



## Introduction



- Direct CP asymmetries arise from interference between different amplitudes





- The interference is largest when the competing amplitudes are of a similar size
- For suppressed decays, loop level processes can compete with tree level processes
- Decays with contributions from loop level amplitudes give access to processes beyond the standard model
- Heavy particles may produce effects that are observable with current sensitivities



## Introduction



 This talk will cover three recent measurements of quasi-two-body decays with contributions from loop level processes

$$B^+ \to J/\psi \rho^+$$



A measurement of direct CP asymmetry and branching fraction

$$B^0 \to \rho(770)^0 K^*(892)^0$$



An amplitude analysis that determines CP asymmetries of contributing amplitudes

$$B^0_{(s)} \to K^{*0} \overline{K}^{*0}$$



An amplitude analysis of a loop-mediated Flavour Changing Neutral Current process

All three analyses are performed using the 3 fb<sup>-1</sup> Run 1 data set



## Other talks



 Many other talks related to quasi-two-body decays are being presented by LHCb in this conference:

Time-dependent charmless B decays

$$B^0_{(s)} \to h^+ h^{'-}$$

including modes:

$$B_s^0 \to (K^+\pi^-)(K^-\pi^+)$$

$$B_s^0 \to \phi \phi$$

Talk presented by <u>Louis Henry</u> 11:40 11th July

CP violation in multibody charmless b-hadron decays

including modes:

$$B_s^0 \to K_{\rm S}^0 K^{\pm} \pi^{\pm}$$

$$B^{\pm} \to \pi^{\pm} K^+ K^-$$

Talk presented by <u>Adam Morris</u> 12:20 11th July

Observation of several sources of CP violation in B<sup>+</sup>  $\rightarrow$   $\pi^+$   $\pi^-$  decays at LHCb

Talk presented by <u>Jeremy Dalseno</u> 12:00 11th July

## Recent results in quasi-two-body decays

LHCb-PAPER-2018-036 - Measurement of the branching fraction and CP asymmetry in Eur. Phys. J. C79 (2019) 537 B+  $\rightarrow$  J/ $\psi$   $\rho^+$  decays

- Study of the B<sup>0</sup>  $\rightarrow$   $\rho$ (770)<sup>0</sup> K\*(892)<sup>0</sup> decay with an amplitude analysis of B<sup>0</sup>  $\rightarrow$  ( $\pi$ + $\pi$ -) (K- $\pi$ +)
- Amplitude analysis of the  $B_{(s)}{}^0 \rightarrow K^{*0}$  K\*0 decays and measurement of the branching fraction of the  $B^0 \rightarrow K^{*0}$  K\*0 decay





- This decay process via tree and penguin topology processes

- $\mathcal{A}^{CP} \equiv \frac{\mathcal{B}(B^- \to J/\psi \, \rho^-) \mathcal{B}(B^+ \to J/\psi \, \rho^+)}{\mathcal{B}(B^- \to J/\psi \, \rho^-) + \mathcal{B}(B^+ \to J/\psi \, \rho^+)}$
- The value of A<sup>cp</sup> provides an estimate of the penguin-to-tree amplitude ratio for b → ccd processes
- This can place constraints on penguin contributions in the determination of  $\phi_s$  (See talk by Veronika Chobanova)

Decays are reconstructed using three charged tracks and two photons

The branching fraction is measured relative to B<sup>+</sup>  $\rightarrow$  J/ $\psi$  K<sup>+</sup> decays

$$B^{+} \to J/\psi \rho^{+}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

Eur. Phys. J. C79 (2019) 537





### Selection

- Preselection
  - Kinematic, geometrical and vertex requirements
- Vetoes for specific backgrounds
  - Invariant mass vetoes remove B<sup>+</sup>  $\rightarrow$  J/ $\psi$   $\pi$ <sup>+</sup> and B<sup>+</sup>  $\rightarrow$  J/ $\psi$  K<sup>+</sup> with a random  $\pi$ <sup>0</sup>
  - Vertex quality requirements remove backgrounds with additional charged tracks
- Multi-variate analysis
  - A neural network is trained on simulations and data sidebands
  - Reweighing is used to ensure good data-MC agreement
- A kinematic fit is used to constrain the B+ candidate to originate at the primary interaction, as well as the J/ $\psi$  and  $\pi^0$  mass to known values





#### Mass fit

- A 2D fit to m(B+) vs. m( $\rho$ +) is performed, simultaneous for 2011 and 2012 data
- The production asymmetry of B+ mesons determined in other measurements is subtracted  $\mathcal{A}^{CP} = \mathcal{A}^{CP}_{\mathrm{raw}} \mathcal{A}^{\mathrm{prod}}$

#### Results

- The results are the most precise to date

$$\mathcal{A}^{CP}(B^+ \to J/\psi \, \rho^+) = -0.045^{+0.056}_{-0.057} \pm 0.008$$
$$\mathcal{B}(B^+ \to J/\psi \, \rho^+) = (3.81^{+0.25}_{-0.24} \pm 0.35) \times 10^{-5}.$$

### **Systematics**

- BF measurement is limited by  $\pi^0$  reconstruction efficiency, dominated by BF(B+  $\rightarrow$  J/ $\psi$  K\*+)





Eur. Phys. J. C79 (2019) 537

## Recent results in quasi-two-body decays

– Measurement of the branching fraction and CP asymmetry in B+  $\rightarrow$  J/ $\psi$   $\rho^+$  decays

<u>LHCb-PAPER-2018-042</u> <u>JHEP 05 (2019) 026</u>

- Study of the B<sup>0</sup>  $\rightarrow$   $\rho$ (770)<sup>0</sup> K\*(892)<sup>0</sup> decay with an amplitude analysis of B<sup>0</sup>  $\rightarrow$  ( $\pi$ + $\pi$ -) (K- $\pi$ +)
- Amplitude analysis of the  $B_{(s)}{}^0 \rightarrow K^{*0}$  K\*0 decays and measurement of the branching fraction of the  $B^0 \rightarrow K^{*0}$  K\*0 decay





$$B^0 \to (\pi^+\pi^-)(K^+\pi^-)$$

**Run 1** 3 fb<sup>-1</sup>

- Direct CP asymmetries are measured in this final state by determining the differences in partial widths of different amplitudes

$$B^0 \to \rho(770)^0 K^*(892)^0$$

- The tree-level contribution to this decay is doubly Cabibbo-suppressed so gluonic and electroweak penguins compete



 In this P→VV decay, the electroweak penguin amplitudes contribute with different signs for different helicity eigenstates

JHEP 05 (2019) 026





#### Selection

- Preselection: kinematic, geometric and particle identification requirements
- Multi-variate analysis
  - A BDT is trained on simulations and data side bands
- Vetoes for specific backgrounds
  - Particle identification requirements remove  $\Lambda_{b^0} \rightarrow p \pi \pi \pi$  decays
  - D<sup>0</sup> veto to remove incorrectly paired B<sup>0</sup>  $\rightarrow$  D<sup>0</sup>  $\pi\pi$  decays
  - Three body modes including  $B^0 \rightarrow D^-\pi^+$  removed with angular cut

### Mass fit

- Data split into 8 simultaneous categories (trigger, year and charge)
- $B_s^0$  → (Kπ) (Kπ) background is subtracted by injecting simulations with negative weights
- sPlot method used to extract signal components





## Amplitude model



- The amplitude model is made up from different contributions within the  $(\pi\pi)$  and  $(K\pi)$  mass windows

|           |                                    | Kπ reso              | nances    |
|-----------|------------------------------------|----------------------|-----------|
|           |                                    | K*(892) <sup>0</sup> | scalar Kπ |
| ces       | ρ                                  | VV                   | SV        |
| esonances | ω                                  | VV                   | SV        |
| _         | f <sub>0</sub> (500) <sup>0</sup>  | SV                   | SS        |
| H<br>H    | f <sub>0</sub> (980) <sup>0</sup>  | SV                   | SS        |
|           | f <sub>0</sub> (1370) <sup>0</sup> | SV                   | SS        |

- Three helicity amplitudes contribute from each VV combination
- For VV amplitudes the polarisation fraction is defined to be:

$$f_{VV}^{0,\parallel,\perp} = \frac{|A_{VV}^{0,\parallel,\perp}|^2}{|A_{VV}^{0}|^2 + |A_{VV}^{\parallel}|^2 + |A_{VV}^{\perp}|^2}$$

- CP averages and asymmetries are constructed for particle and antiparticle decays

$$\tilde{f}_{VV} = \frac{1}{2}(f_{VV} + \overline{f}_{VV}) \qquad A_{VV} = \frac{\overline{f}_{VV} - f_{VV}}{\overline{f}_{VV} + f_{VV}}$$

- Additionally, phase differences and T-odd quantities are measured

JHEP 05 (2019) 026



# Amplitude fit









LHCb

 $ightharpoons K^+$ 

#### Results

- A small polarisation fraction and significant direct CP asymmetry is measured for the B<sup>0</sup>  $\rightarrow \rho^0$  K\*0 component

$$\tilde{f}_{\rho K^*}^0 = 0.164 \pm 0.015 \pm 0.022$$
  $\mathcal{A}_{\rho K^*}^0 = -0.62 \pm 0.09 \pm 0.09$ 

- This is the first observation of CP asymmetry in angular distributions of  $B^0 \rightarrow VV$  decays



## Recent results in quasi-two-body decays

- Measurement of the branching fraction and CP asymmetry in B+  $\rightarrow$  J/ $\psi$   $\rho^+$  decays
- Study of the B<sup>0</sup>  $\rightarrow$   $\rho$ (770)<sup>0</sup> K\*(892)<sup>0</sup> decay with an amplitude analysis of B<sup>0</sup>  $\rightarrow$  ( $\pi$ + $\pi$ -) (K- $\pi$ +)

LHCb-PAPER-2019-004
Submitted to JHEP

- Amplitude analysis of the  $B_{(s)}{}^0 \rightarrow K^{*0}$  K\*0 decays and measurement of the branching fraction of the  $B^0 \rightarrow K^{*0}$  K\*0 decay





$$B^0_{(s)} \to (K^- \pi^+)(K^+ \pi^-)$$

Run 1 3 fb<sup>-1</sup>

- This analysis performs an untagged, time-integrated amplitude analysis

$$B_s^0 \to K^{*0} \overline{K}^{*0}$$

- Can be used to measure the unitarity angle  $\beta_{s,}$  relevant in  $B_{s}^{0}$  processes
- High precision measurements require control of sub-leading amplitudes
- Previous measurement suggest no
  CP asymmetry, small polarisation
  fraction and small S-wave
  contribution
  <a href="mailto:arXiv:1712.08683">arXiv:1712.08683</a>

$$B^0 \to K^{*0} \overline{K}^{*0}$$

- Flavour changing neutral current
- Helps control higher-order contributions to B<sub>s</sub><sup>o</sup> mode
- There is a 2.2 sigma difference between Belle and BaBar branching fraction measurements
- Both find large polarisation fraction
- This analysis updates polarisation fractions, S-wave contributions and measures B<sup>o</sup> branching fraction

arXiv:1905.06662





#### Selection

- Preselection:
  - Kinematic, geometrical and particle identification requirements
- Multi-variate analysis:
  - Gradient boosted BDT trained on MC and data sidebands
- Vetoes for specific Backgrounds:
  - Invariant mass windows and PID selections suppress many peaking backgrounds

#### Mass fit

- A simultaneous fit is performed to 2011 and 2012 data
- $B^0 \rightarrow \rho^0$  K\*0 background is subtracted by injecting simulations with negative weights
- sPlot method used to extract signal components



arXiv:1905.06662



## Amplitude Model



- The amplitude model is made up from S-wave and P-wave  $K\pi$  resonances

| $K+\pi$ - res | sonances |
|---------------|----------|
|---------------|----------|

| es   |                                     | K*(892) <sup>0</sup> | K <sub>0</sub> *(1430) <sup>0</sup> | $K_0^*(700)^0$ | (Kπ) <sub>0</sub> |
|------|-------------------------------------|----------------------|-------------------------------------|----------------|-------------------|
| Janc | K*(892) <sup>0</sup>                | VV                   | VS                                  | VS             | VS                |
| esor | K <sub>0</sub> *(1430) <sup>0</sup> | SV                   | SS                                  | SS             | SS                |
| 1+ [ | K <sub>0</sub> *(700) <sup>0</sup>  | SV                   | SS                                  | SS             | SS                |
| K-1  | (Kπ) <sub>0</sub>                   | SV                   | SS                                  | SS             | SS                |

- The polarisation fraction is measured for the VV contribution

$$f_{VV}^{0,\parallel,\perp} = \frac{|A_{VV}^{0,\parallel,\perp}|^2}{|A_{VV}^{0}|^2 + |A_{VV}^{\parallel}|^2 + |A_{VV}^{\perp}|^2}$$

Additionally the S-wave fraction can be determined from the amplitudes of the SS,
 SV and VS contributions

arXiv:1905.06662



# Amplitude fit



B<sup>o</sup> fit

LHCb







### Results

- The longitudinal polarisation fractions confirm previous measurements  $f_L(B^0)=0.724\pm0.051\pm0.016$   $f_L(B^0_s)=0.240\pm0.031\pm0.025$ 

- The branching fraction of  $B^0 \rightarrow K^{*0} \overline{K}^{*0}$  decays is determined to be

$$\mathcal{B}(B^0 \to K^{*0} \overline{K}^{*0}) = (8.0 \pm 0.9 \,(\text{stat}) \pm 0.4 \,(\text{syst})) \times 10^{-7}$$

Belle 
$$\mathcal{B}=2.6^{+3.3}_{-2.9}{}^{+1.0}_{-0.7}\times10^{-7}$$
 Phys. Rev. D81 (2010) 071101 BaBar  $\mathcal{B}=12.8^{+3.5}_{-3.0}\times10^{-7}$  Phys. Rev. Lett. 100 (2008) 081801



<u>arXiv:1905.06662</u>



## Summary



- LHCb has produced measurements of CP asymmetries, branching fractions and polarisation fractions in quasi-two-body decays including:

The most precise measurement of CP asymmetry and branching fraction of B+  $\rightarrow$  J/ $\psi$   $\rho$ + decays

This is the first observation of CP asymmetry in angular distributions of B $^{0}$   $\rightarrow$   $\rho^{0}$  K $^{*0}$  decays

Polarisation fraction and branching fraction measurements in  $B^0 \to K^{*0} \overline{K}^{*0}$  decays

- LHCb has a large sample of Run 2 data, so expect more exciting results in the near future

# Back Up





### Branching fraction systematics

| Source of uncertainty                         | Relative uncertainty [%] |
|-----------------------------------------------|--------------------------|
| Trigger efficiency                            | 1.4                      |
| Charged particle reconstruction efficiency    | 0.5                      |
| $\pi^0$ reconstruction efficiency             | 6.3 Dominant             |
| Hadron identification efficiency              | 2.1                      |
| Muon identification efficiency                | 0.4                      |
| Selection efficiency $B^+ \to J/\psi K^+$     | 0.1                      |
| Selection efficiency $B^+ \to J/\psi  \rho^+$ | 1.8                      |
| Removal of multiple candidates                | 1.2                      |
| Fit function                                  | 4.0                      |
| $B^+ \to J/\psi  \rho^+$ polarization         | 2.2                      |
| Fit ranges                                    | 1.6                      |
| Nonresonant line shape                        | 1.5                      |
| Neglecting interference                       | 2.8                      |
| Quadratic sum                                 | 9.1                      |
|                                               | •                        |

## A<sup>cp</sup> systematics

| Source of uncertainty                               | Uncertainty |
|-----------------------------------------------------|-------------|
| $B^+$ production asymmetry and background asymmetry | 0.006       |
| Signal fit function                                 | 0.005       |
| Quadratic sum                                       | 0.008       |





### Mass fit

- Shapes:
  - Signal B+ mass: Sum of two Crystal Ball functions with tails fixed from simulation
  - Signal rho+ mass: Relativistic Breit-Wigner with parameters fixed to simulation
  - Part-Reco: two-dimensional kernel density estimations





### Full results

| Parameter                       | $CP$ average, $\tilde{f}$      | $CP$ asymmetry, $\mathcal{A}$ | Parameter                                                        | $CP$ average, $\frac{1}{2}(\delta_{\overline{B}} + \delta_B)$ [rad] | $CP$ difference, $\frac{1}{2}(\delta_{\bar{B}} - \delta_B)$ [rad] |
|---------------------------------|--------------------------------|-------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| $ A_{\rho K^*}^0 ^2$            | $0.32 \pm 0.04 \pm 0.07$       | $-0.75 \pm 0.07 \pm 0.17$     | $\delta^0_{ ho K^*}$                                             | $1.57 \pm 0.08 \pm 0.18$                                            | $0.12 \pm 0.08 \pm 0.04$                                          |
| $ A_{\rho K^*}^{  } ^2$         | $0.70 \pm 0.04 \pm 0.08$       | $-0.049 \pm 0.053 \pm 0.019$  | $\delta^{  }_{ ho K^*}$                                          | $0.795 \pm 0.030 \pm 0.068$                                         | $0.014 \pm 0.030 \pm 0.026$                                       |
| $ A_{\rho K^*}^{\perp} ^2$      | $0.67 \pm 0.04 \pm 0.07$       | $-0.187 \pm 0.051 \pm 0.026$  | $\delta_{ ho K^*}^{\perp}$                                       | $-2.365 \pm 0.032 \pm 0.054$                                        | $0.000 \pm 0.032 \pm 0.013$                                       |
| $ A_{\omega K^*}^{\rho \Pi} ^2$ | $0.019 \pm 0.010 \pm 0.012$    | $-0.6 \pm 0.4 \pm 0.4$        | $\delta^{01}_{\omega K^*}$                                       | $-0.86 \pm 0.29 \pm 0.71$                                           | $0.03 \pm 0.29 \pm 0.16$                                          |
| $ A_{\omega K^*}^{  } ^2$       | $0.0050 \pm 0.0029 \pm 0.0031$ | $-0.30 \pm 0.54 \pm 0.28$     | $\delta^{  }_{\omega K^*}$                                       | $-1.83 \pm 0.29 \pm 0.32$                                           | $0.59 \pm 0.29 \pm 0.07$                                          |
| $ A_{\omega K^*}^{\perp} ^2$    | $0.0020 \pm 0.0019 \pm 0.0015$ | $-0.2 \pm 0.9 \pm 0.4$        | $\delta^\perp_{\omega K^*}$                                      | $1.6 \pm 0.4 \pm 0.6$                                               | $-0.25 \pm 0.43 \pm 0.16$                                         |
| $ A_{\omega(K\pi)} ^2$          | $0.026 \pm 0.011 \pm 0.025$    | $-0.47 \pm 0.33 \pm 0.45$     | $\delta_{\omega(K\pi)}$                                          | $-2.32 \pm 0.22 \pm 0.24$                                           | $-0.20 \pm 0.22 \pm 0.14$                                         |
| $ A_{f_0(500)K^*} ^2$           | $0.53 \pm 0.05 \pm 0.10$       | $-0.06 \pm 0.09 \pm 0.04$     | $\delta_{f_0(500)K^*}$                                           | $-2.28 \pm 0.06 \pm 0.22$                                           | $-0.00 \pm 0.06 \pm 0.05$                                         |
| $ A_{f_0(980)K^*} ^2$           | $2.42 \pm 0.13 \pm 0.25$       | $-0.022 \pm 0.052 \pm 0.023$  | $\delta_{f_0(980)K^*}$                                           | $0.39 \pm 0.04 \pm 0.07$                                            | $0.018 \pm 0.038 \pm 0.022$                                       |
| $ A_{f_0(1370)K^*} ^2$          | $1.29 \pm 0.09 \pm 0.20$       | $-0.09 \pm 0.07 \pm 0.04$     | $\delta_{f_0(1370)K^*}$                                          | $-2.76 \pm 0.05 \pm 0.09$                                           | $0.076 \pm 0.051 \pm 0.025$                                       |
| $ A_{f_0(500)(K\pi)} ^2$        | $0.174 \pm 0.021 \pm 0.039$    | $0.30 \pm 0.12 \pm 0.09$      | $\delta_{f_0(500)(K\pi)}$                                        | $-2.80 \pm 0.09 \pm 0.21$                                           | $-0.206 \pm 0.088 \pm 0.034$                                      |
| $ A_{f_0(980)(K\pi)} ^2$        | $1.18 \pm 0.08 \pm 0.07$       | $-0.083 \pm 0.066 \pm 0.023$  | $\delta_{f_0(980)(K\pi)}$                                        | $-2.982 \pm 0.032 \pm 0.057$                                        | $-0.027 \pm 0.032 \pm 0.013$                                      |
| $ A_{f_0(1370)(K\pi)} ^2$       | $0.139 \pm 0.028 \pm 0.039$    | $-0.48 \pm 0.17 \pm 0.15$     | $\delta_{f_0(1370)(K\pi)}$                                       | $1.76 \pm 0.10 \pm 0.11$                                            | $-0.16 \pm 0.10 \pm 0.04$                                         |
| $f_{ ho K^*}^0$                 | $0.164 \pm 0.015 \pm 0.022$    | $-0.62 \pm 0.09 \pm 0.09$     | $\delta_{ ho K^*}^{  -\perp}$                                    | $3.160 \pm 0.035 \pm 0.044$                                         | $0.014 \pm 0.035 \pm 0.026$                                       |
| $f_{ ho K^*}^{  }$              | $0.435 \pm 0.016 \pm 0.042$    | $0.188 \pm 0.037 \pm 0.022$   | $\delta_{ ho K^*}^{  -0}$                                        | $-0.77 \pm 0.09 \pm 0.06$                                           | $-0.109 \pm 0.085 \pm 0.034$                                      |
| $f_{ ho K^*}^{\perp}$           | $0.401 \pm 0.016 \pm 0.037$    | $0.050 \pm 0.039 \pm 0.015$   | $\delta^{ ho K}_{ ho K^*}$                                       | $-3.93 \pm 0.09 \pm 0.07$                                           | $-0.123 \pm 0.085 \pm 0.035$                                      |
| $f^0_{\omega K^*}$              | $0.68 \pm 0.17 \pm 0.16$       | $-0.13 \pm 0.27 \pm 0.13$     | $\delta^{ K }_{\omega K^*}$                                      | $-3.4 \pm 0.5 \pm 0.7$                                              | $0.84 \pm 0.52 \pm 0.16$                                          |
| $f_{\omega K^*}^{  }$           | $0.22 \pm 0.14 \pm 0.15$       | $0.26 \pm 0.55 \pm 0.22$      | $\delta^{  -0}_{\omega K^*}$                                     | $-1.0 \pm 0.4 \pm 0.6$                                              | $0.57 \pm 0.41 \pm 0.17$                                          |
| $f_{\omega K^*}^{\perp}$        | $0.10 \pm 0.09 \pm 0.09$       | $0.3 \pm 0.8 \pm 0.4$         | $\delta^{\omega K*}_{\omega K*} \ \delta^{\perp -0}_{\omega K*}$ | $2.4 \pm 0.5 \pm 0.8$                                               | $-0.28 \pm 0.51 \pm 0.24$                                         |
| JωK*                            | 5.15 ± 5.00 ± 5.00             | 1 0.0 ± 0.0 ± 0.1             | $0^{\omega K^*}$                                                 | $2.4 \pm 0.5 \pm 0.8$                                               | $-0.28 \pm 0.51 \pm 0.24$                                         |





### Comparison to theory

|                                    | Observable                           | QCDF [4]                                                           | pQCD [11]                                                                           | This work                                                  |
|------------------------------------|--------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------|
| $f_{ ho K^*}^0$                    | CP average CP asymmetry              | $0.22_{-0.03-0.14}^{+0.03+0.53}$ $-0.30_{-0.11-0.49}^{+0.11+0.61}$ | $0.65_{-0.03-0.04}^{+0.03+0.03}$ $0.0364_{-0.0107}^{+0.0120}$                       | $0.164 \pm 0.015 \pm 0.022$<br>$-0.62 \pm 0.09 \pm 0.09$   |
| $f_{\rho K^*}^\perp$               | CP average CP asymmetry              | $0.39^{+0.02+0.27}_{-0.02-0.07}$                                   | $0.169 \begin{array}{l} +0.027 \\ -0.018 \end{array}$ $-0.0771^{+0.0197}_{-0.0186}$ | $0.401 \pm 0.016 \pm 0.037$<br>$0.050 \pm 0.039 \pm 0.015$ |
| $\delta_{\rho K^*}^{\parallel -0}$ | CP average [rad] CP difference [rad] |                                                                    | $-1.61 ^{\ +0.02}_{\ -3.06}$ $-0.001^{\ +0.017}_{\ -0.018}$                         | $-0.77 \pm 0.09 \pm 0.06$<br>$-0.109 \pm 0.085 \pm 0.034$  |
| $\delta_{\rho K^*}^{  -\bot}$      | CP average [rad] CP difference [rad] | $\equiv \pi$ $\equiv 0$                                            | $3.15 \begin{array}{l} +0.02 \\ -4.30 \end{array}$ $-0.003^{+0.025}_{-0.024}$       | $3.160 \pm 0.035 \pm 0.044$<br>$0.014 \pm 0.035 \pm 0.026$ |

<sup>[4]</sup> M. Beneke, J. Rohrer, and D. Yang, Branching fractions, polarisation and asymmetries of  $B \rightarrow VV$  decays, Nucl. Phys. **B774** (2007) 64, arXiv:hep-ph/0612290.

<sup>[11]</sup> Z.-T. Zou et al., Improved estimates of the  $B_{(s)} \to VV$  decays in perturbative QCD approach, Phys. Rev. **D91** (2015) 054033, arXiv:1501.00784.





### Systematic uncertainties

- Uncertainties on the parameters in the mass propagators
- Angular momentum barrier factors
- Background subtractions
- Description of the kinematic acceptance
- Masses and angular resolution
- Fit method
- Pollution due to  $B^0 \rightarrow a_1(1260)$  K+ decays
- Symmetrised ( $\pi\pi$ ) contributions in the model
- Simulation corrections



# $B^0 \rightarrow \rho^0 K^{*0}$



## Systematic uncertainties

Table 5: Table (I) of the systematic uncertainties. The abbreviations S1, S2 and S3 stand for  $f_0(500), f_0(980)$  and  $f_0(1370)$ , respectively. Negligible values are represented by a dash (-).

|                                | Systematic uncertainty                                                                                                                                                                                                         | $ A^0_{\rho K^*} ^2$                                      | $ A_{\rho K^*}^{  } ^2$                        | $ A_{ ho K^*}^{\perp} ^2$                                             | $ A^0_{\omega K^*} ^2$                              | $ A^{  }_{\omega K^*} ^2$                                                 | $ A_{\omega K^*}^\perp ^2$                                   | $ A_{\omega(K\pi)} ^2$                                         | $ A_{S1K^*} ^2$                                           | $ A_{S2K^*} ^2$                                                  | $ A_{S3K^*} ^2$                             |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
| es                             | Centrifugal barrier factors                                                                                                                                                                                                    | _                                                         |                                                | _                                                                     | _                                                   | 0.0001                                                                    | -                                                            | 0.001                                                          | 0.01                                                      | 0.01                                                             | 0.04                                        |
| rag                            | Hypatia parameters                                                                                                                                                                                                             | _                                                         | _                                              | _                                                                     | _                                                   | _                                                                         | _                                                            | _                                                              | _                                                         | _                                                                | _                                           |
| averages                       | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                                                                                                                      | 0.01                                                      | 0.01                                           | 0.01                                                                  | 0.001                                               | 0.0004                                                                    | 0.0002                                                       | 0.001                                                          | 0.01                                                      | 0.02                                                             | 0.01                                        |
| CP                             | Simulation sample size                                                                                                                                                                                                         | 0.01                                                      | 0.01                                           | 0.01                                                                  | 0.002                                               | 0.0007                                                                    | 0.0003                                                       | 0.005                                                          | 0.02                                                      | 0.06                                                             | 0.04                                        |
|                                | Data-Simulation corrections                                                                                                                                                                                                    | _                                                         |                                                | _                                                                     | _                                                   | 0.0002                                                                    | _                                                            | _                                                              | _                                                         | _                                                                |                                             |
|                                | Centrifugal barrier factors                                                                                                                                                                                                    | _                                                         | _                                              | 0.004                                                                 | _                                                   | _                                                                         | _                                                            | 0.01                                                           | _                                                         | 0.003                                                            | 0.01                                        |
| asym.                          | Hypatia parameters                                                                                                                                                                                                             | _                                                         | 0.002                                          | 0.002                                                                 | _                                                   | 0.01                                                                      | _                                                            | 0.01                                                           | _                                                         | 0.002                                                            | _                                           |
| asi                            | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                                                                                                                      | 0.03                                                      | 0.011                                          | 0.013                                                                 | _                                                   | 0.13                                                                      | 0.1                                                          | 0.01                                                           | 0.02                                                      | 0.005                                                            | 0.01                                        |
| CP                             | Simulation sample size                                                                                                                                                                                                         | 0.02                                                      | 0.014                                          | 0.011                                                                 | 0.1                                                 | 0.17                                                                      | 0.4                                                          | 0.14                                                           | 0.04                                                      | 0.022                                                            | 0.03                                        |
|                                | Data-Simulation corrections                                                                                                                                                                                                    | _                                                         | 0.001                                          | _                                                                     | _                                                   | 0.01                                                                      | _                                                            | 0.01                                                           | _                                                         | _                                                                |                                             |
| _                              | Mass propagators parameters                                                                                                                                                                                                    | 0.01                                                      | 0.033                                          | 0.040                                                                 | 0.002                                               | 0.0003                                                                    | 0.0001                                                       | 0.002                                                          | 0.07                                                      | 0.170                                                            | 0.12                                        |
| Common $(B^0, \overline{B}^0)$ | Masses and angles resolution<br>Fit method $2a_1(1260)$ pollution                                                                                                                                                              | 0.01                                                      | 0.023                                          | 0.040                                                                 | 0.010                                               | 0.0028                                                                    | 0.0010                                                       | 0.024                                                          | 0.03                                                      | 0.050                                                            | 0.10                                        |
| m<br>B                         | Fit method                                                                                                                                                                                                                     | 0.01                                                      | 0.007                                          | 0.007                                                                 | 0.004                                               | 0.0005                                                                    | 0.0010                                                       | 0.001                                                          | 0.01                                                      | 0.029                                                            | _                                           |
| S S                            | $a_1(1260)$ pollution                                                                                                                                                                                                          | 0.06                                                      | 0.070                                          | 0.019                                                                 | 0.003                                               | 0.0005                                                                    | 0.0002                                                       | 0.003                                                          | 0.05                                                      | 0.130                                                            | 0.10                                        |
|                                | Symmetrised $(\pi\pi)$ PDF                                                                                                                                                                                                     | 0.04                                                      | 0.030                                          | 0.021                                                                 | _                                                   | 0.0008                                                                    | 0.0003                                                       | 0.004                                                          | 0.03                                                      | 0.080                                                            | 0.06                                        |
|                                | Systematic uncertainty                                                                                                                                                                                                         | $ A_{S1(K\pi)} ^2$                                        | $ A_{S2(K\pi)} ^2$                             | $ A_{S3(K\pi)} ^2$                                                    | $\delta^0_{\rho K^*}$                               | $\delta_{ ho K^*}^{  }$                                                   | $\delta_{ ho K^*}^{\perp}$                                   | $\delta^0_{\omega K^*}$                                        | $\delta^{  }_{\omega K^*}$                                | $\delta_{\omega K^*}^{\perp}$                                    | $\delta_{\omega(K\pi)}$                     |
| SO<br>CO                       | Centrifugal barrier factors                                                                                                                                                                                                    | 0.003                                                     | 0.02                                           | 0.003                                                                 | _                                                   | 0.001                                                                     | 0.002                                                        | 0.03                                                           | 0.01                                                      | _                                                                | 0.01                                        |
| averages                       | Hypatia parameters                                                                                                                                                                                                             | 0.001                                                     | 0.01                                           | 0.001                                                                 | _                                                   | 0.001                                                                     | 0.002                                                        | 0.01                                                           | 0.01                                                      | _                                                                | _                                           |
| v.                             | $T_{0}$ $T_{0}$ $T_{0}$ $T_{0}$ $T_{0}$ $T_{0}$ $T_{0}$                                                                                                                                                                        | 0.008                                                     | 0.01                                           | 0.004                                                                 | 0.02                                                | 0.018                                                                     | 0.007                                                        | 0.04                                                           | 0.02                                                      | 0.1                                                              | 0.01                                        |
|                                | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                                                                                                                      | 0.008                                                     |                                                | 0.00-                                                                 | 0.02                                                |                                                                           |                                                              |                                                                | 0.0-                                                      | 0.1                                                              |                                             |
|                                | $B_s^0 \to K^{*0}K^{*0}$ bkg.<br>Simulation sample size                                                                                                                                                                        | 0.008                                                     | 0.03                                           | 0.007                                                                 | 0.02                                                | 0.009                                                                     | 0.008                                                        | 0.15                                                           | 0.07                                                      | 0.1                                                              | 0.10                                        |
| CP a                           |                                                                                                                                                                                                                                |                                                           | 0.03                                           |                                                                       |                                                     |                                                                           | 0.008                                                        |                                                                |                                                           |                                                                  | 0.10                                        |
|                                | Simulation sample size                                                                                                                                                                                                         |                                                           | 0.03 - 0.010                                   | 0.007                                                                 | 0.02                                                | 0.009                                                                     |                                                              |                                                                |                                                           |                                                                  | 0.10 - 0.02                                 |
|                                | Simulation sample size Data-Simulation corrections  Centrifugal barrier factors Hypatia parameters                                                                                                                             | 0.006                                                     | _                                              | 0.007<br>0.001                                                        | 0.02                                                | 0.009<br>0.001                                                            | _                                                            | 0.15                                                           | 0.07                                                      | 0.1                                                              |                                             |
|                                | Simulation sample size Data-Simulation corrections Centrifugal barrier factors                                                                                                                                                 | 0.006                                                     | 0.010                                          | 0.007<br>0.001<br>0.02                                                | 0.02                                                | 0.009<br>0.001<br>0.004                                                   | 0.001                                                        | 0.15 - 0.02                                                    | 0.07<br>-<br>0.01                                         | 0.1 - 0.03                                                       |                                             |
| asym. $CP$                     | Simulation sample size Data-Simulation corrections  Centrifugal barrier factors Hypatia parameters                                                                                                                             | 0.006<br>-<br>0.01                                        | -<br>0.010<br>0.004                            | 0.007<br>0.001<br>0.02<br>0.01                                        | 0.02<br>-<br>-<br>-                                 | 0.009<br>0.001<br>0.004<br>0.001                                          | -<br>0.001<br>0.001                                          | 0.15<br>-<br>0.02<br>0.01                                      | 0.07<br>-<br>0.01<br>0.01                                 | 0.1<br>-<br>0.03<br>0.01                                         | 0.02                                        |
|                                | Simulation sample size Data-Simulation corrections  Centrifugal barrier factors  Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                  | 0.006<br>-<br>0.01<br>0.05                                | 0.010<br>0.004<br>0.007                        | 0.007<br>0.001<br>0.02<br>0.01<br>0.03                                | 0.02<br>-<br>-<br>-<br>0.03                         | 0.009<br>0.001<br>0.004<br>0.001<br>0.024                                 | -<br>0.001<br>0.001<br>0.009                                 | 0.15<br>-<br>0.02<br>0.01<br>0.05                              | 0.07<br>-<br>0.01<br>0.01<br>0.02                         | 0.1<br>-<br>0.03<br>0.01<br>0.06                                 | 0.02<br>-<br>0.02                           |
| CP asym. $CP$                  | Simulation sample size Data-Simulation corrections  Centrifugal barrier factors  Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.  Simulation sample size Data-Simulation corrections  Mass propagators parameters | 0.006<br>-<br>0.01<br>0.05<br>0.04                        | -<br>0.010<br>0.004<br>0.007<br>0.020          | 0.007<br>0.001<br>0.02<br>0.01<br>0.03<br>0.06                        | 0.02<br>-<br>-<br>0.03<br>0.02                      | 0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.009                        | -<br>0.001<br>0.001<br>0.009<br>0.009                        | 0.15<br>-<br>0.02<br>0.01<br>0.05<br>0.15                      | 0.07<br>-<br>0.01<br>0.01<br>0.02<br>0.07                 | 0.1<br>-<br>0.03<br>0.01<br>0.06<br>0.15                         | 0.02<br>-<br>0.02<br>0.13                   |
| CP asym. $CP$                  | Simulation sample size Data-Simulation corrections  Centrifugal barrier factors  Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.  Simulation sample size Data-Simulation corrections  Mass propagators parameters | 0.006<br>-<br>0.01<br>0.05<br>0.04<br>-                   | -<br>0.010<br>0.004<br>0.007<br>0.020<br>0.001 | 0.007<br>0.001<br>0.02<br>0.01<br>0.03<br>0.06                        | 0.02<br>-<br>-<br>0.03<br>0.02<br>-                 | 0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.009                        | <br>0.001<br>0.001<br>0.009<br>0.009<br>                     | 0.15<br>-<br>0.02<br>0.01<br>0.05<br>0.15<br>-                 | 0.07<br>-<br>0.01<br>0.01<br>0.02<br>0.07<br>0.01         | 0.1<br>-<br>0.03<br>0.01<br>0.06<br>0.15<br>0.01                 | 0.02<br>-<br>0.02<br>0.13<br>-              |
| CP asym. $CP$                  | Simulation sample size Data-Simulation corrections  Centrifugal barrier factors  Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.  Simulation sample size Data-Simulation corrections  Mass propagators parameters | 0.006<br>-<br>0.01<br>0.05<br>0.04<br>-<br>0.012          | - 0.010 0.004 0.007 0.020 0.001 0.027          | 0.007<br>0.001<br>0.02<br>0.01<br>0.03<br>0.06<br>-                   | 0.02<br>-<br>-<br>0.03<br>0.02<br>-<br>0.03         | 0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.009<br>-                   | -<br>0.001<br>0.001<br>0.009<br>0.009<br>-<br>0.008          | 0.15<br>-<br>0.02<br>0.01<br>0.05<br>0.15<br>-<br>0.04         | 0.07<br>-<br>0.01<br>0.01<br>0.02<br>0.07<br>0.01<br>0.05 | 0.1<br>-<br>0.03<br>0.01<br>0.06<br>0.15<br>0.01<br>0.09         | -<br>0.02<br>-<br>0.02<br>0.13<br>-<br>0.04 |
| CP asym. $CP$                  | Simulation sample size Data-Simulation corrections  Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.  Simulation sample size Data-Simulation corrections                               | 0.006<br>-<br>0.01<br>0.05<br>0.04<br>-<br>0.012<br>0.010 | - 0.010 0.004 0.007 0.020 0.001 0.027 0.026    | 0.007<br>0.001<br>0.02<br>0.01<br>0.03<br>0.06<br>-<br>0.024<br>0.011 | 0.02<br>-<br>-<br>0.03<br>0.02<br>-<br>0.03<br>0.03 | 0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.009<br>-<br>0.009<br>0.020 | -<br>0.001<br>0.001<br>0.009<br>0.009<br>-<br>0.008<br>0.017 | 0.15<br>-<br>0.02<br>0.01<br>0.05<br>0.15<br>-<br>0.04<br>0.30 | 0.07<br>-<br>0.01<br>0.02<br>0.07<br>0.01<br>0.05<br>0.30 | 0.1<br>-<br>0.03<br>0.01<br>0.06<br>0.15<br>0.01<br>0.09<br>0.50 | - 0.02<br>- 0.02<br>0.13<br>- 0.04<br>0.17  |



# $B^0 \rightarrow \rho^0 K^{*0}$



## Systematic uncertainties

Table 6: Table (II) of the systematic uncertainties. The abbreviations S1, S2 and S3 stand for  $f_0(500), f_0(980)$  and  $f_0(1370)$ , respectively. Negligible values are represented by a dash (-).

|                                                                        | Systematic uncertainty                                                                                                                                                                                                                                                                                                                                      | $\delta_{S1K^*}$                                                 | $\delta_{S2K^*}$                                                                                              | $\delta_{S3K^*}$                                                                                 | $\delta_{S1(K\pi)}$                                                                     | $\delta_{S2(K\pi)}$                                                                  | $\delta_{S3(K\pi)}$                                                           | $f_{ ho K^*}^0$                                                                      | $f_{ ho K^*}^{  }$                                                                                                   | $f_{\rho K^*}^{\perp}$                                                                        | $f^0_{\omega K^*}$                                                                                            | $f_{\omega K^*}^{  }$                                                                                 |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                        | Centrifugal barrier factors                                                                                                                                                                                                                                                                                                                                 | 0.01                                                             | _                                                                                                             | 0.01                                                                                             | 0.01                                                                                    | 0.001                                                                                | 0.02                                                                          | 0.001                                                                                | 0.001                                                                                                                | 0.002                                                                                         | _                                                                                                             |                                                                                                       |
| averages                                                               | Hypatia parameters                                                                                                                                                                                                                                                                                                                                          | -                                                                | _                                                                                                             | -                                                                                                | _                                                                                       | 0.001                                                                                | 0.01                                                                          | 0.001                                                                                | 0.001                                                                                                                | 0.002                                                                                         | _                                                                                                             | _                                                                                                     |
| vera                                                                   | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                                                                                                                                                                                                                                                   | 0.05                                                             | _                                                                                                             | 0.01                                                                                             | 0.02                                                                                    | 0.002                                                                                | 0.01                                                                          | 0.005                                                                                | 0.003                                                                                                                | 0.005                                                                                         | 0.02                                                                                                          | 0.02                                                                                                  |
|                                                                        | Simulation sample size                                                                                                                                                                                                                                                                                                                                      | 0.02                                                             | 0.01                                                                                                          | 0.02                                                                                             | 0.02                                                                                    | 0.009                                                                                | 0.03                                                                          | 0.004                                                                                | 0.004                                                                                                                | 0.004                                                                                         | 0.06                                                                                                          | 0.05                                                                                                  |
| CP                                                                     | Data-Simulation corrections                                                                                                                                                                                                                                                                                                                                 | _                                                                | _                                                                                                             | _                                                                                                | _                                                                                       | 0.001                                                                                | _                                                                             | _                                                                                    | _                                                                                                                    | _                                                                                             | 0.01                                                                                                          | _                                                                                                     |
|                                                                        | Centrifugal barrier factors                                                                                                                                                                                                                                                                                                                                 | 0.01                                                             | 0.001                                                                                                         | 0.001                                                                                            | 0.004                                                                                   | 0.003                                                                                | 0.02                                                                          | _                                                                                    | 0.001                                                                                                                | 0.002                                                                                         | 0.01                                                                                                          | 0.01                                                                                                  |
| asym.                                                                  | Hypatia parameters                                                                                                                                                                                                                                                                                                                                          | _                                                                | 0.002                                                                                                         | 0.002                                                                                            | 0.004                                                                                   | 0.001                                                                                | 0.01                                                                          | _                                                                                    | 0.003                                                                                                                | 0.002                                                                                         | 0.01                                                                                                          | 0.01                                                                                                  |
| as,                                                                    | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                                                                                                                                                                                                                                                   | 0.04                                                             | 0.005                                                                                                         | 0.011                                                                                            | 0.023                                                                                   | 0.002                                                                                | 0.01                                                                          | 0.03                                                                                 | 0.007                                                                                                                | 0.011                                                                                         | 0.03                                                                                                          | 0.06                                                                                                  |
| CP                                                                     | Simulation sample size                                                                                                                                                                                                                                                                                                                                      | 0.03                                                             | 0.022                                                                                                         | 0.022                                                                                            | 0.025                                                                                   | 0.012                                                                                | 0.03                                                                          | 0.02                                                                                 | 0.010                                                                                                                | 0.009                                                                                         | 0.12                                                                                                          | 0.14                                                                                                  |
| 0                                                                      | Data-Simulation corrections                                                                                                                                                                                                                                                                                                                                 | _                                                                | 0.001                                                                                                         | _                                                                                                | 0.003                                                                                   | _                                                                                    | _                                                                             | _                                                                                    | 0.001                                                                                                                | 0.001                                                                                         | _                                                                                                             | 0.01                                                                                                  |
|                                                                        | Mass propagators parameters                                                                                                                                                                                                                                                                                                                                 | 0.19                                                             | 0.031                                                                                                         | 0.070                                                                                            | 0.200                                                                                   | 0.018                                                                                | 0.06                                                                          | 0.011                                                                                | 0.005                                                                                                                | 0.006                                                                                         | 0.01                                                                                                          | 0.01                                                                                                  |
| Common<br>P0 P0                                                        | Masses and angles resolution<br>Fit method<br>$9a_1(1260)$ pollution                                                                                                                                                                                                                                                                                        | 0.02                                                             | 0.027                                                                                                         | 0.017                                                                                            | 0.026                                                                                   | 0.026                                                                                | 0.05                                                                          | 0.010                                                                                | 0.016                                                                                                                | 0.018                                                                                         | 0.14                                                                                                          | 0.12                                                                                                  |
| nn c                                                                   | 9. Fit method                                                                                                                                                                                                                                                                                                                                               | _                                                                | 0.004                                                                                                         | 0.001                                                                                            | 0.002                                                                                   | 0.001                                                                                | _                                                                             | 0.003                                                                                | 0.001                                                                                                                | 0.002                                                                                         | 0.01                                                                                                          | 0.05                                                                                                  |
| 3 6                                                                    | $a_1(1260)$ pollution                                                                                                                                                                                                                                                                                                                                       | 0.09                                                             | 0.040                                                                                                         | 0.040                                                                                            | 0.040                                                                                   | 0.050                                                                                | 0.04                                                                          | 0.015                                                                                | 0.040                                                                                                                | 0.031                                                                                         | 0.02                                                                                                          | 0.01                                                                                                  |
|                                                                        | Symmetrised $(\pi\pi)$ PDF                                                                                                                                                                                                                                                                                                                                  | 0.03                                                             | 0.029                                                                                                         | 0.022                                                                                            | 0.035                                                                                   | 0.006                                                                                | 0.05                                                                          | 0.004                                                                                | _                                                                                                                    | 0.004                                                                                         | 0.04                                                                                                          | 0.05                                                                                                  |
|                                                                        | Q                                                                                                                                                                                                                                                                                                                                                           | e l                                                              | ا –ااء                                                                                                        | c  -0                                                                                            | $c \mid -0$                                                                             | c  −⊥                                                                                | 0-11-                                                                         | c   _0                                                                               | $AOK^*.1$                                                                                                            | $AOK^*$ 2                                                                                     | $\iota \omega K^*$ 1                                                                                          | $\omega K^*, 2$                                                                                       |
|                                                                        | Systematic uncertainty                                                                                                                                                                                                                                                                                                                                      | $f^{\perp}_{\omega K^*}$                                         | $\delta_{ ho K^*}^{  -\perp}$                                                                                 | $\delta_{ ho K^*}^{  -0}$                                                                        | $\delta_{ ho K^*}^{\perp -0}$                                                           | $\delta_{\omega K^*}^{  -\perp}$                                                     | $\delta_{\omega K^*}^{  -0}$                                                  | $\delta^{\perp -0}_{\omega K^*}$                                                     | $\mathcal{A}_{\mathrm{T}}^{ ho K^*,1}$                                                                               | $\mathcal{A}_{\mathrm{T}}^{ ho K^*,2}$                                                        | $\mathcal{A}_{\mathrm{T}}^{\omega K^*,1}$                                                                     | ${\cal A}_{ m T}^{\omega K^*,2}$                                                                      |
|                                                                        | Systematic uncertainty  Centrifugal barrier factors                                                                                                                                                                                                                                                                                                         | $f_{\omega K^*}^{\perp}$                                         | $\frac{\delta_{\rho K^*}^{11}}{0.001}$                                                                        | $\delta_{ ho K^*}^{\circ}$                                                                       | $\delta_{\rho K^*}^{\perp \circ}$                                                       | δ'' <sub>ωK*</sub> —                                                                 | <i>δ</i> " <sub>ωK*</sub>                                                     | $\delta_{\omega K^*}^{\perp}$                                                        | $\frac{A_{\rm T}^{r_{\rm T}}}{0.0002}$                                                                               | $A_{\mathrm{T}}^{\mu \Gamma}$ , <sup>2</sup>                                                  | $\frac{\mathcal{A}_{\mathrm{T}}^{\mathrm{arr}}}{0.001}$                                                       | $\frac{\mathcal{A}_{\mathrm{T}}}{0.001}$                                                              |
| ages                                                                   | Centrifugal barrier factors Hypatia parameters                                                                                                                                                                                                                                                                                                              |                                                                  |                                                                                                               |                                                                                                  |                                                                                         |                                                                                      |                                                                               |                                                                                      |                                                                                                                      |                                                                                               |                                                                                                               |                                                                                                       |
| verages                                                                | Centrifugal barrier factors                                                                                                                                                                                                                                                                                                                                 | _                                                                | 0.001                                                                                                         | _                                                                                                |                                                                                         |                                                                                      |                                                                               |                                                                                      | 0.0002                                                                                                               | _                                                                                             | 0.001                                                                                                         | 0.001                                                                                                 |
| P averages                                                             | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size                                                                                                                                                                                                                                             | _<br>_                                                           | 0.001<br>0.001                                                                                                | _<br>_                                                                                           | _<br>_                                                                                  |                                                                                      |                                                                               | _<br>_                                                                               | 0.0002<br>0.0002                                                                                                     | _<br>_                                                                                        | 0.001<br>0.001                                                                                                | 0.001<br>0.001                                                                                        |
| CP averages                                                            | Centrifugal barrier factors<br>Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                                                                                                                                                                                                 | -<br>-<br>0.01                                                   | 0.001<br>0.001<br>0.018                                                                                       | -<br>-<br>0.02                                                                                   | -<br>-<br>0.02                                                                          | -<br>-<br>0.1                                                                        | _<br>_<br>_                                                                   | -<br>-<br>0.1                                                                        | 0.0002<br>0.0002<br>0.0017                                                                                           | -<br>-<br>0.002                                                                               | 0.001<br>0.001<br>0.004                                                                                       | 0.001<br>0.001<br>0.002                                                                               |
|                                                                        | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors                                                                                                                                                                                     | -<br>0.01<br>0.03                                                | 0.001<br>0.001<br>0.018<br>0.009                                                                              | -<br>0.02<br>0.02                                                                                | -<br>-<br>0.02                                                                          | -<br>-<br>0.1                                                                        | _<br>_<br>_                                                                   | -<br>-<br>0.1                                                                        | 0.0002<br>0.0002<br>0.0017                                                                                           | -<br>0.002<br>0.002                                                                           | 0.001<br>0.001<br>0.004                                                                                       | 0.001<br>0.001<br>0.002                                                                               |
|                                                                        | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters                                                                                                                                                                  | -<br>0.01<br>0.03<br>-                                           | 0.001<br>0.001<br>0.018<br>0.009<br>0.001                                                                     | -<br>0.02<br>0.02<br>-                                                                           | -<br>0.02<br>0.02<br>-                                                                  | -<br>0.1<br>0.2<br>-                                                                 | -<br>-<br>-<br>0.2<br>-                                                       | -<br>0.1<br>0.2<br>-                                                                 | 0.0002<br>0.0002<br>0.0017<br>0.0013                                                                                 | -<br>0.002<br>0.002<br>-                                                                      | 0.001<br>0.001<br>0.004<br>0.012                                                                              | 0.001<br>0.001<br>0.002<br>0.012                                                                      |
|                                                                        | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                                                        | -<br>0.01<br>0.03<br>-                                           | 0.001<br>0.001<br>0.018<br>0.009<br>0.001                                                                     | -<br>0.02<br>0.02<br>-<br>0.007                                                                  | -<br>0.02<br>0.02<br>-<br>0.004                                                         | -<br>0.1<br>0.2<br>-<br>0.03                                                         | -<br>-<br>0.2<br>-<br>0.02                                                    | -<br>0.1<br>0.2<br>-<br>0.04                                                         | 0.0002<br>0.0002<br>0.0017<br>0.0013<br>-                                                                            | -<br>0.002<br>0.002<br>-<br>0.001                                                             | 0.001<br>0.001<br>0.004<br>0.012<br>-                                                                         | 0.001<br>0.001<br>0.002<br>0.012<br>-                                                                 |
| asym. $CP$                                                             | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters                                                                                                                                                                  | -<br>0.01<br>0.03<br>-<br>-<br>0.1                               | 0.001<br>0.001<br>0.018<br>0.009<br>0.001<br>0.004<br>0.001                                                   | -<br>0.02<br>0.02<br>-<br>0.007<br>0.007                                                         | -<br>0.02<br>0.02<br>-<br>0.004<br>0.002                                                | -<br>0.1<br>0.2<br>-<br>0.03<br>0.02                                                 | -<br>-<br>0.2<br>-<br>0.02<br>0.01                                            | -<br>0.1<br>0.2<br>-<br>0.04<br>0.02                                                 | 0.0002<br>0.0002<br>0.0017<br>0.0013<br>-<br>0.0003<br>0.0001                                                        | -<br>0.002<br>0.002<br>-<br>0.001                                                             | 0.001<br>0.001<br>0.004<br>0.012<br>-<br>0.001<br>0.001                                                       | 0.001<br>0.001<br>0.002<br>0.012<br>-<br>0.001<br>0.001                                               |
|                                                                        | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg.                                                                                                                        | -<br>0.01<br>0.03<br>-<br>-<br>0.1<br>0.2                        | 0.001<br>0.001<br>0.018<br>0.009<br>0.001<br>0.004<br>0.001<br>0.024                                          | -<br>0.02<br>0.02<br>-<br>0.007<br>0.007<br>0.002<br>0.020                                       | -<br>0.02<br>0.02<br>-<br>0.004<br>0.002<br>0.026                                       | -<br>0.1<br>0.2<br>-<br>0.03<br>0.02<br>0.06                                         | -<br>-<br>0.2<br>-<br>0.02<br>0.01<br>0.04                                    | -<br>0.1<br>0.2<br>-<br>0.04<br>0.02<br>0.13                                         | 0.0002<br>0.0002<br>0.0017<br>0.0013<br>-<br>0.0003<br>0.0001<br>0.0017                                              | -<br>0.002<br>0.002<br>-<br>0.001<br>-<br>0.004                                               | 0.001<br>0.001<br>0.004<br>0.012<br>-<br>0.001<br>0.001<br>0.005                                              | 0.001<br>0.001<br>0.002<br>0.012<br>-<br>0.001<br>0.001<br>0.003                                      |
| CP asym. $ $ CP                                                        | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections                                                                     | -<br>0.01<br>0.03<br>-<br>0.1<br>0.2<br>0.1                      | 0.001<br>0.001<br>0.018<br>0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.011                                 | -<br>0.02<br>0.02<br>0.02<br>-<br>0.007<br>0.002<br>0.020<br>0.027                               | -<br>0.02<br>0.02<br>0.02<br>-<br>0.004<br>0.002<br>0.026<br>0.023                      | -<br>0.1<br>0.2<br>-<br>0.03<br>0.02<br>0.06<br>0.14                                 | -<br>0.2<br>-<br>0.02<br>0.01<br>0.04<br>0.17                                 | -<br>0.1<br>0.2<br>-<br>0.04<br>0.02<br>0.13<br>0.20                                 | 0.0002<br>0.0002<br>0.0017<br>0.0013<br>-<br>0.0003<br>0.0001<br>0.0017                                              | -<br>0.002<br>0.002<br>-<br>0.001<br>-<br>0.004<br>0.002                                      | 0.001<br>0.001<br>0.004<br>0.012<br>-<br>0.001<br>0.001<br>0.005<br>0.015                                     | 0.001<br>0.001<br>0.002<br>0.012<br>-<br>0.001<br>0.001<br>0.003<br>0.017                             |
| CP asym. $ $ CP                                                        | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections                                                                     | -<br>0.01<br>0.03<br>-<br>0.1<br>0.2<br>0.1                      | 0.001<br>0.001<br>0.018<br>0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.011                                 | -<br>0.02<br>0.02<br>-<br>0.007<br>0.002<br>0.022<br>0.020<br>0.027<br>0.002                     | -<br>0.02<br>0.02<br>-<br>0.004<br>0.002<br>0.026<br>0.023<br>0.002                     | -<br>0.1<br>0.2<br>-<br>0.03<br>0.02<br>0.06<br>0.14<br>0.02                         | -<br>-<br>0.2<br>-<br>0.02<br>0.01<br>0.04<br>0.17<br>0.01                    | -<br>0.1<br>0.2<br>-<br>0.04<br>0.02<br>0.13<br>0.20<br>0.01                         | 0.0002<br>0.0002<br>0.0017<br>0.0013<br>—<br>0.0003<br>0.0001<br>0.0017<br>0.0013<br>—                               | -<br>0.002<br>0.002<br>-<br>0.001<br>-<br>0.004<br>0.002<br>-                                 | 0.001<br>0.001<br>0.004<br>0.012<br>-<br>0.001<br>0.001<br>0.005<br>0.015<br>0.001                            | 0.001<br>0.001<br>0.002<br>0.012<br>-<br>0.001<br>0.001<br>0.003<br>0.017<br>-                        |
| CP asym. $ $ CP                                                        | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Mass propagators parameters Masses and angles resolution Fit method | -<br>0.01<br>0.03<br>-<br>-<br>0.1<br>0.2<br>0.1<br>-            | 0.001<br>0.001<br>0.018<br>0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.011<br>-                            | -<br>0.02<br>0.02<br>0.02<br>-<br>0.007<br>0.002<br>0.020<br>0.027<br>0.002                      | -<br>0.02<br>0.02<br>0.02<br>-<br>0.004<br>0.002<br>0.026<br>0.023<br>0.002             | -<br>0.1<br>0.2<br>-<br>0.03<br>0.02<br>0.06<br>0.14<br>0.02                         | -<br>0.2<br>-<br>0.02<br>0.01<br>0.04<br>0.17<br>0.01                         | -<br>0.1<br>0.2<br>-<br>0.04<br>0.02<br>0.13<br>0.20<br>0.01                         | 0.0002<br>0.0002<br>0.0017<br>0.0013<br>-<br>0.0003<br>0.0001<br>0.0017<br>0.0013<br>-<br>0.0006                     | -<br>0.002<br>0.002<br>-<br>0.001<br>-<br>0.004<br>0.002<br>-<br>0.001                        | 0.001<br>0.001<br>0.004<br>0.012<br>-<br>0.001<br>0.001<br>0.005<br>0.015<br>0.001<br>0.002<br>0.026<br>0.005 | 0.001<br>0.001<br>0.002<br>0.012<br>-<br>0.001<br>0.001<br>0.003<br>0.017<br>-<br>-<br>0.019<br>0.001 |
| $ \begin{array}{c c} \text{nmon} & CP \text{ asym.} & CP \end{array} $ | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections                                                                     | -<br>0.01<br>0.03<br>-<br>0.1<br>0.2<br>0.1<br>-<br>0.08         | 0.001<br>0.001<br>0.018<br>0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.011<br>-<br>0.004<br>0.031          | - 0.02<br>0.02<br>0.02<br>- 0.007<br>0.002<br>0.020<br>0.027<br>0.002<br>0.028<br>0.029          | - 0.02<br>0.02<br>0.02<br>- 0.004<br>0.002<br>0.026<br>0.023<br>0.002<br>0.024<br>0.040 | - 0.1<br>0.2<br>- 0.03<br>0.02<br>0.06<br>0.14<br>0.02<br>0.07                       | -<br>0.2<br>-<br>0.02<br>0.01<br>0.04<br>0.17<br>0.01<br>0.06<br>0.40         | -<br>0.1<br>0.2<br>-<br>0.04<br>0.02<br>0.13<br>0.20<br>0.01<br>0.09<br>0.60         | 0.0002<br>0.0002<br>0.0017<br>0.0013<br>-<br>0.0003<br>0.0001<br>0.0017<br>0.0013<br>-<br>0.0006<br>0.0020           | -<br>0.002<br>0.002<br>-<br>0.001<br>-<br>0.004<br>0.002<br>-<br>0.001<br>0.005<br>-<br>0.004 | 0.001<br>0.001<br>0.004<br>0.012<br>-<br>0.001<br>0.001<br>0.005<br>0.015<br>0.001<br>0.002<br>0.026          | 0.001<br>0.001<br>0.002<br>0.012<br>-<br>0.001<br>0.001<br>0.003<br>0.017<br>-<br>-<br>0.019          |
| CP asym. $ $ CP                                                        | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Mass propagators parameters Masses and angles resolution Fit method | -<br>0.01<br>0.03<br>-<br>0.1<br>0.2<br>0.1<br>-<br>0.08<br>0.03 | 0.001<br>0.001<br>0.018<br>0.009<br>0.001<br>0.004<br>0.001<br>0.024<br>0.011<br>-<br>0.004<br>0.031<br>0.003 | - 0.02<br>0.02<br>0.02<br>- 0.007<br>0.002<br>0.020<br>0.027<br>0.002<br>0.028<br>0.029<br>0.005 |                                                                                         | -<br>0.1<br>0.2<br>-<br>0.03<br>0.02<br>0.06<br>0.14<br>0.02<br>0.07<br>0.60<br>0.02 | -<br>0.2<br>-<br>0.02<br>0.01<br>0.04<br>0.17<br>0.01<br>0.06<br>0.40<br>0.02 | -<br>0.1<br>0.2<br>-<br>0.04<br>0.02<br>0.13<br>0.20<br>0.01<br>0.09<br>0.60<br>0.03 | 0.0002<br>0.0002<br>0.0017<br>0.0013<br>-<br>0.0003<br>0.0001<br>0.0017<br>0.0013<br>-<br>0.0006<br>0.0020<br>0.0001 | -<br>0.002<br>0.002<br>-<br>0.001<br>-<br>0.004<br>0.002<br>-<br>0.001<br>0.005<br>-          | 0.001<br>0.001<br>0.004<br>0.012<br>-<br>0.001<br>0.001<br>0.005<br>0.015<br>0.001<br>0.002<br>0.026<br>0.005 | 0.001<br>0.001<br>0.002<br>0.012<br>-<br>0.001<br>0.001<br>0.003<br>0.017<br>-<br>-<br>0.019<br>0.001 |





### Mass fit

- Shapes:
  - Signal: Hypatia distribution with parameters obtained from simulation. The same shape is used for  $B^{\circ}$  and  $B_{s}^{\circ}$ , except with a mass shift





#### **Full Results**



Figure 4: Projections of the amplitude fit results for the  $B^0 \to K^{*0} \overline{K}^{*0}$  decay mode on the helicity angles (top row:  $\cos \theta_1$  left,  $\cos \theta_2$  centre and  $\phi$  right) and on the two-body invariant masses (bottom row:  $M(K^+\pi^-)$  left and  $M(K^-\pi^+)$  centre). The contributing partial waves: VV (dashed red), VS (dashed green) and SS (dotted grey) are shown with lines. The black points correspond to data and the overall fit is represented by the blue line.

Figure 5: Projections of the amplitude fit results for the  $B_s^0 \to K^{*0} \overline{K}^{*0}$  decay mode on the helicity angles (top row:  $\cos \theta_1$  left,  $\cos \theta_2$  centre and  $\phi$  right) and on the two-body invariant masses (bottom row:  $M(K^+\pi^-)$  left and  $M(K^-\pi^+)$  centre). The contributing partial waves: VV (dashed red), VS (dashed green) and SS (dotted grey) are shown with lines. The black points correspond to data and the overall fit is represented by the blue line.





|                                   | Full Results                      |                                      |
|-----------------------------------|-----------------------------------|--------------------------------------|
| Parameter                         | $B^0\!	o K^{*0} \overline K^{*0}$ | $B_s^0 \to K^{*0} \overline{K}^{*0}$ |
| $\overline{}$                     | $0.724 \pm 0.051 \pm 0.016$       | $0.240 \pm 0.031 \pm 0.025$          |
| $x_{f_{  }}$                      | $0.42 \pm 0.10 \pm 0.03$          | $0.307 \pm 0.031 \pm 0.010$          |
| $ A_S^{-} ^2$                     | $0.377 \pm 0.052 \pm 0.024$       | $0.558 \pm 0.021 \pm 0.014$          |
| $x_{ A_S^+ ^2}$                   | $0.013 \pm 0.027 \pm 0.011$       | $0.109 \pm 0.028 \pm 0.024$          |
| $x_{ A_{SS} ^2}$                  | $0.038 \pm 0.022 \pm 0.006$       | $0.222 \pm 0.025 \pm 0.031$          |
| $\delta_{ m \parallel}$           | $2.51 \pm 0.22 \pm 0.06$          | $2.37 \pm 0.12 \pm 0.06$             |
| $\delta_{\perp} - \delta_{S}^{+}$ | $5.44 \pm 0.86 \pm 0.22$          | $4.40 \pm 0.17 \pm 0.07$             |
| $\delta_S^-$                      | $5.11 \pm 0.13 \pm 0.04$          | $1.80 \pm 0.10 \pm 0.06$             |
| $\delta_{SS}$                     | $2.88 \pm 0.35 \pm 0.13$          | $0.99 \pm 0.13 \pm 0.06$             |
|                                   | $0.116 \pm 0.033 \pm 0.012$       | $0.234 \pm 0.025 \pm 0.010$          |
| $f_{\perp}$                       | $0.160 \pm 0.044 \pm 0.012$       | $0.526 \pm 0.032 \pm 0.019$          |
| $ A_{S}^{+} ^{2}$                 | $0.008 \pm 0.013 \pm 0.007$       | $0.048 \pm 0.014 \pm 0.011$          |
| $ A_{SS} ^2$                      | $0.023 \pm 0.014 \pm 0.004$       | $0.087 \pm 0.011 \pm 0.011$          |

S—wave fraction  $0.408 \pm 0.050 \pm 0.017$ 

 $0.694 \pm 0.016 \pm 0.010$ 





### Systematic uncertainties

- Fit method
- Description of kinematic acceptance
- Resolution
- P-wave mass model
- S-wave mass model
- Differences between data and simulation
- Background subtraction
- Peaking backgrounds
- Time acceptance

#### Branching fraction measurement

- Systematic uncertainties in the factor k
- Systematic uncertainties in the signal yields
- Systematic uncertainties in the efficiencies





## Systematic uncertainties

| Dagger made                                                                                                                                                              | I                                                                    |                                                                      |                                                                      | $D^0 \sim 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z+\(L                                                                                                                 | ∕- <b>-</b> +)                                                                                                    |                                                              |                                                              |                                                              |                                                                      | D                                                                            | $e^0 \rightarrow (K^+)$                                                                                                                                        | -\( K-a                                                                                    | -+)                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Decay mode Parameter                                                                                                                                                     | ſ                                                                    | ~                                                                    | A -  2                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(K^+\pi^-)(K^-)$                                                                                                     |                                                                                                                   | +2 2                                                         | ς-                                                           | \$                                                           | ·                                                                    |                                                                              | `                                                                                                                                                              | / \                                                                                        | S-wave fraction                                                         |
|                                                                                                                                                                          | $f_L$                                                                | $x_{f_{\parallel}}$                                                  | $\frac{ A_S^- ^2}{ A_S^- ^2}$                                        | $x_{ A_S^+ ^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $x_{ A_{SS} ^2}$                                                                                                      | $\delta_{\parallel}$                                                                                              | $\delta_{\perp} - \delta_{S}^{+}$                            | $\delta_S^-$                                                 | $\delta_{SS}$                                                | $f_{\parallel}$                                                      | $f_{\perp}$                                                                  | $\frac{ A_S^+ ^2}{0.001}$                                                                                                                                      | $\frac{ A_{SS} ^2}{0.000}$                                                                 |                                                                         |
| Bias data-simulation                                                                                                                                                     | 0.001                                                                | 0.00                                                                 | 0.006                                                                | -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.004                                                                                                                 | 0.01                                                                                                              | -0.01                                                        | 0.00                                                         | 0.01                                                         | 0.001                                                                | $\frac{-0.001}{0.007}$                                                       | $\frac{-0.001}{0.005}$                                                                                                                                         | 0.002                                                                                      | 0.007                                                                   |
| Fit method                                                                                                                                                               | 0.007                                                                | 0.01                                                                 | 0.011                                                                | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.001                                                                                                                 | 0.00                                                                                                              | 0.01                                                         | 0.00                                                         | 0.02                                                         | 0.000                                                                | 0.007                                                                        | 0.005                                                                                                                                                          | 0.000                                                                                      | 0.006                                                                   |
| Kinematic acceptance                                                                                                                                                     | 0.005                                                                | 0.01                                                                 | 0.006                                                                | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.002                                                                                                                 | 0.03                                                                                                              | 0.12                                                         | 0.01                                                         | 0.04                                                         | 0.003                                                                | 0.004                                                                        | 0.001                                                                                                                                                          | 0.003                                                                                      | 0.006                                                                   |
| Resolution                                                                                                                                                               | 0.007                                                                | 0.00                                                                 | 0.005                                                                | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.002                                                                                                                 | 0.00                                                                                                              | 0.16                                                         | 0.00                                                         | 0.02                                                         | 0.001                                                                | 0.003                                                                        | 0.000                                                                                                                                                          | 0.001                                                                                      | 0.006                                                                   |
| P-wave mass model                                                                                                                                                        | 0.001                                                                | 0.00                                                                 | 0.004                                                                | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.002                                                                                                                 | 0.00                                                                                                              | 0.01                                                         | 0.00                                                         | 0.02                                                         | 0.000                                                                | 0.001                                                                        | 0.000                                                                                                                                                          | 0.001                                                                                      | 0.005                                                                   |
| S—wave mass model                                                                                                                                                        | 0.007                                                                | 0.01                                                                 | 0.016                                                                | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.002                                                                                                                 | 0.03                                                                                                              | 0.03                                                         | 0.03                                                         | 0.02                                                         | 0.000                                                                | 0.007                                                                        | 0.002                                                                                                                                                          | 0.002                                                                                      | 0.008                                                                   |
| Differences data-simulation                                                                                                                                              | 0.004                                                                | 0.00                                                                 | 0.002                                                                | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.001                                                                                                                 | 0.01                                                                                                              | 0.01                                                         | 0.01                                                         | 0.01                                                         | 0.001                                                                | 0.003                                                                        | 0.000                                                                                                                                                          | 0.001                                                                                      | 0.002                                                                   |
| Background subtraction                                                                                                                                                   | 0.002                                                                | 0.01                                                                 | 0.006                                                                | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.002                                                                                                                 | 0.01                                                                                                              | 0.06                                                         | 0.01                                                         | 0.09                                                         | 0.005                                                                | 0.003                                                                        | 0.001                                                                                                                                                          | 0.001                                                                                      | 0.002                                                                   |
| Peaking backgrounds                                                                                                                                                      | 0.009                                                                | 0.02                                                                 | 0.009                                                                | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.003                                                                                                                 | 0.04                                                                                                              | 0.06                                                         | 0.01                                                         | 0.08                                                         | 0.010                                                                | 0.003                                                                        | 0.002                                                                                                                                                          | 0.002                                                                                      | 0.009                                                                   |
| Total systematic unc.                                                                                                                                                    | $\bar{0.016}$                                                        | -0.03                                                                | 0.024                                                                | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.006                                                                                                                 | 0.06                                                                                                              | 0.22                                                         | -0.04                                                        | $0.\bar{1}\bar{3}$                                           | 0.012                                                                | 0.012                                                                        | -0.007                                                                                                                                                         | 0.004                                                                                      | 0.017                                                                   |
|                                                                                                                                                                          |                                                                      |                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |                                                                                                                   |                                                              |                                                              |                                                              |                                                                      |                                                                              |                                                                                                                                                                |                                                                                            |                                                                         |
|                                                                                                                                                                          |                                                                      |                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |                                                                                                                   |                                                              |                                                              |                                                              |                                                                      |                                                                              |                                                                                                                                                                |                                                                                            |                                                                         |
| Decay mode                                                                                                                                                               |                                                                      |                                                                      |                                                                      | $B_s^0 \to (R_s^0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(K^+\pi^-)(K^-)$                                                                                                     | $(\pi^+)$                                                                                                         |                                                              |                                                              |                                                              | _                                                                    | В                                                                            | $C_s^0 \to (K^+)$                                                                                                                                              | , ,                                                                                        | r <sup>+</sup> )                                                        |
| Decay mode Parameter                                                                                                                                                     | $f_L$                                                                | $x_{f_{\parallel}}$                                                  | $ A_S^- ^2$                                                          | - ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{X^+\pi^-)(K}{x_{ A_{SS} ^2}}$                                                                                  | $\frac{(1-\pi^+)}{\delta_{\parallel}}$                                                                            | $\delta_{\perp} - \delta_{S}^{+}$                            | $\delta_S^-$                                                 | $\delta_{SS}$                                                | $f_{\parallel}$                                                      | $f_{\perp}$                                                                  | $\frac{P_s^0 \to (K^+ r)}{ A_S^+ ^2}$                                                                                                                          | $\frac{\pi^-)(K^-\pi^-)(K^-\pi^-)}{ A_{SS} ^2}$                                            | r <sup>+</sup> ) S-wave fraction                                        |
|                                                                                                                                                                          | $f_L$ 0.004                                                          | $\begin{array}{c} x_{f_{\parallel}} \\ 0.003 \end{array}$            | $ A_S^- ^2$ 0.007                                                    | $B_s^0 \to (B_s^0) \to (B_s^0$ |                                                                                                                       |                                                                                                                   | $\frac{\delta_{\perp} - \delta_S^+}{0.00}$                   | $\frac{\delta_S^-}{0.05}$                                    | $\delta_{SS}$ $0.07$                                         | $f_{\parallel} = 0.001$                                              |                                                                              | <u> </u>                                                                                                                                                       | , ,                                                                                        | <u>'</u>                                                                |
| Parameter                                                                                                                                                                |                                                                      |                                                                      |                                                                      | $x_{ A_S^+ ^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $x_{ A_{SS} ^2}$                                                                                                      | $\delta_{\parallel}$                                                                                              |                                                              |                                                              |                                                              |                                                                      | $f_{\perp}$                                                                  | $ A_S^+ ^2$                                                                                                                                                    | $ A_{SS} ^2$                                                                               | S-wave fraction                                                         |
| Parameter Bias data-simulation                                                                                                                                           | 0.004                                                                | 0.003                                                                | 0.007                                                                | $x_{ A_S^+ ^2} -0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{x_{ A_{SS} ^2}}{0.021}$                                                                                        | $\delta_{\parallel}$ $0.05$                                                                                       | 0.00                                                         | 0.05                                                         | 0.07                                                         | 0.001                                                                | $f_{\perp} = -0.005$                                                         | $\frac{ A_S^+ ^2}{-0.002}$                                                                                                                                     | $ A_{SS} ^2$ 0.007                                                                         | S-wave fraction<br>0.012                                                |
| Parameter Bias data-simulation Fit method                                                                                                                                | 0.004                                                                | 0.003                                                                | 0.007<br>0.001                                                       | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \end{array}$                                                       | $\delta_{\parallel}$ $0.05$ $0.00$                                                                                | 0.00                                                         | 0.05                                                         | 0.07                                                         | 0.001                                                                | $f_{\perp} = -0.005 = 0.001$                                                 | $ \begin{array}{c c}  &  A_S^+ ^2 \\  & -0.002 \\ \hline  & 0.000 \end{array} $                                                                                | $ A_{SS} ^2$ $0.007$ $0.001$                                                               | S-wave fraction<br>0.012<br>0.001                                       |
| Parameter Bias data-simulation Fit method Kinematic acceptance                                                                                                           | 0.004<br>0.001<br>0.011                                              | 0.003<br>0.000<br>0.006                                              | 0.007<br>0.001<br>0.011                                              | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \end{array}$                                              | $\delta_{\parallel} = 0.05$ $0.00$ $0.05$                                                                         | 0.00<br>0.00<br>0.07                                         | 0.05<br>0.00<br>0.05                                         | 0.07<br>0.00<br>0.05                                         | 0.001<br>0.001<br>0.005                                              | $f_{\perp}$ $-0.005$ $0.001$ $0.009$                                         | $ \begin{array}{c c}  &  A_S^+ ^2 \\  & -0.002 \\ \hline  & 0.000 \\  & 0.010 \end{array} $                                                                    | $ A_{SS} ^2$ $0.007$ $0.001$ $0.004$                                                       | S-wave fraction<br>0.012<br>0.001<br>0.004                              |
| Parameter Bias data-simulation Fit method Kinematic acceptance Resolution                                                                                                | 0.004<br>0.001<br>0.011<br>0.002                                     | 0.003<br>0.000<br>0.006<br>0.001                                     | 0.007<br>0.001<br>0.011<br>0.000                                     | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \end{array}$                                     | $\begin{array}{c} \delta_{\parallel} \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \end{array}$                                 | 0.00<br>0.00<br>0.07<br>0.00                                 | 0.05<br>0.00<br>0.05<br>0.00                                 | 0.07<br>0.00<br>0.05<br>0.00                                 | 0.001<br>0.001<br>0.005<br>0.000                                     | $f_{\perp}$ $-0.005$ $0.001$ $0.009$ $0.002$                                 | $ \begin{array}{c c}  &  A_S^+ ^2 \\  & -0.002 \\ \hline  & 0.000 \\  & 0.010 \\  & 0.000 \end{array} $                                                        | $ A_{SS} ^2$ $0.007$ $0.001$ $0.004$ $0.001$                                               | S-wave fraction<br>0.012<br>0.001<br>0.004<br>0.002                     |
| Parameter  Bias data-simulation  Fit method  Kinematic acceptance  Resolution  P-wave mass model                                                                         | 0.004<br>0.001<br>0.011<br>0.002<br>0.001                            | 0.003<br>0.000<br>0.006<br>0.001<br>0.000                            | 0.007<br>0.001<br>0.011<br>0.000<br>0.001                            | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \\ 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \\ 0.009 \end{array}$                            | $\begin{array}{c} \delta_{\parallel} \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \end{array}$                         | 0.00<br>0.00<br>0.07<br>0.00<br>0.01                         | 0.05<br>0.00<br>0.05<br>0.00<br>0.00                         | 0.07<br>0.00<br>0.05<br>0.00<br>0.01                         | 0.001<br>0.001<br>0.005<br>0.000<br>0.000                            | $f_{\perp}$ $-0.005$ $0.001$ $0.009$ $0.002$ $0.001$                         | $ \begin{array}{c c}  &  A_S^+ ^2 \\ \hline  & -0.002 \\  & 0.000 \\  & 0.010 \\  & 0.000 \\  & 0.001 \end{array} $                                            | $ \begin{array}{c c}  A_{SS} ^2 \\ 0.007 \\ 0.001 \\ 0.004 \\ 0.001 \\ 0.003 \end{array} $ | S-wave fraction 0.012 0.001 0.004 0.002 0.005                           |
| Parameter Bias data-simulation Fit method Kinematic acceptance Resolution P-wave mass model S-wave mass model                                                            | 0.004<br>0.001<br>0.011<br>0.002<br>0.001<br>0.021                   | 0.003<br>0.000<br>0.006<br>0.001<br>0.000<br>0.001                   | 0.007<br>0.001<br>0.011<br>0.000<br>0.001<br>0.007                   | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \\ 0.002 \\ 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \\ 0.009 \\ 0.028 \end{array}$                   | $\delta_{\parallel}$ 0.05 0.00 0.05 0.00 0.05 0.00 0.03                                                           | 0.00<br>0.00<br>0.07<br>0.00<br>0.01<br>0.02                 | 0.05<br>0.00<br>0.05<br>0.00<br>0.00<br>0.03                 | 0.07<br>0.00<br>0.05<br>0.00<br>0.01<br>0.02                 | 0.001<br>0.001<br>0.005<br>0.000<br>0.000<br>0.006                   | $f_{\perp}$ $-0.005$ $0.001$ $0.009$ $0.002$ $0.001$ $0.016$                 | $ \begin{array}{c c}  &  A_S^+ ^2 \\  & -0.002 \\ \hline  & 0.000 \\  & 0.010 \\  & 0.000 \\  & 0.001 \\  & 0.004 \end{array} $                                | $ A_{SS} ^2$ $0.007$ $0.001$ $0.004$ $0.001$ $0.003$ $0.009$                               | S-wave fraction 0.012 0.001 0.004 0.002 0.005 0.006                     |
| Parameter  Bias data-simulation  Fit method  Kinematic acceptance  Resolution  P-wave mass model  S-wave mass model  Differences data-simulation                         | 0.004<br>0.001<br>0.011<br>0.002<br>0.001<br>0.021<br>0.002          | 0.003<br>0.000<br>0.006<br>0.001<br>0.000<br>0.001<br>0.000          | 0.007<br>0.001<br>0.011<br>0.000<br>0.001<br>0.007<br>0.001          | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \\ 0.002 \\ 0.011 \\ 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \\ 0.009 \\ 0.028 \\ 0.001 \end{array}$          | $\begin{array}{c} \delta_{\parallel} \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.03 \\ 0.01 \end{array}$         | 0.00<br>0.00<br>0.07<br>0.00<br>0.01<br>0.02<br>0.00         | 0.05<br>0.00<br>0.05<br>0.00<br>0.00<br>0.03<br>0.01         | 0.07<br>0.00<br>0.05<br>0.00<br>0.01<br>0.02<br>0.01         | 0.001<br>0.001<br>0.005<br>0.000<br>0.000<br>0.006<br>0.001          | $f_{\perp}$ $-0.005$ $0.001$ $0.009$ $0.002$ $0.001$ $0.016$ $0.001$         | $ \begin{array}{c c}  &  A_S^+ ^2 \\ \hline  & -0.002 \\ \hline  & 0.000 \\  & 0.010 \\  & 0.000 \\  & 0.001 \\  & 0.004 \\  & 0.000 \end{array} $             | $ A_{SS} ^2$ $0.007$ $0.001$ $0.004$ $0.003$ $0.009$ $0.001$                               | S-wave fraction  0.012  0.001  0.004  0.002  0.005  0.006  0.001        |
| Parameter  Bias data-simulation  Fit method  Kinematic acceptance  Resolution  P-wave mass model  S-wave mass model  Differences data-simulation  Background subtraction | 0.004<br>0.001<br>0.011<br>0.002<br>0.001<br>0.021<br>0.002<br>0.000 | 0.003<br>0.000<br>0.006<br>0.001<br>0.000<br>0.001<br>0.000<br>0.001 | 0.007<br>0.001<br>0.011<br>0.000<br>0.001<br>0.007<br>0.001<br>0.001 | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \\ 0.002 \\ 0.011 \\ 0.001 \\ 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \\ 0.009 \\ 0.028 \\ 0.001 \\ 0.004 \end{array}$ | $\begin{array}{c} \delta_{\parallel} \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.03 \\ 0.01 \\ 0.01 \end{array}$ | 0.00<br>0.00<br>0.07<br>0.00<br>0.01<br>0.02<br>0.00<br>0.01 | 0.05<br>0.00<br>0.05<br>0.00<br>0.00<br>0.03<br>0.01<br>0.01 | 0.07<br>0.00<br>0.05<br>0.00<br>0.01<br>0.02<br>0.01<br>0.01 | 0.001<br>0.001<br>0.005<br>0.000<br>0.000<br>0.006<br>0.001<br>0.001 | $f_{\perp}$ $-0.005$ $0.001$ $0.009$ $0.002$ $0.001$ $0.016$ $0.001$ $0.001$ | $ \begin{array}{c c}  &  A_S^+ ^2 \\ \hline  & -0.002 \\ \hline  & 0.000 \\  & 0.010 \\  & 0.000 \\  & 0.001 \\  & 0.004 \\  & 0.000 \\  & 0.001 \end{array} $ | $ A_{SS} ^2$ 0.007 0.001 0.004 0.001 0.003 0.009 0.001 0.002                               | S-wave fraction  0.012  0.001  0.004  0.002  0.005  0.006  0.001  0.002 |





### Mass fit

- Shapes:
  - Signal: Double-sided Hypatia distributions with the same parameters other than mass difference
  - Mis-ID: sum of a Crystal ball and gaussian with parameters from simulations (except mean and sigma)
  - Part-Reco: ARGUS function convolved with a gaussian resolution function