. We see that
such a scenario is excluded if

ρφ(10 MeV) & 0.01

(
TRH

1 MeV

)
ργ(10 MeV) . (57)

There is therefore a compensation between the modification of the expansion rate and
the injection of radiation.

• for n = 4, we obtain a limit

ρφ(10 MeV) & 0.1 ργ(10 MeV) , (58)

which is equivalent to the limit obtained for a stable scalar field. This could be
expected since the scalar field had originally a radiation-like behaviour and decays
into radiation.

• for n = 6, BBN is unaffected for ρφ(10 MeV) . 0.5 ργ(10 MeV) independently of
the reheating temperature, or when the reheating temperature is below 4 MeV and
ρφ(10 MeV) . ργ(10 MeV). For large reheating temperatures, the scalar field decays
earlier, increases the radiation density, decelerates the expansion, and modifies the
abundance of the elements even for small values of the initial density. For lower
reheating temperatures, the expansion rate is increased but slowed before the decay,
and less constraining limits are thus obtained.

Similarly to the case of stable scalar fields, there is no possibility to simultaneously
explain the abundance of 7Li and be consistent with the constraints on the 4He, 2H and
3He abundances.

To summarize, in the very early Universe the primordial scalar fields are likely to have a
constant density or a dominating kinetic term. For the constant behaviour, it is mandatory
for the scalar field to have a subleading density at BBN time, independently of the reheating
temperature. On the contrary, for a kinetic term dominated scalar field, the initial density
can be rather large, and even dominant for low reheating temperature, meaning that a late
reheating is favoured in such cases.

8 Conclusions

In this paper, we have studied the cosmological evolution of scalar fields and studied their
impact on Big-Bang nucleosynthesis. We have shown that these can have non-negligible
densities ρφ at the time of BBN and equations of state wφ = Pφ/ρφ between −1 and +1.

Scalar fields can replace a cosmological constant, for example in quintessence models,
and we saw that the most usual dark energy scenarios led to wφ = 0, wφ = 1/3 or wφ = 1 at
BBN time, which can affect BBN if the scalar field density is non-negligible at this epoch.

Scalar fields can also act as dark matter, with wφ = 0 today, as it is the case in fuzzy
dark matter scenarios. In the early Universe, the kinetic term generally dominates, giving
an equation of state wφ = 1 at BBN time. However, because of the constraints from studies
of the CMB, the density of such scalar fields is negligible at the time of BBN, and no
constraint can be obtained from BBN.
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Similarly, dark fluid models with scalar fields replacing simultaneously dark matter and
dark energy are extremely constrained both by dark matter constraints at local and large
scales and by dark energy constraints at cosmological scales, and we showed that in the
most simple models, no constraints can be obtained from BBN since the scalar field density
at BBN epoch is negligible. Only more complex models incorporating specific dark energy
potentials are likely to have effects on BBN, and the constraints are expected to be similar
to the ones obtained on quintessence scenarios.

Primordial scalar fields which have decayed during BBN are on the contrary more likely
to have affected the abundance of the elements, in two different ways. First the scalar field
density increases the total density and affects the expansion rate of the Universe. This
effect can be particularly important since no strong constraint can limit the decaying scalar
field parameters at BBN time, so that large densities are still possible during BBN. Second
the decay into radiation injects entropy which modifies the relation between time (or scale
factor) and temperature and generates a reheating at the BBN epoch. We considered
the most usual cases, i.e. a scalar field density scaling as a−n in absence of decay, with
n = 0, 3, 4, 6, and derived constraints on the reheating temperature TRH and the initial
scalar field density.

Whichever scalar field model is used, we showed that it is not possible to find set-ups
which simultaneously satisfy the Yp,

2H,3He constraints and the 7Li one. In other terms,
the lithium problem cannot be solved via the scalar field models that we considered. It may
however be possible to design scenarios with scalar fields decaying into specific particles
which may affect BBN and decrease the abundance of lithium-7. We defer this task to later
studies.
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