

First observation of several sources of CP violation in $B^+\to\pi^+\pi^+\pi^-$ decays at LHCb

EPS-HEP 2019

J. Dalseno on behalf of the LHCb Collaboration jeremypeter.dalseno [AT] usc.es

11 July 2019

$B^{\pm} \rightarrow K^{\pm} h^+ h^-, \ \pi^{\pm} h^+ h^-$

Observed large CP violating effects in the phase space with Run 1 data Phys. Rev. D **90**, 112004 (2014)

First observation of several sources of CP violation in $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ decays at LHCb

Conditions for CP Violation in Decay

In charged B decays, presence of multiple amplitudes may lead to (direct) CP violation in decay

$$A(B \to f) = \sum_{i} |A_i| e^{i(\delta_i + \phi_i)}$$

$$\bar{A}(\bar{B} \to \bar{f}) = \sum_{i} |A_i| e^{i(\delta_i - \phi_i)}$$

Strong phase (δ) invariant under CPWeak phase (ϕ) changes sign under CP

$$\mathcal{A}_{CP}(B \to f) \equiv \frac{|\bar{A}|^2 - |A|^2}{|\bar{A}|^2 + |A|^2} \propto \sum_{i,j} |A_i| |A_j| \sin(\delta_i - \delta_j) \sin(\phi_i - \phi_j)$$

3 conditions required for ${\it CP}$ violation in decay

At least 2 competitive amplitudes Non-zero strong phase difference, $\delta_i - \delta_j \neq 0$ Non-zero weak phase difference, $\phi_i - \phi_j \neq 0$

Weak phase comes from Unitarity Triangle contributions to each amplitude

${\it CP}$ Asymmetry by Interference

Project onto $m_{\pi\pi}$ of $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$, Phys. Rev. D 90, 112004 (2014) 800 F LHCb Yield/(0.05 GeV/c²) å 300 -+ B+ LHCb 200 600 100 400 0 200 -100 -200 0.5 1.5 0.5 $m_{\pi^+\pi^- \text{low}}[GeV/c^2]$ $m_{\pi^+\pi^- \text{low}}[\text{GeV}/c^2]$ 1.5×10^{3} Yield/(0.05 GeV/c²) LHCb 300 ň LHCb -+ B⁺ ē 'n 200 - **₽** 100 0.5 -100 ÷. $\frac{1.5}{m_{\pi^+\pi^- \text{low}}[\text{GeV}/c^2]}$ 0.5 1.5 0.5 $m_{\pi^+\pi^- \text{low}}[\widetilde{\text{GeV}}/c^2]$

Sign-flip in raw asymmetry and zero around ρ^0 pole Opposite behaviour of raw asymmetry in each helicity half Characteristic of CP asymmetry generated by S-P interference

${\it CP}$ Asymmetry by Rescattering

 $\pi\pi \leftrightarrow KK$ rescattering region: $1.0 - 1.5 \text{ GeV}/c^2$ Phys. Rev. D **90**, 112004 (2014)

 $KK \leftrightarrow \pi\pi$ rescattering generates a strong phase

CPT conservation constrains hadron rescattering

For given quantum numbers, sum of partial widths equal for charge-conjugate decays

Clear opposite sign CP asymmetry in $KK/\pi\pi$ - related channels

Dalitz Plot position, Φ_3 Construct amplitude model

Isobar coefficients c_i , free parameters of the model

$$A(\Phi_3) = \sum_i A_i(\Phi_3) = \sum_i c_i F_i(\Phi_3)$$

CP conjugate: $\bar{\Phi}_3 \equiv \Phi_3 \Rightarrow \bar{F}_i(\bar{\Phi}_3) = F_i(\Phi_3)$ Form factor F_i , contains only strong dynamics

$$\bar{A}(\bar{\Phi}_3) = \sum_i \bar{c}_i F_i(\Phi_3)$$

 $\begin{array}{l} CP \text{ violation parametrised in free parameters} \\ c_i = (x_i + \Delta x_i) + i(y_i + \Delta y_i) \\ \bar{c}_i = (x_i - \Delta x_i) + i(y_i - \Delta y_i) \end{array}$

Derived physical quantities

Fit fraction, essentially gives branching fractions

$$\mathcal{F}_i \equiv \frac{\int d\Phi_3 |A_i(\Phi_3)|^2 + \int d\Phi_3 |\bar{A}_i(\Phi_3)|^2}{\int d\Phi_3 |A(\Phi_3)|^2 + \int d\Phi_3 |\bar{A}(\Phi_3)|^2}$$

 ${\it CP}$ violation in decay

$$\mathcal{A}_{CP}^{i} \equiv \frac{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} - \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}$$

3 approaches to analysis differing by S-wave description Isobar Approach

Each contribution has clear physical meaning

K-matrix Approach

Interface with results from scattering experiments

QMI Approach

Binned amplitude determined directly from data

First observation of several sources of CP violation in $B^+ o \pi^+ \pi^+ \pi^-$ decays at LHCb

Rescattering Lineshape

Inspired by $\pi\pi\leftrightarrow KK$ scattering in 2-body interactions

In the context of 3-body decays, production of one pair of mesons can affect the coupled channel

Attempt to account for this with phenomenological form factor

$$A(s) = \frac{\hat{T}}{1 + \frac{s}{\Delta_{PP}^2}}$$

I. Bediaga, T. Frederico and O. Lourenço, Phys. Rev. D **89**, 094013 (2014) Intended to describe the partonic interaction that produces $\pi\pi$ and KK in 3-body final state

 \hat{T} is the observable amplitude related to the unitary S-matrix as, $\hat{S}=1+2i\hat{T}$

$$\hat{S}(s) = \begin{pmatrix} \eta(s)e^{2i\delta_{\pi\pi}(s)} & i\sqrt{1-\eta^2(s)}e^{i(\delta_{\pi\pi}(s)+\delta_{KK}(s))} \\ i\sqrt{1-\eta^2(s)}e^{i(\delta_{\pi\pi}(s)+\delta_{KK}(s))} & \eta(s)e^{2i\delta_{KK}(s)} \end{pmatrix}$$

Rescattering Lineshape

Only off-diagonal elements are relevant for amplitude analysis Use models for the phase shifts $\delta_{\pi\pi}(s)$, $\delta_{KK}(s)$ and inelasticity $\eta(s)$

Also tested on LHCb asymmetry ρ , $f_0(980)$ considered in addition

Reproduces the main features Exp: Phys. Rev. D **90**, 112004

(2014)

K-Matrix

From unitarity of the $S\mbox{-matrix},$ physical transition amplitude given by

 \hat{K} parametrised by summation of base mass poles and a slowly varying part for non-resonant $$\mathbf{P}_{\mathrm{P}}$$

$$(\rho \hat{K})_{ij}(s) \equiv \sqrt{\rho_i \rho_j} \left(\sum_R \frac{g_i^R g_j^R}{m_R^2 - s} + f_{ij}^{\text{scat}} \frac{c - s_0^{\text{scat}}}{s - s_0^{\text{scat}}} \right) f_{A0}(s)$$

Parameters taken from global fit to scattering data Eur. Phys. J. **A16** (2003) 229

The production vector \hat{P} takes on an analogous form to \hat{K}

$$\hat{P}_j(s) \equiv \sum_R \frac{\beta_R^{\text{prod}} g_j^R}{m_R^2 - s} + f_j^{\text{prod}} \frac{c - s_0^{\text{prod}}}{s - s_0^{\text{prod}}}$$

j: $\pi\pi,$ KK, $4\pi,$ $\eta\eta,$ $\eta\eta';$ $\beta_R^{\rm prod}$ and $f_j^{\rm prod}$ are the complex free parameters of the model

First observation of several sources of CP violation in $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ decays at LHCb

K-Matrix

Elastic scattering on the physical boundary, inelastic scattering inside

Quasi-Model-Independent Approach

Construct spin-1 and spin-2 resonances with the isobar model as usual Model $\pi\pi$ S-waves with adaptive binning method Equal number of events in each bin 1D bins in $m^2(\pi^+\pi^-)$, 15 bins below charm veto, 2 bins above In each bin, float amplitude magnitude and phase, 83 free parameters in total

Bose-symmetric amplitude implied

Quasi-Model-Independent Approach

First observation of several sources of CP violation in $B^+ \to \pi^+ \pi^+ \pi^-$ decays at LHCb

Data Sample

Only Run 1 data from 2011+12 used, LHCb-PAPER-2019-017

LHCb-PAPER-2019-018

Parameter	Value
Signal yield	20594 ± 1569
Combinatorial bkg yield	4409 ± 1634
$B^+ \rightarrow K^+ \pi^+ \pi^-$ bkg yield	143 ± 11
Combinatorial bkg asym	$+0.005 \pm 0.010$
$B^+ \to K^+ \pi^+ \pi^-$ bkg asym	$+0.000 \pm 0.008$

Dalitz plot analysis performed in the signal region, $5.249 < m(\pi^\pm\pi^+\pi^-) < 5.317~{\rm GeV}/c^2$

First observation of several sources of CP violation in $B^+ \to \pi^+ \pi^+ \pi^-$ decays at LHCb

LHCb-PAPER-2019-017, LHCb-PAPER-2019-018

Component	lsobar	K-matrix	QMI
$\omega(782)$	$-19 \pm 6 \pm 1$	$-15\pm 6\pm 4$	$-25\pm 6\pm 27$
$f_2(1270)$	$+5\pm3\pm12$	$+19\pm4\pm18$	$+13\pm5\pm21$
$ ho(1450)^0$	$+127 \pm 4 \pm 21$	$+155\pm5\pm29$	$+147 \pm 7 \pm 152$
$\rho_3(1690)^0$	$-26 \pm 7 \pm 14$	$+19\pm8\pm34$	$+8\pm10\pm~24$

B^{-}

Component	lsobar	K-matrix	QMI
$\omega(782)$	$+8 \pm 6 \pm 1$	$+8 \pm 7 \pm 4$	$-2\pm$ $7\pm$ 11
$f_2(1270)$	$+53 \pm 2 \pm 12$	$+80\pm3\pm$ 17	$+68\pm3\pm66$
$\rho(1450)^0$	$+154 \pm 4 \pm 6$	$-166\pm4\pm$ 51	$-175\pm5\pm171$
$\rho_3(1690)^0$	$-47 \pm 18 \pm 25$	$+5\pm 8\pm 46$	$+36 \pm 26 \pm 46$

Phases given in degrees, measured relative to the $\rho(770)^0$ Broad agreement between different S-wave approaches Largest phase difference between B^+ and B^- in $f_2(1270)$ Responsible for some of the large CP seen in the Dalitz plot First observation of several sources of CP violation in $B^+ \rightarrow \pi^+\pi^-\pi^-$ decays at LHCb

Fit fractions and *CP* asymmetries

CP conserving fit fractions

Component	Isobar	K-matrix	QMI
$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 0.7 \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$
$\omega(782)$	$0.50 \pm 0.03 \pm 0.03 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57 \pm 0.10 \pm 0.12 \pm 0.12$
$f_2(1270)$	$9.0 \pm 0.3 \pm 0.8 \pm 1.4$	$9.3 \pm 0.4 \pm 0.6 \pm 2.4$	$9.6 \pm 0.4 \pm 0.7 \pm 3.9$
$\rho(1450)^0$	$5.2 \pm 0.3 \pm 0.4 \pm 1.9$	$10.5 \pm 0.7 \pm 0.8 \pm 4.5$	$7.4 \pm 0.5 \pm 3.9 \pm 1.1$
$\rho_3(1690)^0$	$0.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.0 \pm 0.1 \pm 0.5 \pm 0.1$
S-wave	$25.4 \ \pm 0.5 \ \pm 0.7 \ \pm 3.6$	$25.7 \ \pm 0.6 \ \pm 2.6 \ \pm 1.4$	$26.8 \ \pm 0.7 \ \pm 2.0 \ \pm 1.0$

First error: statistical, Second: systematic, Third: Model uncertainty $\rho(770)^0$ and S-wave dominant, significant $f_2(1270)$ contribution

Direct CP asymmetries LHCb-PAPER-2019-017, LHCb-PAPER-2019-018

Component	lsobar	K-matrix	QMI
$\rho(770)^{0}$	$+0.7 \pm 1.1 \pm 1.2 \pm 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm 1.7 \pm 2.3 \pm 1.6$
$\omega(782)$	$-4.8 \pm 6.5 \pm 6.6 \pm 3.5$	$-6.2 \pm 8.4 \pm 5.6 \pm 8.1$	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm 6.1 \pm 3.6 \pm 4.4$	$+42.8 \pm 4.1 \pm 2.1 \pm 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$\rho(1450)^0$	$-12.9 \pm 3.3 \pm 7.0 \pm 35.7$	$+9.0 \pm 6.0 \pm 10.8 \pm 45.7$	$-15.5 \pm 7.3 \pm 14.3 \pm 32.2$
$\rho_3(1690)^0$	$-80.1 \pm 11.4 \pm 13.5 \pm 24.1$	$-35.7 \pm 10.8 \pm 8.5 \pm 35.9$	$-93.2 \pm 6.8 \pm 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 2.1 \pm 1.9$	$+15.8 \pm 2.6 \pm 2.1 \pm 6.9$	$+15.0 \pm 2.7 \pm 4.2 \pm 7.0$

Large CP violation in $f_2(1270)$ and S-wave

First observation of several sources of CP violation in $B^+ \to \pi^+ \pi^+ \pi^-$ decays at LHCb

Full Charmless Fit Projection

 $m_{\rm low}$ is the lower $\pi^+\pi^-$ invariant mass combination

Enhances resonance visibility

 $m_{\rm high}$ is the higher $\pi^+\pi^-$ invariant mass combination Shows spin structure

First observation of several sources of CP violation in $B^+ \to \pi^+ \pi^- \pi^-$ decays at LHCb

$\rho(770)^0$ Region: $m(\pi^+\pi^-)$

Clear ρ - ω interference

Rapid sign flips of A_{CP} in small region, attribute to $\rho - \omega$ mixing No charge asymmetry observed as a function of $m(\pi^+\pi^-)$

\mathcal{A}_{CP} About $ho(770)^0$ Pole

Described well by all 3 S-wave approaches

Large amounts of direct ${\it CP}$ violation seen

Opposite behaviour in helicity between B^+ and B^-

Characteristic of CP violation in interference between broad and dominant S- and P-waves

 \mathcal{A}_{CP} linear in helicity, yet invisible in full $m(\pi^+\pi^-)$ projection

Over 25σ statistical significance

First observation of ${\it CP}$ violation in S-P interference

First observation of several sources of CP violation in $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ decays at LHCb

$f_2(1270)$ Region

Poorly described by all 3 S-wave approaches, can be fixed in 2 ways Free $f_2(1270)$ pole parameters

Inconsistent with PDG values, disagreement between 3 approaches Additional D-wave contribution

Fit with additional D-wave, $f_2(1430)$ state not well established Very large CP asymmetry well-described by all 3 S-wave approaches First observation of several sources of CP violation in $B^+ \rightarrow \pi^+ \pi^- \pi^-$ decays at LHCb

Quantify quasi-two-body ${\cal CP}$ violation by plotting isobar parameters in the Argand plane

Magnitude and phase for $B^+ \to f_2(1270)\pi^+$ and $B^- \to f_2(1270)\pi^-$

Black ellipse: Nominal fit

Coloured ellipses: Various systematic variations Observation of CPV ranges from $14 - 19\sigma$ (statistical only) First observation of CP violation in any process involving a tensor

First observation of several sources of CP violation in $B^+ \to \pi^+ \pi^- \pi^-$ decays at LHCb

JSC S-wave Comparison

Green data points: QMI S-wave

Blue curve: Isobar S-wave, Orange curve: K-matrix S-wave

Total uncertainties shown

Good agreement on structures in $|A|^2$

Structure in phase motion qualitatively agreed on

Deviation from QMI indicates more theoretical work needed

First observation of several sources of CP violation in $B^+ \to \pi^+ \pi^+ \pi^-$ decays at LHCb

Elastic region, could be generated by short-distance effects

If phase difference non-constant, could indicate new dynamics

First observation of several sources of CP violation in $B^+ \to \pi^+ \pi^+ \pi^-$ decays at LHCb

Amplitude analysis of $B^+ \to \pi^+ \pi^+ \pi^-$

3 approaches to the complicated S-wave, which broadly agree Isobar: Each lineshape has physical meaning K-matrix: Interface with results from scattering experiments QMI: Determine directly from the data

Theoretical speculation on cause of large localised CP violation Low-mass S-wave interference with $\rho(770)^0$: yes $\rho - \omega$ mixing: no $KK \rightarrow \pi\pi$ rescattering: not yet

3 different kinds of ${\it CP}$ violation observed for the first time

In S-P interference around the $\rho(770)^0$ pole

In the $f_2(1270)$

In the S-wave at low $m(\pi^+\pi^-)$

Significant new insight into CP violation in multi-body B-hadron decays Motivates further study into the processes that govern CP violation LHCb-PAPER-2019-017 and LHCb-PAPER-2019-018 in preparation

Backup

$f_2(1270)$ Region

First observation of several sources of CP violation in $B^+ \to \pi^+ \pi^- \pi^-$ decays at LHCb