Introduction - Direct CP asymmetries arise from interference between different amplitudes - The interference is largest when the competing amplitudes are of a similar size - For suppressed decays, loop level processes can compete with tree level processes - Decays with contributions from loop level amplitudes give access to processes beyond the standard model - Heavy particles may produce effects that are observable with current sensitivities ## Introduction This talk will cover three recent measurements of quasi-two-body decays with contributions from loop level processes $$B^+ \to J/\psi \rho^+$$ A measurement of direct CP asymmetry and branching fraction $$B^0 \to \rho(770)^0 K^*(892)^0$$ An amplitude analysis that determines CP asymmetries of contributing amplitudes $$B^0_{(s)} \to K^{*0} \overline{K}^{*0}$$ An amplitude analysis of a loop-mediated Flavour Changing Neutral Current process All three analyses are performed using the 3 fb⁻¹ Run 1 data set ## Other talks Many other talks related to quasi-two-body decays are being presented by LHCb in this conference: Time-dependent charmless B decays $$B^0_{(s)} \to h^+ h^{'-}$$ including modes: $$B_s^0 \to (K^+\pi^-)(K^-\pi^+)$$ $$B_s^0 \to \phi \phi$$ Talk presented by <u>Louis Henry</u> 11:40 11th July CP violation in multibody charmless b-hadron decays including modes: $$B_s^0 \to K_{\rm S}^0 K^{\pm} \pi^{\pm}$$ $$B^{\pm} \to \pi^{\pm} K^+ K^-$$ Talk presented by <u>Adam Morris</u> 12:20 11th July Observation of several sources of CP violation in B⁺ \rightarrow π^+ π^- decays at LHCb Talk presented by <u>Jeremy Dalseno</u> 12:00 11th July ## Recent results in quasi-two-body decays LHCb-PAPER-2018-036 - Measurement of the branching fraction and CP asymmetry in Eur. Phys. J. C79 (2019) 537 B+ \rightarrow J/ ψ ρ^+ decays - Study of the B⁰ \rightarrow ρ (770)⁰ K*(892)⁰ decay with an amplitude analysis of B⁰ \rightarrow (π + π -) (K- π +) - Amplitude analysis of the $B_{(s)}{}^0 \rightarrow K^{*0}$ K*0 decays and measurement of the branching fraction of the $B^0 \rightarrow K^{*0}$ K*0 decay - This decay process via tree and penguin topology processes - $\mathcal{A}^{CP} \equiv \frac{\mathcal{B}(B^- \to J/\psi \, \rho^-) \mathcal{B}(B^+ \to J/\psi \, \rho^+)}{\mathcal{B}(B^- \to J/\psi \, \rho^-) + \mathcal{B}(B^+ \to J/\psi \, \rho^+)}$ - The value of A^{cp} provides an estimate of the penguin-to-tree amplitude ratio for b → ccd processes - This can place constraints on penguin contributions in the determination of ϕ_s (See talk by Veronika Chobanova) Decays are reconstructed using three charged tracks and two photons The branching fraction is measured relative to B⁺ \rightarrow J/ ψ K⁺ decays $$B^{+} \to J/\psi \rho^{+}$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$ Eur. Phys. J. C79 (2019) 537 ### Selection - Preselection - Kinematic, geometrical and vertex requirements - Vetoes for specific backgrounds - Invariant mass vetoes remove B⁺ \rightarrow J/ ψ π ⁺ and B⁺ \rightarrow J/ ψ K⁺ with a random π ⁰ - Vertex quality requirements remove backgrounds with additional charged tracks - Multi-variate analysis - A neural network is trained on simulations and data sidebands - Reweighing is used to ensure good data-MC agreement - A kinematic fit is used to constrain the B+ candidate to originate at the primary interaction, as well as the J/ ψ and π^0 mass to known values #### Mass fit - A 2D fit to m(B+) vs. m(ρ +) is performed, simultaneous for 2011 and 2012 data - The production asymmetry of B+ mesons determined in other measurements is subtracted $\mathcal{A}^{CP} = \mathcal{A}^{CP}_{\mathrm{raw}} \mathcal{A}^{\mathrm{prod}}$ #### Results - The results are the most precise to date $$\mathcal{A}^{CP}(B^+ \to J/\psi \, \rho^+) = -0.045^{+0.056}_{-0.057} \pm 0.008$$ $$\mathcal{B}(B^+ \to J/\psi \, \rho^+) = (3.81^{+0.25}_{-0.24} \pm 0.35) \times 10^{-5}.$$ ### **Systematics** - BF measurement is limited by π^0 reconstruction efficiency, dominated by BF(B+ \rightarrow J/ ψ K*+) Eur. Phys. J. C79 (2019) 537 ## Recent results in quasi-two-body decays – Measurement of the branching fraction and CP asymmetry in B+ \rightarrow J/ ψ ρ^+ decays <u>LHCb-PAPER-2018-042</u> <u>JHEP 05 (2019) 026</u> - Study of the B⁰ \rightarrow ρ (770)⁰ K*(892)⁰ decay with an amplitude analysis of B⁰ \rightarrow (π + π -) (K- π +) - Amplitude analysis of the $B_{(s)}{}^0 \rightarrow K^{*0}$ K*0 decays and measurement of the branching fraction of the $B^0 \rightarrow K^{*0}$ K*0 decay $$B^0 \to (\pi^+\pi^-)(K^+\pi^-)$$ **Run 1** 3 fb⁻¹ - Direct CP asymmetries are measured in this final state by determining the differences in partial widths of different amplitudes $$B^0 \to \rho(770)^0 K^*(892)^0$$ - The tree-level contribution to this decay is doubly Cabibbo-suppressed so gluonic and electroweak penguins compete In this P→VV decay, the electroweak penguin amplitudes contribute with different signs for different helicity eigenstates JHEP 05 (2019) 026 #### Selection - Preselection: kinematic, geometric and particle identification requirements - Multi-variate analysis - A BDT is trained on simulations and data side bands - Vetoes for specific backgrounds - Particle identification requirements remove $\Lambda_{b^0} \rightarrow p \pi \pi \pi$ decays - D⁰ veto to remove incorrectly paired B⁰ \rightarrow D⁰ $\pi\pi$ decays - Three body modes including $B^0 \rightarrow D^-\pi^+$ removed with angular cut ### Mass fit - Data split into 8 simultaneous categories (trigger, year and charge) - B_s^0 → (Kπ) (Kπ) background is subtracted by injecting simulations with negative weights - sPlot method used to extract signal components ## Amplitude model - The amplitude model is made up from different contributions within the $(\pi\pi)$ and $(K\pi)$ mass windows | | | Kπ reso | nances | |-----------|------------------------------------|----------------------|-----------| | | | K*(892) ⁰ | scalar Kπ | | ces | ρ | VV | SV | | esonances | ω | VV | SV | | _ | f ₀ (500) ⁰ | SV | SS | | H
H | f ₀ (980) ⁰ | SV | SS | | | f ₀ (1370) ⁰ | SV | SS | - Three helicity amplitudes contribute from each VV combination - For VV amplitudes the polarisation fraction is defined to be: $$f_{VV}^{0,\parallel,\perp} = \frac{|A_{VV}^{0,\parallel,\perp}|^2}{|A_{VV}^{0}|^2 + |A_{VV}^{\parallel}|^2 + |A_{VV}^{\perp}|^2}$$ - CP averages and asymmetries are constructed for particle and antiparticle decays $$\tilde{f}_{VV} = \frac{1}{2}(f_{VV} + \overline{f}_{VV}) \qquad A_{VV} = \frac{\overline{f}_{VV} - f_{VV}}{\overline{f}_{VV} + f_{VV}}$$ - Additionally, phase differences and T-odd quantities are measured JHEP 05 (2019) 026 # Amplitude fit LHCb $ightharpoons K^+$ #### Results - A small polarisation fraction and significant direct CP asymmetry is measured for the B⁰ $\rightarrow \rho^0$ K*0 component $$\tilde{f}_{\rho K^*}^0 = 0.164 \pm 0.015 \pm 0.022$$ $\mathcal{A}_{\rho K^*}^0 = -0.62 \pm 0.09 \pm 0.09$ - This is the first observation of CP asymmetry in angular distributions of $B^0 \rightarrow VV$ decays ## Recent results in quasi-two-body decays - Measurement of the branching fraction and CP asymmetry in B+ \rightarrow J/ ψ ρ^+ decays - Study of the B⁰ \rightarrow ρ (770)⁰ K*(892)⁰ decay with an amplitude analysis of B⁰ \rightarrow (π + π -) (K- π +) LHCb-PAPER-2019-004 Submitted to JHEP - Amplitude analysis of the $B_{(s)}{}^0 \rightarrow K^{*0}$ K*0 decays and measurement of the branching fraction of the $B^0 \rightarrow K^{*0}$ K*0 decay $$B^0_{(s)} \to (K^- \pi^+)(K^+ \pi^-)$$ Run 1 3 fb⁻¹ - This analysis performs an untagged, time-integrated amplitude analysis $$B_s^0 \to K^{*0} \overline{K}^{*0}$$ - Can be used to measure the unitarity angle $\beta_{s,}$ relevant in B_{s}^{0} processes - High precision measurements require control of sub-leading amplitudes - Previous measurement suggest no CP asymmetry, small polarisation fraction and small S-wave contribution arXiv:1712.08683 $$B^0 \to K^{*0} \overline{K}^{*0}$$ - Flavour changing neutral current - Helps control higher-order contributions to B_s^o mode - There is a 2.2 sigma difference between Belle and BaBar branching fraction measurements - Both find large polarisation fraction - This analysis updates polarisation fractions, S-wave contributions and measures B^o branching fraction arXiv:1905.06662 #### Selection - Preselection: - Kinematic, geometrical and particle identification requirements - Multi-variate analysis: - Gradient boosted BDT trained on MC and data sidebands - Vetoes for specific Backgrounds: - Invariant mass windows and PID selections suppress many peaking backgrounds #### Mass fit - A simultaneous fit is performed to 2011 and 2012 data - $B^0 \rightarrow \rho^0$ K*0 background is subtracted by injecting simulations with negative weights - sPlot method used to extract signal components arXiv:1905.06662 ## Amplitude Model - The amplitude model is made up from S-wave and P-wave $K\pi$ resonances | $K+\pi$ - res | sonances | |---------------|----------| |---------------|----------| | es | | K*(892) ⁰ | K ₀ *(1430) ⁰ | $K_0^*(700)^0$ | (Kπ) ₀ | |------|-------------------------------------|----------------------|-------------------------------------|----------------|-------------------| | Janc | K*(892) ⁰ | VV | VS | VS | VS | | esor | K ₀ *(1430) ⁰ | SV | SS | SS | SS | | 1+ [| K ₀ *(700) ⁰ | SV | SS | SS | SS | | K-1 | (Kπ) ₀ | SV | SS | SS | SS | - The polarisation fraction is measured for the VV contribution $$f_{VV}^{0,\parallel,\perp} = \frac{|A_{VV}^{0,\parallel,\perp}|^2}{|A_{VV}^{0}|^2 + |A_{VV}^{\parallel}|^2 + |A_{VV}^{\perp}|^2}$$
Additionally the S-wave fraction can be determined from the amplitudes of the SS, SV and VS contributions arXiv:1905.06662 # Amplitude fit B^o fit LHCb ### Results - The longitudinal polarisation fractions confirm previous measurements $f_L(B^0)=0.724\pm0.051\pm0.016$ $f_L(B^0_s)=0.240\pm0.031\pm0.025$ - The branching fraction of $B^0 \rightarrow K^{*0} \overline{K}^{*0}$ decays is determined to be $$\mathcal{B}(B^0 \to K^{*0} \overline{K}^{*0}) = (8.0 \pm 0.9 \,(\text{stat}) \pm 0.4 \,(\text{syst})) \times 10^{-7}$$ Belle $$\mathcal{B}=2.6^{+3.3}_{-2.9}{}^{+1.0}_{-0.7}\times10^{-7}$$ Phys. Rev. D81 (2010) 071101 BaBar $\mathcal{B}=12.8^{+3.5}_{-3.0}\times10^{-7}$ Phys. Rev. Lett. 100 (2008) 081801 <u>arXiv:1905.06662</u> ## Summary - LHCb has produced measurements of CP asymmetries, branching fractions and polarisation fractions in quasi-two-body decays including: The most precise measurement of CP asymmetry and branching fraction of B+ \rightarrow J/ ψ ρ + decays This is the first observation of CP asymmetry in angular distributions of B 0 \rightarrow ρ^{0} K *0 decays Polarisation fraction and branching fraction measurements in $B^0 \to K^{*0} \overline{K}^{*0}$ decays - LHCb has a large sample of Run 2 data, so expect more exciting results in the near future # Back Up ### Branching fraction systematics | Source of uncertainty | Relative uncertainty [%] | |---|--------------------------| | Trigger efficiency | 1.4 | | Charged particle reconstruction efficiency | 0.5 | | π^0 reconstruction efficiency | 6.3 Dominant | | Hadron identification efficiency | 2.1 | | Muon identification efficiency | 0.4 | | Selection efficiency $B^+ \to J/\psi K^+$ | 0.1 | | Selection efficiency $B^+ \to J/\psi \rho^+$ | 1.8 | | Removal of multiple candidates | 1.2 | | Fit function | 4.0 | | $B^+ \to J/\psi \rho^+$ polarization | 2.2 | | Fit ranges | 1.6 | | Nonresonant line shape | 1.5 | | Neglecting interference | 2.8 | | Quadratic sum | 9.1 | | | • | ## A^{cp} systematics | Source of uncertainty | Uncertainty | |---|-------------| | B^+ production asymmetry and background asymmetry | 0.006 | | Signal fit function | 0.005 | | Quadratic sum | 0.008 | ### Mass fit - Shapes: - Signal B+ mass: Sum of two Crystal Ball functions with tails fixed from simulation - Signal rho+ mass: Relativistic Breit-Wigner with parameters fixed to simulation - Part-Reco: two-dimensional kernel density estimations ### Full results | Parameter | CP average, \tilde{f} | CP asymmetry, \mathcal{A} | Parameter | CP average, $\frac{1}{2}(\delta_{\overline{B}} + \delta_B)$ [rad] | CP difference, $\frac{1}{2}(\delta_{\bar{B}} - \delta_B)$ [rad] | |---------------------------------|--------------------------------|-------------------------------|--|---|---| | $ A_{\rho K^*}^0 ^2$ | $0.32 \pm 0.04 \pm 0.07$ | $-0.75 \pm 0.07 \pm 0.17$ | $\delta^0_{ ho K^*}$ | $1.57 \pm 0.08 \pm 0.18$ | $0.12 \pm 0.08 \pm 0.04$ | | $ A_{\rho K^*}^{ } ^2$ | $0.70 \pm 0.04 \pm 0.08$ | $-0.049 \pm 0.053 \pm 0.019$ | $\delta^{ }_{ ho K^*}$ | $0.795 \pm 0.030 \pm 0.068$ | $0.014 \pm 0.030 \pm 0.026$ | | $ A_{\rho K^*}^{\perp} ^2$ | $0.67 \pm 0.04 \pm 0.07$ | $-0.187 \pm 0.051 \pm 0.026$ | $\delta_{ ho K^*}^{\perp}$ | $-2.365 \pm 0.032 \pm 0.054$ | $0.000 \pm 0.032 \pm 0.013$ | | $ A_{\omega K^*}^{\rho \Pi} ^2$ | $0.019 \pm 0.010 \pm 0.012$ | $-0.6 \pm 0.4 \pm 0.4$ | $\delta^{01}_{\omega K^*}$ | $-0.86 \pm 0.29 \pm 0.71$ | $0.03 \pm 0.29 \pm 0.16$ | | $ A_{\omega K^*}^{ } ^2$ | $0.0050 \pm 0.0029 \pm 0.0031$ | $-0.30 \pm 0.54 \pm 0.28$ | $\delta^{ }_{\omega K^*}$ | $-1.83 \pm 0.29 \pm 0.32$ | $0.59 \pm 0.29 \pm 0.07$ | | $ A_{\omega K^*}^{\perp} ^2$ | $0.0020 \pm 0.0019 \pm 0.0015$ | $-0.2 \pm 0.9 \pm 0.4$ | $\delta^\perp_{\omega K^*}$ | $1.6 \pm 0.4 \pm 0.6$ | $-0.25 \pm 0.43 \pm 0.16$ | | $ A_{\omega(K\pi)} ^2$ | $0.026 \pm 0.011 \pm 0.025$ | $-0.47 \pm 0.33 \pm 0.45$ | $\delta_{\omega(K\pi)}$ | $-2.32 \pm 0.22 \pm 0.24$ | $-0.20 \pm 0.22 \pm 0.14$ | | $ A_{f_0(500)K^*} ^2$ | $0.53 \pm 0.05 \pm 0.10$ | $-0.06 \pm 0.09 \pm 0.04$ | $\delta_{f_0(500)K^*}$ | $-2.28 \pm 0.06 \pm 0.22$ | $-0.00 \pm 0.06 \pm 0.05$ | | $ A_{f_0(980)K^*} ^2$ | $2.42 \pm 0.13 \pm 0.25$ | $-0.022 \pm 0.052 \pm 0.023$ | $\delta_{f_0(980)K^*}$ | $0.39 \pm 0.04 \pm 0.07$ | $0.018 \pm 0.038 \pm 0.022$ | | $ A_{f_0(1370)K^*} ^2$ | $1.29 \pm 0.09 \pm 0.20$ | $-0.09 \pm 0.07 \pm 0.04$ | $\delta_{f_0(1370)K^*}$ | $-2.76 \pm 0.05 \pm 0.09$ | $0.076 \pm 0.051 \pm 0.025$ | | $ A_{f_0(500)(K\pi)} ^2$ | $0.174 \pm 0.021 \pm 0.039$ | $0.30 \pm 0.12 \pm 0.09$ | $\delta_{f_0(500)(K\pi)}$ | $-2.80 \pm 0.09 \pm 0.21$ | $-0.206 \pm 0.088 \pm 0.034$ | | $ A_{f_0(980)(K\pi)} ^2$ | $1.18 \pm 0.08 \pm 0.07$ | $-0.083 \pm 0.066 \pm 0.023$ | $\delta_{f_0(980)(K\pi)}$ | $-2.982 \pm 0.032 \pm 0.057$ | $-0.027 \pm 0.032 \pm 0.013$ | | $ A_{f_0(1370)(K\pi)} ^2$ | $0.139 \pm 0.028 \pm 0.039$ | $-0.48 \pm 0.17 \pm 0.15$ | $\delta_{f_0(1370)(K\pi)}$ | $1.76 \pm 0.10 \pm 0.11$ | $-0.16 \pm 0.10 \pm 0.04$ | | $f_{ ho K^*}^0$ | $0.164 \pm 0.015 \pm 0.022$ | $-0.62 \pm 0.09 \pm 0.09$ | $\delta_{ ho K^*}^{ -\perp}$ | $3.160 \pm 0.035 \pm 0.044$ | $0.014 \pm 0.035 \pm 0.026$ | | $f_{ ho K^*}^{ }$ | $0.435 \pm 0.016 \pm 0.042$ | $0.188 \pm 0.037 \pm 0.022$ | $\delta_{ ho K^*}^{ -0}$ | $-0.77 \pm 0.09 \pm 0.06$ | $-0.109 \pm 0.085 \pm 0.034$ | | $f_{ ho K^*}^{\perp}$ | $0.401 \pm 0.016 \pm 0.037$ | $0.050 \pm 0.039 \pm 0.015$ | $\delta^{ ho K}_{ ho K^*}$ | $-3.93 \pm 0.09 \pm 0.07$ | $-0.123 \pm 0.085 \pm 0.035$ | | $f^0_{\omega K^*}$ | $0.68 \pm 0.17 \pm 0.16$ | $-0.13 \pm 0.27 \pm 0.13$ | $\delta^{ K }_{\omega K^*}$ | $-3.4 \pm 0.5 \pm 0.7$ | $0.84 \pm 0.52 \pm 0.16$ | | $f_{\omega K^*}^{ }$ | $0.22 \pm 0.14 \pm 0.15$ | $0.26 \pm 0.55 \pm 0.22$ | $\delta^{ -0}_{\omega K^*}$ | $-1.0 \pm 0.4 \pm 0.6$ | $0.57 \pm 0.41 \pm 0.17$ | | $f_{\omega K^*}^{\perp}$ | $0.10 \pm 0.09 \pm 0.09$ | $0.3 \pm 0.8 \pm 0.4$ | $\delta^{\omega K*}_{\omega K*} \ \delta^{\perp -0}_{\omega K*}$ | $2.4 \pm 0.5 \pm 0.8$ | $-0.28 \pm 0.51 \pm 0.24$ | | JωK* | 5.15 ± 5.00 ± 5.00 | 1 0.0 ± 0.0 ± 0.1 | $0^{\omega K^*}$ | $2.4 \pm 0.5 \pm 0.8$ | $-0.28 \pm 0.51 \pm 0.24$ | ### Comparison to theory | | Observable | QCDF [4] | pQCD [11] | This work | |------------------------------------|--------------------------------------|--|---|--| | $f_{ ho K^*}^0$ | CP average CP asymmetry | $0.22_{-0.03-0.14}^{+0.03+0.53}$ $-0.30_{-0.11-0.49}^{+0.11+0.61}$ | $0.65_{-0.03-0.04}^{+0.03+0.03}$ $0.0364_{-0.0107}^{+0.0120}$ | $0.164 \pm 0.015 \pm 0.022$
$-0.62 \pm 0.09 \pm 0.09$ | | $f_{\rho K^*}^\perp$ | CP average CP asymmetry | $0.39^{+0.02+0.27}_{-0.02-0.07}$ | $0.169 \begin{array}{l} +0.027 \\ -0.018 \end{array}$ $-0.0771^{+0.0197}_{-0.0186}$ | $0.401 \pm 0.016 \pm 0.037$
$0.050 \pm 0.039 \pm 0.015$ | | $\delta_{\rho K^*}^{\parallel -0}$ | CP average [rad] CP difference [rad] | | $-1.61 ^{\ +0.02}_{\ -3.06}$ $-0.001^{\ +0.017}_{\ -0.018}$ | $-0.77 \pm 0.09 \pm 0.06$
$-0.109 \pm 0.085 \pm 0.034$ | | $\delta_{\rho K^*}^{ -\bot}$ | CP average [rad] CP difference [rad] | $\equiv \pi$ $\equiv 0$ | $3.15 \begin{array}{l} +0.02 \\ -4.30 \end{array}$ $-0.003^{+0.025}_{-0.024}$ | $3.160 \pm 0.035 \pm 0.044$
$0.014 \pm 0.035 \pm 0.026$ | ^[4] M. Beneke, J. Rohrer, and D. Yang, Branching fractions, polarisation and asymmetries of $B \rightarrow VV$ decays, Nucl. Phys. **B774** (2007) 64, arXiv:hep-ph/0612290. ^[11] Z.-T. Zou et al., Improved estimates of the $B_{(s)} \to VV$ decays in perturbative QCD approach, Phys. Rev. **D91** (2015) 054033, arXiv:1501.00784. ### Systematic uncertainties - Uncertainties on the parameters in the mass propagators - Angular momentum barrier factors - Background subtractions - Description of the kinematic acceptance - Masses and angular resolution - Fit method - Pollution due to $B^0 \rightarrow a_1(1260)$ K+ decays - Symmetrised ($\pi\pi$) contributions in the model - Simulation corrections # $B^0 \rightarrow \rho^0 K^{*0}$ ## Systematic uncertainties Table 5: Table (I) of the systematic uncertainties. The abbreviations S1, S2 and S3 stand for $f_0(500), f_0(980)$ and $f_0(1370)$, respectively. Negligible values are represented by a dash (-). | | Systematic uncertainty | $ A^0_{\rho K^*} ^2$ | $ A_{\rho K^*}^{ } ^2$ | $ A_{ ho K^*}^{\perp} ^2$ | $ A^0_{\omega K^*} ^2$ | $ A^{ }_{\omega K^*} ^2$ | $ A_{\omega K^*}^\perp ^2$ | $ A_{\omega(K\pi)} ^2$ | $ A_{S1K^*} ^2$ | $ A_{S2K^*} ^2$ | $ A_{S3K^*} ^2$ | |--------------------------------|--|---|--|---|---|---|--|--|---|--|---| | es | Centrifugal barrier factors | _ | | _ | _ | 0.0001 | - | 0.001 | 0.01 | 0.01 | 0.04 | | rag | Hypatia parameters | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | averages |
$B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | 0.01 | 0.01 | 0.01 | 0.001 | 0.0004 | 0.0002 | 0.001 | 0.01 | 0.02 | 0.01 | | CP | Simulation sample size | 0.01 | 0.01 | 0.01 | 0.002 | 0.0007 | 0.0003 | 0.005 | 0.02 | 0.06 | 0.04 | | | Data-Simulation corrections | _ | | _ | _ | 0.0002 | _ | _ | _ | _ | | | | Centrifugal barrier factors | _ | _ | 0.004 | _ | _ | _ | 0.01 | _ | 0.003 | 0.01 | | asym. | Hypatia parameters | _ | 0.002 | 0.002 | _ | 0.01 | _ | 0.01 | _ | 0.002 | _ | | asi | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | 0.03 | 0.011 | 0.013 | _ | 0.13 | 0.1 | 0.01 | 0.02 | 0.005 | 0.01 | | CP | Simulation sample size | 0.02 | 0.014 | 0.011 | 0.1 | 0.17 | 0.4 | 0.14 | 0.04 | 0.022 | 0.03 | | | Data-Simulation corrections | _ | 0.001 | _ | _ | 0.01 | _ | 0.01 | _ | _ | | | _ | Mass propagators parameters | 0.01 | 0.033 | 0.040 | 0.002 | 0.0003 | 0.0001 | 0.002 | 0.07 | 0.170 | 0.12 | | Common (B^0, \overline{B}^0) | Masses and angles resolution
Fit method $2a_1(1260)$ pollution | 0.01 | 0.023 | 0.040 | 0.010 | 0.0028 | 0.0010 | 0.024 | 0.03 | 0.050 | 0.10 | | m
B | Fit method | 0.01 | 0.007 | 0.007 | 0.004 | 0.0005 | 0.0010 | 0.001 | 0.01 | 0.029 | _ | | S S | $a_1(1260)$ pollution | 0.06 | 0.070 | 0.019 | 0.003 | 0.0005 | 0.0002 | 0.003 | 0.05 | 0.130 | 0.10 | | | Symmetrised $(\pi\pi)$ PDF | 0.04 | 0.030 | 0.021 | _ | 0.0008 | 0.0003 | 0.004 | 0.03 | 0.080 | 0.06 | | | Systematic uncertainty | $ A_{S1(K\pi)} ^2$ | $ A_{S2(K\pi)} ^2$ | $ A_{S3(K\pi)} ^2$ | $\delta^0_{\rho K^*}$ | $\delta_{ ho K^*}^{ }$ | $\delta_{ ho K^*}^{\perp}$ | $\delta^0_{\omega K^*}$ | $\delta^{ }_{\omega K^*}$ | $\delta_{\omega K^*}^{\perp}$ | $\delta_{\omega(K\pi)}$ | | SO
CO | Centrifugal barrier factors | 0.003 | 0.02 | 0.003 | _ | 0.001 | 0.002 | 0.03 | 0.01 | _ | 0.01 | | averages | Hypatia parameters | 0.001 | 0.01 | 0.001 | _ | 0.001 | 0.002 | 0.01 | 0.01 | _ | _ | | v. | T_{0} T_{0} T_{0} T_{0} T_{0} T_{0} T_{0} | 0.008 | 0.01 | 0.004 | 0.02 | 0.018 | 0.007 | 0.04 | 0.02 | 0.1 | 0.01 | | | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | 0.008 | | 0.00- | 0.02 | | | | 0.0- | 0.1 | | | | $B_s^0 \to K^{*0}K^{*0}$ bkg.
Simulation sample size | 0.008 | 0.03 | 0.007 | 0.02 | 0.009 | 0.008 | 0.15 | 0.07 | 0.1 | 0.10 | | CP a | | | 0.03 | | | | 0.008 | | | | 0.10 | | | Simulation sample size | | 0.03 - 0.010 | 0.007 | 0.02 | 0.009 | | | | | 0.10 - 0.02 | | | Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters | 0.006 | _ | 0.007
0.001 | 0.02 | 0.009
0.001 | _ | 0.15 | 0.07 | 0.1 | | | | Simulation sample size Data-Simulation corrections Centrifugal barrier factors | 0.006 | 0.010 | 0.007
0.001
0.02 | 0.02 | 0.009
0.001
0.004 | 0.001 | 0.15 - 0.02 | 0.07
-
0.01 | 0.1 - 0.03 | | | asym. CP | Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters | 0.006
-
0.01 | -
0.010
0.004 | 0.007
0.001
0.02
0.01 | 0.02
-
-
- | 0.009
0.001
0.004
0.001 | -
0.001
0.001 | 0.15
-
0.02
0.01 | 0.07
-
0.01
0.01 | 0.1
-
0.03
0.01 | 0.02 | | | Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | 0.006
-
0.01
0.05 | 0.010
0.004
0.007 | 0.007
0.001
0.02
0.01
0.03 | 0.02
-
-
-
0.03 | 0.009
0.001
0.004
0.001
0.024 | -
0.001
0.001
0.009 | 0.15
-
0.02
0.01
0.05 | 0.07
-
0.01
0.01
0.02 | 0.1
-
0.03
0.01
0.06 | 0.02
-
0.02 | | CP asym. CP | Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Mass propagators parameters | 0.006
-
0.01
0.05
0.04 | -
0.010
0.004
0.007
0.020 | 0.007
0.001
0.02
0.01
0.03
0.06 | 0.02
-
-
0.03
0.02 | 0.009
0.001
0.004
0.001
0.024
0.009 | -
0.001
0.001
0.009
0.009 | 0.15
-
0.02
0.01
0.05
0.15 | 0.07
-
0.01
0.01
0.02
0.07 | 0.1
-
0.03
0.01
0.06
0.15 | 0.02
-
0.02
0.13 | | CP asym. CP | Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Mass propagators parameters | 0.006
-
0.01
0.05
0.04
- | -
0.010
0.004
0.007
0.020
0.001 | 0.007
0.001
0.02
0.01
0.03
0.06 | 0.02
-
-
0.03
0.02
- | 0.009
0.001
0.004
0.001
0.024
0.009 |
0.001
0.001
0.009
0.009
 | 0.15
-
0.02
0.01
0.05
0.15
- | 0.07
-
0.01
0.01
0.02
0.07
0.01 | 0.1
-
0.03
0.01
0.06
0.15
0.01 | 0.02
-
0.02
0.13
- | | CP asym. CP | Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Mass propagators parameters | 0.006
-
0.01
0.05
0.04
-
0.012 | - 0.010 0.004 0.007 0.020 0.001 0.027 | 0.007
0.001
0.02
0.01
0.03
0.06
- | 0.02
-
-
0.03
0.02
-
0.03 | 0.009
0.001
0.004
0.001
0.024
0.009
- | -
0.001
0.001
0.009
0.009
-
0.008 | 0.15
-
0.02
0.01
0.05
0.15
-
0.04 | 0.07
-
0.01
0.01
0.02
0.07
0.01
0.05 | 0.1
-
0.03
0.01
0.06
0.15
0.01
0.09 | -
0.02
-
0.02
0.13
-
0.04 | | CP asym. CP | Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections | 0.006
-
0.01
0.05
0.04
-
0.012
0.010 | - 0.010 0.004 0.007 0.020 0.001 0.027 0.026 | 0.007
0.001
0.02
0.01
0.03
0.06
-
0.024
0.011 | 0.02
-
-
0.03
0.02
-
0.03
0.03 | 0.009
0.001
0.004
0.001
0.024
0.009
-
0.009
0.020 | -
0.001
0.001
0.009
0.009
-
0.008
0.017 | 0.15
-
0.02
0.01
0.05
0.15
-
0.04
0.30 | 0.07
-
0.01
0.02
0.07
0.01
0.05
0.30 | 0.1
-
0.03
0.01
0.06
0.15
0.01
0.09
0.50 | - 0.02
- 0.02
0.13
- 0.04
0.17 | # $B^0 \rightarrow \rho^0 K^{*0}$ ## Systematic uncertainties Table 6: Table (II) of the systematic uncertainties. The abbreviations S1, S2 and S3 stand for $f_0(500), f_0(980)$ and $f_0(1370)$, respectively. Negligible values are represented by a dash (-). | | Systematic uncertainty | δ_{S1K^*} | δ_{S2K^*} | δ_{S3K^*} | $\delta_{S1(K\pi)}$ | $\delta_{S2(K\pi)}$ | $\delta_{S3(K\pi)}$ | $f_{ ho K^*}^0$ | $f_{ ho K^*}^{ }$ | $f_{\rho K^*}^{\perp}$ | $f^0_{\omega K^*}$ | $f_{\omega K^*}^{ }$ | |--|---|--|---|--|---|--|---|--|--|---|---|---| | | Centrifugal barrier factors | 0.01 | _ | 0.01 | 0.01 | 0.001 | 0.02 | 0.001 | 0.001 | 0.002 | _ | | | averages | Hypatia parameters | - | _ | - | _ | 0.001 | 0.01 | 0.001 | 0.001 | 0.002 | _ | _ | | vera | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | 0.05 | _ | 0.01 | 0.02 | 0.002 | 0.01 | 0.005 | 0.003 | 0.005 | 0.02 | 0.02 | | | Simulation sample size | 0.02 | 0.01 | 0.02 | 0.02 | 0.009 | 0.03 | 0.004 | 0.004 | 0.004 | 0.06 | 0.05 | | CP | Data-Simulation corrections | _ | _ | _ | _ | 0.001 | _ | _ | _ | _ | 0.01 | _ | | | Centrifugal barrier factors | 0.01 | 0.001 | 0.001 | 0.004 | 0.003 | 0.02 | _ | 0.001 | 0.002 | 0.01 | 0.01 | | asym. | Hypatia parameters | _ | 0.002 | 0.002 | 0.004 | 0.001 | 0.01 | _ | 0.003 | 0.002 | 0.01 | 0.01 | | as, | $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | 0.04 | 0.005 | 0.011 | 0.023 | 0.002 | 0.01 | 0.03 | 0.007 | 0.011 | 0.03 | 0.06 | | CP | Simulation sample size | 0.03 | 0.022 | 0.022 | 0.025 | 0.012 | 0.03 | 0.02 | 0.010 | 0.009 | 0.12 | 0.14 | | 0 | Data-Simulation corrections | _ | 0.001 | _ | 0.003 | _ | _ | _ | 0.001 | 0.001 | _ | 0.01 | | | Mass propagators parameters | 0.19 | 0.031 | 0.070 | 0.200 | 0.018 | 0.06 | 0.011 | 0.005 | 0.006 | 0.01 | 0.01 | | Common
P0 P0 | Masses and angles resolution
Fit method
$9a_1(1260)$ pollution | 0.02 | 0.027 | 0.017 | 0.026 | 0.026 | 0.05 | 0.010 | 0.016 | 0.018 | 0.14 | 0.12 | | nn c | 9. Fit method | _ | 0.004 | 0.001 |
0.002 | 0.001 | _ | 0.003 | 0.001 | 0.002 | 0.01 | 0.05 | | 3 6 | $a_1(1260)$ pollution | 0.09 | 0.040 | 0.040 | 0.040 | 0.050 | 0.04 | 0.015 | 0.040 | 0.031 | 0.02 | 0.01 | | | Symmetrised $(\pi\pi)$ PDF | 0.03 | 0.029 | 0.022 | 0.035 | 0.006 | 0.05 | 0.004 | _ | 0.004 | 0.04 | 0.05 | | | Q | e l | ا –ااء | c -0 | $c \mid -0$ | c −⊥ | 0-11- | c _0 | $AOK^*.1$ | AOK^* 2 | $\iota \omega K^*$ 1 | $\omega K^*, 2$ | | | Systematic uncertainty | $f^{\perp}_{\omega K^*}$ | $\delta_{ ho K^*}^{ -\perp}$ | $\delta_{ ho K^*}^{ -0}$ | $\delta_{ ho K^*}^{\perp -0}$ | $\delta_{\omega K^*}^{ -\perp}$ | $\delta_{\omega K^*}^{ -0}$ | $\delta^{\perp -0}_{\omega K^*}$ | $\mathcal{A}_{\mathrm{T}}^{ ho K^*,1}$ | $\mathcal{A}_{\mathrm{T}}^{ ho K^*,2}$ | $\mathcal{A}_{\mathrm{T}}^{\omega K^*,1}$ | ${\cal A}_{ m T}^{\omega K^*,2}$ | | | Systematic uncertainty Centrifugal barrier factors | $f_{\omega K^*}^{\perp}$ | $\frac{\delta_{\rho K^*}^{11}}{0.001}$ | $\delta_{ ho K^*}^{\circ}$ | $\delta_{\rho K^*}^{\perp \circ}$ | δ'' _{ωK*} — | <i>δ</i> " _{ωK*} | $\delta_{\omega K^*}^{\perp}$ | $\frac{A_{\rm T}^{r_{\rm T}}}{0.0002}$ | $A_{\mathrm{T}}^{\mu \Gamma}$, ² | $\frac{\mathcal{A}_{\mathrm{T}}^{\mathrm{arr}}}{0.001}$ | $\frac{\mathcal{A}_{\mathrm{T}}}{0.001}$ | | ages | Centrifugal barrier factors Hypatia parameters | | | | | | | | | | | | | verages | Centrifugal barrier factors | _ | 0.001 | _ | | | | | 0.0002 | _ | 0.001 | 0.001 | | P averages | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size | _
_ | 0.001
0.001 | _
_ | _
_ | | | _
_ | 0.0002
0.0002 | _
_ | 0.001
0.001 | 0.001
0.001 | | CP averages | Centrifugal barrier factors
Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | -
-
0.01 | 0.001
0.001
0.018 | -
-
0.02 | -
-
0.02 | -
-
0.1 | _
_
_ | -
-
0.1 | 0.0002
0.0002
0.0017 | -
-
0.002 | 0.001
0.001
0.004 | 0.001
0.001
0.002 | | | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors | -
0.01
0.03 | 0.001
0.001
0.018
0.009 | -
0.02
0.02 | -
-
0.02 | -
-
0.1 | _
_
_ | -
-
0.1 | 0.0002
0.0002
0.0017 | -
0.002
0.002 | 0.001
0.001
0.004 | 0.001
0.001
0.002 | | | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters | -
0.01
0.03
- | 0.001
0.001
0.018
0.009
0.001 | -
0.02
0.02
- | -
0.02
0.02
- | -
0.1
0.2
- | -
-
-
0.2
- | -
0.1
0.2
- | 0.0002
0.0002
0.0017
0.0013 | -
0.002
0.002
- | 0.001
0.001
0.004
0.012 | 0.001
0.001
0.002
0.012 | | | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | -
0.01
0.03
- | 0.001
0.001
0.018
0.009
0.001 | -
0.02
0.02
-
0.007 | -
0.02
0.02
-
0.004 | -
0.1
0.2
-
0.03 | -
-
0.2
-
0.02 | -
0.1
0.2
-
0.04 | 0.0002
0.0002
0.0017
0.0013
- | -
0.002
0.002
-
0.001 | 0.001
0.001
0.004
0.012
- | 0.001
0.001
0.002
0.012
- | | asym. CP | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters | -
0.01
0.03
-
-
0.1 | 0.001
0.001
0.018
0.009
0.001
0.004
0.001 | -
0.02
0.02
-
0.007
0.007 | -
0.02
0.02
-
0.004
0.002 | -
0.1
0.2
-
0.03
0.02 | -
-
0.2
-
0.02
0.01 | -
0.1
0.2
-
0.04
0.02 | 0.0002
0.0002
0.0017
0.0013
-
0.0003
0.0001 | -
0.002
0.002
-
0.001 | 0.001
0.001
0.004
0.012
-
0.001
0.001 | 0.001
0.001
0.002
0.012
-
0.001
0.001 | | | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. | -
0.01
0.03
-
-
0.1
0.2 | 0.001
0.001
0.018
0.009
0.001
0.004
0.001
0.024 | -
0.02
0.02
-
0.007
0.007
0.002
0.020 | -
0.02
0.02
-
0.004
0.002
0.026 | -
0.1
0.2
-
0.03
0.02
0.06 | -
-
0.2
-
0.02
0.01
0.04 | -
0.1
0.2
-
0.04
0.02
0.13 | 0.0002
0.0002
0.0017
0.0013
-
0.0003
0.0001
0.0017 | -
0.002
0.002
-
0.001
-
0.004 | 0.001
0.001
0.004
0.012
-
0.001
0.001
0.005 | 0.001
0.001
0.002
0.012
-
0.001
0.001
0.003 | | CP asym. $ $ CP | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections | -
0.01
0.03
-
0.1
0.2
0.1 | 0.001
0.001
0.018
0.009
0.001
0.004
0.001
0.024
0.011 | -
0.02
0.02
0.02
-
0.007
0.002
0.020
0.027 | -
0.02
0.02
0.02
-
0.004
0.002
0.026
0.023 | -
0.1
0.2
-
0.03
0.02
0.06
0.14 | -
0.2
-
0.02
0.01
0.04
0.17 | -
0.1
0.2
-
0.04
0.02
0.13
0.20 | 0.0002
0.0002
0.0017
0.0013
-
0.0003
0.0001
0.0017 | -
0.002
0.002
-
0.001
-
0.004
0.002 | 0.001
0.001
0.004
0.012
-
0.001
0.001
0.005
0.015 | 0.001
0.001
0.002
0.012
-
0.001
0.001
0.003
0.017 | | CP asym. $ $ CP | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections | -
0.01
0.03
-
0.1
0.2
0.1 | 0.001
0.001
0.018
0.009
0.001
0.004
0.001
0.024
0.011 | -
0.02
0.02
-
0.007
0.002
0.022
0.020
0.027
0.002 | -
0.02
0.02
-
0.004
0.002
0.026
0.023
0.002 | -
0.1
0.2
-
0.03
0.02
0.06
0.14
0.02 | -
-
0.2
-
0.02
0.01
0.04
0.17
0.01 | -
0.1
0.2
-
0.04
0.02
0.13
0.20
0.01 | 0.0002
0.0002
0.0017
0.0013
—
0.0003
0.0001
0.0017
0.0013
— | -
0.002
0.002
-
0.001
-
0.004
0.002
- | 0.001
0.001
0.004
0.012
-
0.001
0.001
0.005
0.015
0.001 | 0.001
0.001
0.002
0.012
-
0.001
0.001
0.003
0.017
- | | CP asym. $ $ CP | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Mass propagators parameters Masses and angles resolution Fit method | -
0.01
0.03
-
-
0.1
0.2
0.1
- | 0.001
0.001
0.018
0.009
0.001
0.004
0.001
0.024
0.011
- | -
0.02
0.02
0.02
-
0.007
0.002
0.020
0.027
0.002 | -
0.02
0.02
0.02
-
0.004
0.002
0.026
0.023
0.002 | -
0.1
0.2
-
0.03
0.02
0.06
0.14
0.02 | -
0.2
-
0.02
0.01
0.04
0.17
0.01 | -
0.1
0.2
-
0.04
0.02
0.13
0.20
0.01 | 0.0002
0.0002
0.0017
0.0013
-
0.0003
0.0001
0.0017
0.0013
-
0.0006 | -
0.002
0.002
-
0.001
-
0.004
0.002
-
0.001 | 0.001
0.001
0.004
0.012
-
0.001
0.001
0.005
0.015
0.001
0.002
0.026
0.005 | 0.001
0.001
0.002
0.012
-
0.001
0.001
0.003
0.017
-
-
0.019
0.001 | | $ \begin{array}{c c} \text{nmon} & CP \text{ asym.} & CP \end{array} $ | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections | -
0.01
0.03
-
0.1
0.2
0.1
-
0.08 | 0.001
0.001
0.018
0.009
0.001
0.004
0.001
0.024
0.011
-
0.004
0.031 | - 0.02
0.02
0.02
- 0.007
0.002
0.020
0.027
0.002
0.028
0.029 | - 0.02
0.02
0.02
- 0.004
0.002
0.026
0.023
0.002
0.024
0.040 | - 0.1
0.2
- 0.03
0.02
0.06
0.14
0.02
0.07 | -
0.2
-
0.02
0.01
0.04
0.17
0.01
0.06
0.40 | -
0.1
0.2
-
0.04
0.02
0.13
0.20
0.01
0.09
0.60 | 0.0002
0.0002
0.0017
0.0013
-
0.0003
0.0001
0.0017
0.0013
-
0.0006
0.0020 | -
0.002
0.002
-
0.001
-
0.004
0.002
-
0.001
0.005
-
0.004 | 0.001
0.001
0.004
0.012
-
0.001
0.001
0.005
0.015
0.001
0.002
0.026 | 0.001
0.001
0.002
0.012
-
0.001
0.001
0.003
0.017
-
-
0.019 | | CP asym. $ $ CP | Centrifugal barrier factors Hypatia parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Centrifugal barrier factors Hypatia
parameters $B_s^0 \to K^{*0} \overline{K}^{*0}$ bkg. Simulation sample size Data-Simulation corrections Mass propagators parameters Masses and angles resolution Fit method | -
0.01
0.03
-
0.1
0.2
0.1
-
0.08
0.03 | 0.001
0.001
0.018
0.009
0.001
0.004
0.001
0.024
0.011
-
0.004
0.031
0.003 | - 0.02
0.02
0.02
- 0.007
0.002
0.020
0.027
0.002
0.028
0.029
0.005 | | -
0.1
0.2
-
0.03
0.02
0.06
0.14
0.02
0.07
0.60
0.02 | -
0.2
-
0.02
0.01
0.04
0.17
0.01
0.06
0.40
0.02 | -
0.1
0.2
-
0.04
0.02
0.13
0.20
0.01
0.09
0.60
0.03 | 0.0002
0.0002
0.0017
0.0013
-
0.0003
0.0001
0.0017
0.0013
-
0.0006
0.0020
0.0001 | -
0.002
0.002
-
0.001
-
0.004
0.002
-
0.001
0.005
- | 0.001
0.001
0.004
0.012
-
0.001
0.001
0.005
0.015
0.001
0.002
0.026
0.005 | 0.001
0.001
0.002
0.012
-
0.001
0.001
0.003
0.017
-
-
0.019
0.001 | ### Mass fit - Shapes: - Signal: Hypatia distribution with parameters obtained from simulation. The same shape is used for B° and B_{s}° , except with a mass shift #### **Full Results** Figure 4: Projections of the amplitude fit results for the $B^0 \to K^{*0} \overline{K}^{*0}$ decay mode on the helicity angles (top row: $\cos \theta_1$ left, $\cos \theta_2$ centre and ϕ right) and on the two-body invariant masses (bottom row: $M(K^+\pi^-)$ left and $M(K^-\pi^+)$ centre). The contributing partial waves: VV (dashed red), VS (dashed green) and SS (dotted grey) are shown with lines. The black points correspond to data and the overall fit is represented by the blue line. Figure 5: Projections of the amplitude fit results for the $B_s^0 \to K^{*0} \overline{K}^{*0}$ decay mode on the helicity angles (top row: $\cos \theta_1$ left, $\cos \theta_2$ centre and ϕ right) and on the two-body invariant masses (bottom row: $M(K^+\pi^-)$ left and $M(K^-\pi^+)$ centre). The contributing partial waves: VV (dashed red), VS (dashed green) and SS (dotted grey) are shown with lines. The black points correspond to data and the overall fit is represented by the blue line. | | Full Results | | |-----------------------------------|-----------------------------------|--------------------------------------| | Parameter | $B^0\! o K^{*0} \overline K^{*0}$ | $B_s^0 \to K^{*0} \overline{K}^{*0}$ | | $\overline{}$ | $0.724 \pm 0.051 \pm 0.016$ | $0.240 \pm 0.031 \pm 0.025$ | | $x_{f_{ }}$ | $0.42 \pm 0.10 \pm 0.03$ | $0.307 \pm 0.031 \pm 0.010$ | | $ A_S^{-} ^2$ | $0.377 \pm 0.052 \pm 0.024$ | $0.558 \pm 0.021 \pm 0.014$ | | $x_{ A_S^+ ^2}$ | $0.013 \pm 0.027 \pm 0.011$ | $0.109 \pm 0.028 \pm 0.024$ | | $x_{ A_{SS} ^2}$ | $0.038 \pm 0.022 \pm 0.006$ | $0.222 \pm 0.025 \pm 0.031$ | | $\delta_{ m \parallel}$ | $2.51 \pm 0.22 \pm 0.06$ | $2.37 \pm 0.12 \pm 0.06$ | | $\delta_{\perp} - \delta_{S}^{+}$ | $5.44 \pm 0.86 \pm 0.22$ | $4.40 \pm 0.17 \pm 0.07$ | | δ_S^- | $5.11 \pm 0.13 \pm 0.04$ | $1.80 \pm 0.10 \pm 0.06$ | | δ_{SS} | $2.88 \pm 0.35 \pm 0.13$ | $0.99 \pm 0.13 \pm 0.06$ | | | $0.116 \pm 0.033 \pm 0.012$ | $0.234 \pm 0.025 \pm 0.010$ | | f_{\perp} | $0.160 \pm 0.044 \pm 0.012$ | $0.526 \pm 0.032 \pm 0.019$ | | $ A_{S}^{+} ^{2}$ | $0.008 \pm 0.013 \pm 0.007$ | $0.048 \pm 0.014 \pm 0.011$ | | $ A_{SS} ^2$ | $0.023 \pm 0.014 \pm 0.004$ | $0.087 \pm 0.011 \pm 0.011$ | S—wave fraction $0.408 \pm 0.050 \pm 0.017$ $0.694 \pm 0.016 \pm 0.010$ ### Systematic uncertainties - Fit method - Description of kinematic acceptance - Resolution - P-wave mass model - S-wave mass model - Differences between data and simulation - Background subtraction - Peaking backgrounds - Time acceptance #### Branching fraction measurement - Systematic uncertainties in the factor k - Systematic uncertainties in the signal yields - Systematic uncertainties in the efficiencies ## Systematic uncertainties | Dagger made | I | | | $D^0 \sim 7$ | z+\(L | ∕- - +) | | | | | D | $e^0 \rightarrow (K^+)$ | -\(K-a | -+) | |--|--|--|--|--|---|---|--|--|--|--|--|--|--|---| | Decay mode Parameter | ſ | ~ | A - 2 | , | $(K^+\pi^-)(K^-)$ | | +2 2 | ς- | \$ | · | | ` | / \ | S-wave fraction | | | f_L | $x_{f_{\parallel}}$ | $\frac{ A_S^- ^2}{ A_S^- ^2}$ | $x_{ A_S^+ ^2}$ | $x_{ A_{SS} ^2}$ | δ_{\parallel} | $\delta_{\perp} - \delta_{S}^{+}$ | δ_S^- | δ_{SS} | f_{\parallel} | f_{\perp} | $\frac{ A_S^+ ^2}{0.001}$ | $\frac{ A_{SS} ^2}{0.000}$ | | | Bias data-simulation | 0.001 | 0.00 | 0.006 | -0.001 | 0.004 | 0.01 | -0.01 | 0.00 | 0.01 | 0.001 | $\frac{-0.001}{0.007}$ | $\frac{-0.001}{0.005}$ | 0.002 | 0.007 | | Fit method | 0.007 | 0.01 | 0.011 | 0.009 | 0.001 | 0.00 | 0.01 | 0.00 | 0.02 | 0.000 | 0.007 | 0.005 | 0.000 | 0.006 | | Kinematic acceptance | 0.005 | 0.01 | 0.006 | 0.004 | 0.002 | 0.03 | 0.12 | 0.01 | 0.04 | 0.003 | 0.004 | 0.001 | 0.003 | 0.006 | | Resolution | 0.007 | 0.00 | 0.005 | 0.001 | 0.002 | 0.00 | 0.16 | 0.00 | 0.02 | 0.001 | 0.003 | 0.000 | 0.001 | 0.006 | | P-wave mass model | 0.001 | 0.00 | 0.004 | 0.001 | 0.002 | 0.00 | 0.01 | 0.00 | 0.02 | 0.000 | 0.001 | 0.000 | 0.001 | 0.005 | | S—wave mass model | 0.007 | 0.01 | 0.016 | 0.003 | 0.002 | 0.03 | 0.03 | 0.03 | 0.02 | 0.000 | 0.007 | 0.002 | 0.002 | 0.008 | | Differences data-simulation | 0.004 | 0.00 | 0.002 | 0.001 | 0.001 | 0.01 | 0.01 | 0.01 | 0.01 | 0.001 | 0.003 | 0.000 | 0.001 | 0.002 | | Background subtraction | 0.002 | 0.01 | 0.006 | 0.001 | 0.002 | 0.01 | 0.06 | 0.01 | 0.09 | 0.005 | 0.003 | 0.001 | 0.001 | 0.002 | | Peaking backgrounds | 0.009 | 0.02 | 0.009 | 0.003 | 0.003 | 0.04 | 0.06 | 0.01 | 0.08 | 0.010 | 0.003 | 0.002 | 0.002 | 0.009 | | Total systematic unc. | $\bar{0.016}$ | -0.03 | 0.024 | 0.011 | 0.006 | 0.06 | 0.22 | -0.04 | $0.\bar{1}\bar{3}$ | 0.012 | 0.012 | -0.007 | 0.004 | 0.017 | Decay mode | | | | $B_s^0 \to (R_s^0)$ | $(K^+\pi^-)(K^-)$ | (π^+) | | | | _ | В | $C_s^0 \to (K^+)$ | , , | r ⁺) | | Decay mode Parameter | f_L | $x_{f_{\parallel}}$ | $ A_S^- ^2$ | - , | $\frac{X^+\pi^-)(K}{x_{ A_{SS} ^2}}$
| $\frac{(1-\pi^+)}{\delta_{\parallel}}$ | $\delta_{\perp} - \delta_{S}^{+}$ | δ_S^- | δ_{SS} | f_{\parallel} | f_{\perp} | $\frac{P_s^0 \to (K^+ r)}{ A_S^+ ^2}$ | $\frac{\pi^-)(K^-\pi^-)(K^-\pi^-)}{ A_{SS} ^2}$ | r ⁺) S-wave fraction | | | f_L 0.004 | $\begin{array}{c} x_{f_{\parallel}} \\ 0.003 \end{array}$ | $ A_S^- ^2$ 0.007 | $B_s^0 \to (B_s^0) (B_s^0$ | | | $\frac{\delta_{\perp} - \delta_S^+}{0.00}$ | $\frac{\delta_S^-}{0.05}$ | δ_{SS} 0.07 | $f_{\parallel} = 0.001$ | | <u> </u> | , , | <u>'</u> | | Parameter | | | | $x_{ A_S^+ ^2}$ | $x_{ A_{SS} ^2}$ | δ_{\parallel} | | | | | f_{\perp} | $ A_S^+ ^2$ | $ A_{SS} ^2$ | S-wave fraction | | Parameter Bias data-simulation | 0.004 | 0.003 | 0.007 | $x_{ A_S^+ ^2} -0.003$ | $\frac{x_{ A_{SS} ^2}}{0.021}$ | δ_{\parallel} 0.05 | 0.00 | 0.05 | 0.07 | 0.001 | $f_{\perp} = -0.005$ | $\frac{ A_S^+ ^2}{-0.002}$ | $ A_{SS} ^2$ 0.007 | S-wave fraction
0.012 | | Parameter Bias data-simulation Fit method | 0.004 | 0.003 | 0.007
0.001 | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \end{array}$ | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \end{array}$ | δ_{\parallel} 0.05 0.00 | 0.00 | 0.05 | 0.07 | 0.001 | $f_{\perp} = -0.005 = 0.001$ | $ \begin{array}{c c} & A_S^+ ^2 \\ & -0.002 \\ \hline & 0.000 \end{array} $ | $ A_{SS} ^2$ 0.007 0.001 | S-wave fraction
0.012
0.001 | | Parameter Bias data-simulation Fit method Kinematic acceptance | 0.004
0.001
0.011 | 0.003
0.000
0.006 | 0.007
0.001
0.011 | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \end{array}$ | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \end{array}$ | $\delta_{\parallel} = 0.05$ 0.00 0.05 | 0.00
0.00
0.07 | 0.05
0.00
0.05 | 0.07
0.00
0.05 | 0.001
0.001
0.005 | f_{\perp} -0.005 0.001 0.009 | $ \begin{array}{c c} & A_S^+ ^2 \\ & -0.002 \\ \hline & 0.000 \\ & 0.010 \end{array} $ | $ A_{SS} ^2$ 0.007 0.001 0.004 | S-wave fraction
0.012
0.001
0.004 | | Parameter Bias data-simulation Fit method Kinematic acceptance Resolution | 0.004
0.001
0.011
0.002 | 0.003
0.000
0.006
0.001 | 0.007
0.001
0.011
0.000 | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \end{array}$ | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \end{array}$ | $\begin{array}{c} \delta_{\parallel} \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \end{array}$ | 0.00
0.00
0.07
0.00 | 0.05
0.00
0.05
0.00 | 0.07
0.00
0.05
0.00 | 0.001
0.001
0.005
0.000 | f_{\perp} -0.005 0.001 0.009 0.002 | $ \begin{array}{c c} & A_S^+ ^2 \\ & -0.002 \\ \hline & 0.000 \\ & 0.010 \\ & 0.000 \end{array} $ | $ A_{SS} ^2$ 0.007 0.001 0.004 0.001 | S-wave fraction
0.012
0.001
0.004
0.002 | | Parameter Bias data-simulation Fit method Kinematic acceptance Resolution P-wave mass model | 0.004
0.001
0.011
0.002
0.001 | 0.003
0.000
0.006
0.001
0.000 | 0.007
0.001
0.011
0.000
0.001 | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \\ 0.002 \end{array}$ | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \\ 0.009 \end{array}$ | $\begin{array}{c} \delta_{\parallel} \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \end{array}$ | 0.00
0.00
0.07
0.00
0.01 | 0.05
0.00
0.05
0.00
0.00 | 0.07
0.00
0.05
0.00
0.01 | 0.001
0.001
0.005
0.000
0.000 | f_{\perp} -0.005 0.001 0.009 0.002 0.001 | $ \begin{array}{c c} & A_S^+ ^2 \\ \hline & -0.002 \\ & 0.000 \\ & 0.010 \\ & 0.000 \\ & 0.001 \end{array} $ | $ \begin{array}{c c} A_{SS} ^2 \\ 0.007 \\ 0.001 \\ 0.004 \\ 0.001 \\ 0.003 \end{array} $ | S-wave fraction 0.012 0.001 0.004 0.002 0.005 | | Parameter Bias data-simulation Fit method Kinematic acceptance Resolution P-wave mass model S-wave mass model | 0.004
0.001
0.011
0.002
0.001
0.021 | 0.003
0.000
0.006
0.001
0.000
0.001 | 0.007
0.001
0.011
0.000
0.001
0.007 | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \\ 0.002 \\ 0.011 \end{array}$ | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \\ 0.009 \\ 0.028 \end{array}$ | δ_{\parallel} 0.05 0.00 0.05 0.00 0.05 0.00 0.03 | 0.00
0.00
0.07
0.00
0.01
0.02 | 0.05
0.00
0.05
0.00
0.00
0.03 | 0.07
0.00
0.05
0.00
0.01
0.02 | 0.001
0.001
0.005
0.000
0.000
0.006 | f_{\perp} -0.005 0.001 0.009 0.002 0.001 0.016 | $ \begin{array}{c c} & A_S^+ ^2 \\ & -0.002 \\ \hline & 0.000 \\ & 0.010 \\ & 0.000 \\ & 0.001 \\ & 0.004 \end{array} $ | $ A_{SS} ^2$ 0.007 0.001 0.004 0.001 0.003 0.009 | S-wave fraction 0.012 0.001 0.004 0.002 0.005 0.006 | | Parameter Bias data-simulation Fit method Kinematic acceptance Resolution P-wave mass model S-wave mass model Differences data-simulation | 0.004
0.001
0.011
0.002
0.001
0.021
0.002 | 0.003
0.000
0.006
0.001
0.000
0.001
0.000 | 0.007
0.001
0.011
0.000
0.001
0.007
0.001 | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \\ 0.002 \\ 0.011 \\ 0.001 \end{array}$ | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \\ 0.009 \\ 0.028 \\ 0.001 \end{array}$ | $\begin{array}{c} \delta_{\parallel} \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.03 \\ 0.01 \end{array}$ | 0.00
0.00
0.07
0.00
0.01
0.02
0.00 | 0.05
0.00
0.05
0.00
0.00
0.03
0.01 | 0.07
0.00
0.05
0.00
0.01
0.02
0.01 | 0.001
0.001
0.005
0.000
0.000
0.006
0.001 | f_{\perp} -0.005 0.001 0.009 0.002 0.001 0.016 0.001 | $ \begin{array}{c c} & A_S^+ ^2 \\ \hline & -0.002 \\ \hline & 0.000 \\ & 0.010 \\ & 0.000 \\ & 0.001 \\ & 0.004 \\ & 0.000 \end{array} $ | $ A_{SS} ^2$ 0.007 0.001 0.004 0.003 0.009 0.001 | S-wave fraction 0.012 0.001 0.004 0.002 0.005 0.006 0.001 | | Parameter Bias data-simulation Fit method Kinematic acceptance Resolution P-wave mass model S-wave mass model Differences data-simulation Background subtraction | 0.004
0.001
0.011
0.002
0.001
0.021
0.002
0.000 | 0.003
0.000
0.006
0.001
0.000
0.001
0.000
0.001 | 0.007
0.001
0.011
0.000
0.001
0.007
0.001
0.001 | $\begin{array}{c} x_{ A_S^+ ^2} \\ -0.003 \\ 0.000 \\ 0.021 \\ 0.002 \\ 0.002 \\ 0.011 \\ 0.001 \\ 0.001 \end{array}$ | $\begin{array}{c} x_{ A_{SS} ^2} \\ 0.021 \\ 0.000 \\ 0.009 \\ 0.000 \\ 0.009 \\ 0.028 \\ 0.001 \\ 0.004 \end{array}$ | $\begin{array}{c} \delta_{\parallel} \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.03 \\ 0.01 \\ 0.01 \end{array}$ | 0.00
0.00
0.07
0.00
0.01
0.02
0.00
0.01 | 0.05
0.00
0.05
0.00
0.00
0.03
0.01
0.01 | 0.07
0.00
0.05
0.00
0.01
0.02
0.01
0.01 | 0.001
0.001
0.005
0.000
0.000
0.006
0.001
0.001 | f_{\perp} -0.005 0.001 0.009 0.002 0.001 0.016 0.001 0.001 | $ \begin{array}{c c} & A_S^+ ^2 \\ \hline & -0.002 \\ \hline & 0.000 \\ & 0.010 \\ & 0.000 \\ & 0.001 \\ & 0.004 \\ & 0.000 \\ & 0.001 \end{array} $ | $ A_{SS} ^2$ 0.007 0.001 0.004 0.001 0.003 0.009 0.001 0.002 | S-wave fraction 0.012 0.001 0.004 0.002 0.005 0.006 0.001 0.002 | ### Mass fit - Shapes: - Signal: Double-sided Hypatia distributions with the same parameters other than mass difference - Mis-ID: sum of a Crystal ball and gaussian with parameters from simulations (except mean and sigma) - Part-Reco: ARGUS function convolved with a gaussian resolution function