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Abstract

We analyse the azimuthal structure of two gluon correlations in the Color Glass Condensate including those effects
that result from relaxing the shockwave approximation for the target. Working in the Glasma graph approach suitable
for collisions between dilute systems, we compute numerically the azimuthal distributions and show that both even
and odd harmonics appear. We study their dependence on model parameters, energy of the collision, pseudorapidity
and transverse momentum of the produced particles, and length of the target. While the contribution from non-
eikonal corrections vanishes with increasing collision energy and becomes negligible at the energies of the Large
Hadron Collider, it is found to be sizeable up to top energies at the Relativistic Heavy Ion Collider.

CERN-TH-2019-102

1. Introduction

The existence of azimuthal asymmetries in particle production stretched for a long pseudorapidity interval -
named the ridge - has been observed in small collision systems, proton-proton and proton-nucleus, at the Large
Hadron Collider (LHC) at CERN [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the Relativistic Heavy Ion Collider
(RHIC) at BNL [15, 16, 17, 18, 19]. The corresponding observation in nucleus-nucleus collisions finds a standard
explanation in final state interactions that lead to a macroscopic description in terms of relativistic hydrodynamics.
But for small systems such explanation is a matter of active debate, see e.g. the recent works [20, 21, 22], and initial
state dynamics have also been invoked.

Concerning initial state explanations, those based on the effective theory for high-energy Quantum Chromody-
namics [23] named the Color Glass Condensate (CGC) [24, 25, 26], have been explored intensively in recent years.
For the collision of dilute objects like proton-proton, the “Glasma graph” approximation [27, 28], that encodes both
Bose enhancement and Hanbury-Brown–Twiss (HBT) effects [29, 30, 31, 32], has been developed and used to describe
experimental data [33, 34, 35, 36]. Besides two gluon correlations, those among three and four [37, 38] have also
been studied, and also those between two quarks [39, 40]. The extension to dilute-dense (proton-nucleus) collisions
was later done numerically [41] and analytically [42, 43, 44], including three gluon correlations [43], and applied to
describe data [45, 46]. Complementary explanations in terms of density gradients [47] have also been considered to
explain the observed azimuthal structure.

In this framework, the two remaining key problems are the analytical extension to dense-dense collisions, and the
absence of odd azimuthal harmonics in standard calculations. To overcome the latter, several alternatives have been
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essayed: density corrections in the projectile [48, 49, 50] (implemented to attempt a description of data in [51, 52, 53]),
quark correlations [54, 55, 45, 56] and a more involved description of the target [57, 58] than the one provided by
the commonly used McLerran-Venugopalan (MV) model [59, 60].

In this work we explore a different direction. Usual calculations in the CGC employ the eikonal approximation:
the process of propagation of an energetic parton from the projectile through the target, considered as a background
field, is computed in the light cone gauge neglecting its transverse components and considering it as infinitely time
dilated and Lorentz contracted – a shockwave. Also terms subleading in energy (among them, spin flip ones) are
disregarded. This is to be contrasted to the calculations of elastic and radiative energy loss of energetic partons
traversing a medium composed of coloured scattering centers – jet quenching. Here, the shockwave approximation
is relaxed and the target is considered to have a finite length, see e.g. the reviews [61, 62]1.

Some years ago, a systematic expansion of the gluon propagator in non-eikonal terms stemming from the relaxation
of the shockwave approximation was performed in [73, 74] and applied to particle production in the CGC in [75].
Using those ideas, in a recent paper [76] we have computed single, double and triple gluon production in the CGC
including those non-eikonal corrections within the Glasma graph approximation – thus suitable for collisions of two
dilute objects. It was anticipated there that an asymmetry between the near and away side ridges appeared for certain
kinematic regions, which would lead to odd azimuthal harmonics. Restricted to two gluon correlations, it is the goal
of the present work to study numerically the impact of these non-eikonal corrections on even and odd harmonics,
and their dependence on model parameters, energy of the collision, pseudorapidity and transverse momentum of the
produced particles, and length of the target.

As discussed in this introduction, non-eikonal corrections are not the only source of odd harmonics, others being
density corrections or a more sophisticated treatment of the target beyond the MV model. Besides, they vanish with
increasing energy, a trend that is not observed for the odd harmonics in experimental data. Therefore, here we make
no attempt to compare with experimental data but only address the existence and size of the non-eikonal effects on
the azimuthal structure.

The plan of the paper is as follows: In Section 2 we present the formulae for two-gluon correlations in a form
derived from that in [76] but more suitable for a numerical implementation, and present the details of the model. In
Section 3 we show the results for azimuthal harmonics. Finally, in Section 4 we provide our conclusions and outlook.

2. Non-eikonal double gluon production

As shown in [76], the inclusive cross section for the production of two gluons with transverse momenta k1 and
k2, and rapidities with η1 and η2, can be written as

dσ

d2k1dη1d2k2dη2
= 2 (4π)2 α2

s g
4 C2

A (N2
c − 1)2 GNE

1 (k−1 ;λ+)GNE
1 (k−1 ;λ+)

∫
q1q2

|a(q1)|2|a(q2)|2

×
{
I

(0)
2tr +

1

N2
c − 1

[
I

(1)
2tr + I

(1)
1tr

]}
, (1)

where

I
(0)
2tr = µ2

[
k1 − q1,q1 − k1

]
µ2
[
k2 − q2,q2 − k2

]
Li(k1,q1)Li(k1,q1)Lj(k2,q2)Lj(k2,q2), (2)

I
(1)
2tr =

{
GNE

2 (k−1 , k
−
2 ;L+)µ2

[
k1 − q1,q2 − k1

]
µ2
[
k2 − q2,q1 − k2

]
× Li(k1,q1)Li(k1,q2)Lj(k2,q2)Lj(k2,q1)

}
+ (k2 → −k2) (3)

1Non-eikonal corrections at high energies have also been analysed in relation to Transverse Momentum Distributions and spin
physics [63, 64, 65, 66, 67, 68, 69], and soft gluon exponentiation [70, 71, 72].
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and

I
(1)
1tr =

{
µ2
[
k1 − q1,q2 − k2

]
µ2
[
k2 − q2,q1 − k1

]
Li(k1,q1)Li(k1,q1)Lj(k2,q2)Lj(k2,q2)

+ GNE
2 (k−1 , k

−
2 ;L+)

µ2
[
k1 − q1,q1 − k2

]
µ2
[
k2 − q2,q2 − k1)

]
+

1

2
µ2
[
k1 − q1,k2 − q2

]
µ2
[
q2 − k1,q1 − k2

]
× Li(k1,q1)Li(k1,q2)Lj(k2,q1)Lj(k2,q2)

}
+ (k2 → −k2). (4)

For the sake consistency, we use the same notation that was introduced in [76]. The subscripts on the right hand side
of Eqs.(2), (3) and (4) stands for single and double trace operators. These originate from the weak field expansion
of the double dipole and quadrupole operators that are present in the production cross section in pA collisions (see
[76] for details). Here, we work in light-cone coordinates (a+, a−,a), superindices i denote transverse coordinates,
we use the shorthand notation k ≡ (k+,k) for the three-momenta of the produced gluons,

∫
q
≡
∫
d2q/(2π)2, Nc is

the number of colors, αs = g2/(4π) the strong coupling constant, and the non-eikonal correction functions coming
from the finite extension of the target in the + lightcone direction L+ read

GNE
1 (k−;λ+) =

1

k−λ+
sin(k−λ+) (5)

and

GNE
2 (k−1 , k

−
2 ;L+) =

{
2(

k−1 − k
−
2

)
L+

sin

[
(k−1 − k

−
2 )

2
L+

]}2

(6)

with λ+ � L+ the correlation length of the color sources in the target and k− = k2/2k+. Function µ2(k,q) denotes
the Fourier transform of the averages of the color charge distributions in the projectile,

Li(k1,q1) =

[
(k1 − q1)i

(k1 − q1)2
− ki1

k2
1

]
(7)

is the usual eikonal Lipatov vertex and function a(q) is the functional form of the target potential in momentum
space that appears in the definition of the average of the two target field correlator (see [76] for the details of the set
up and the derivation of the double inclusive gluon production cross section).

To evaluate eq. (1), we make some assumptions:

1. We assume a Gaussian distribution of the colour sources inside the projectile, the MV model [59, 60], such that

µ2(k,q) = µ2(2π)2δ(2)(k + q), (8)

where µ is the width of the Gaussian and has units of mass squared.

2. We choose a Yukawa-type potential generated by the colour sources inside the target:

|a(q)|2 =
µ2
T

(q2 + µ2
T )2

, (9)

where µT is an infrared regulator analogous to a Debye mass.
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With these assumptions, eqs. (1) to (3) can be further simplified and their final forms read

I
(0)
2tr = µ4S2

⊥ L
i(k1,q1)Li(k1,q1)Lj(k2,q2)Lj(k2,q2), (10)

I
(1)
2tr = µ4S⊥ GNE

2 (k−1 , k
−
2 ;L+)

[
(2π)2δ(2)(q1 − q2)

]
Li(k1,q1)Li(k1,q2)Lj(k2,q2)Lj(k2,q1) + (k2 → −k2) (11)

and

I
(1)
1tr = µ4S⊥

{(2π)2δ(2)
[
k1 − q1 − (k2 − q2)

]Li(k1,q1)Li(k1,q1)Lj(k2,q2)Lj(k2,q2)

+ GNE
2 (k−1 , k

−
2 ;L+)

(2π)2δ(2)(k1 − k2) +
1

2
(2π)2δ(2)

[
k1 − q1 − (−k2 + q2)

]
× Li(k1,q1)Li(k1,q2)Lj(k2,q1)Lj(k2,q2)

}
+ (k2 → −k2), (12)

where we have defined the transverse area of the projectile through (2π)2δ(2)(q− q)→ S⊥.
Using eqs. (10) to (12) we organize the contributions to the double inclusive gluon production cross section,

eq. (1), and finally write it in the following form:

dσ

d2k1dη1d2k2dη2
= 2(4π)2 α2

sg
4 C2

A(N2
c − 1)GNE

1 (k−1 ;λ+)GNE
2 (k−2 ;λ+)µ4 S⊥

×
{
Iuncor + ITBE + IPBE,a + IHBT + IPBE,b

}
. (13)

The expressions Iuncor, ITBE, IPBE,a, IHBT and IPBE,b, corresponding to uncorrelated production, Bose enhancement
in the target wave function, first piece of Bose enhancement in the projectile wave function, HBT and second piece
of Bose enhancement in the projectile wave function respectively, can be found in Appendix A. The aim of the next
Section will be the analysis of the azimuthal structures in two particle correlations through the standard expansion
in Fourier harmonics.

3. Azimuthal harmonics

The resulting eq. (13) can be expanded in a Fourier series. Being an even function, only the cosine terms of the
series will contribute. That is, we can write

dσ

d2k1dη1d2k2dη2
≡ N(k1, k2,∆φ) = a0(k1, k2) +

∞∑
n=1

an(k1, k2) cos(n∆φ), (14)

where ∆φ = φ1 − φ2 and

an(k1, k2) =
2

π(1 + δn0)

∫ π

0

N(k1, k2,∆φ) cos(n∆φ)d∆φ. (15)

We standardly rewrite these series as

N(k1, k2,∆φ) = a0(k1, k2)

[
1 +

∞∑
n=1

2Vn∆(k1, k2) cos(n∆φ)

]
, (16)
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where

2Vn∆(k1, k2) =
an(k1, k2)

a0(k1, k2)
= 2

∫ π
0
N(k1, k2,∆φ) cos(n∆φ)d∆φ∫ π

0
N(k1, k2,∆φ)d∆φ

. (17)

We are interested in studying the dependence of these coefficients on the transverse momentum of one of the
produced particles. However, there is some freedom in the definition of this transverse momentum:

(i) k1 = prefT and k2 = pT :

One way of defining the pT dependence of the Fourier coefficients is by fixing one of the momenta, say k1, to
a some reference momentum prefT and letting the other momentum as the free variable, that is, k2 = pT . With
this choice, the azimuthal harmonics are defined as (see e.g. [13])

vn(pT ) =
Vn∆(pT , p

ref
T )√

Vn∆(prefT , prefT )
. (18)

(ii) k1 = k2 = pT :

Another way of fixing the pT dependence is by setting k1 = k2 = prefT = pT and therefore

vn(pT ) =
√
Vn∆(pT , pT ). (19)

(iii) Integrating over k1 and k2 = pT :

Following we can define vn(pT ) by integrating over k1 and letting k2 free as in [56], that is,

2v2
n(pT ) =

∫∞
0
k1dk1an(k1, pT )∫∞

0
k1dk1a0(k1, pT )

= 2

∫∞
0
k1dk1

∫ π
0
N(k1, pT ,∆φ) cos(n∆φ)d∆φ∫∞

0
k1dk1

∫ π
0
N(k1, pT ,∆φ)d∆φ

. (20)

In the next subsection we will explore the three possibilities.

3.1. Numerical results

In order to compute the azimuthal harmonics we first write the non-eikonal correction eq. (6) as

GNE
2 (k−1 , k

−
2 ;L+) =

{ √
2

(k1e−η1 − k2e−η2)L+
sin

[(
k1e
−η1 − k2e

−η2
)

√
2

L+

]}2

, (21)

where η1,2 are the pseudorapidities of the gluons and we use the fact that k− = k2

2k+ , k+ = 1√
2
keη.

If L is the size of the target in its rest frame, then we have that L+ = 1
γ
√

2
L ≈ 2A1/3/γ fm ≈ 10A1/3/γ GeV−1,

where A is the mass number of the nucleus and γ ' √sNN/(2mN ) accounts for the Lorentz contraction in the center
of mass frame (therefore, our pseudorapidities will be considered in this frame). Furthermore, for the numerics we
take the gluonic size of the projectile to be Bp = 4 GeV−2 [77], S⊥ = 2πBp ≈ 9.8 mb, L = 12 fm (Pb nucleus) unless
otherwise stated2 and Nc = 3. We also take λ+ = 0 in eq. (5) – note that this factor is irrelevant for the azimuthal
harmonics using definitions in eq. (18) and eq. (19) and gives a very small contribution using eq. (20).

2As our aim is not to describe experimental data but to discuss the effect of the considered non-eikonal corrections, we will apply the
calculation for proton-nucleus collisions though, as indicated above, the Glasma graph approach is only valid for collisions between dilute
objects. See [41] for a comparison of the results of the Glasma graph approximation with a full dilute-dense numerical computation.
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Figure 1: Azimuthal harmonics v2(pT ) and v3(pT ) using the definition eq. (18) for different values of µT and µP , excluding the HBT

contribution, see the text. For these graphs we have taken prefT = 1 GeV,
√
sNN = 20 GeV and η1 = η2 = 1.5.

Taking these values we start by computing the azimuthal harmonics using the definition eq. (18) without the HBT
contribution eq. (A.10). It is evident from eq. (9) that the Yukawa-type potential for the color fields inside the target
has a strong cut-off dependence in the infrared which is analogous to the Debye mass. Since this infrared regulator
is related with the Yukawa-type potential introduced to model the target fields, it is denoted by µT . Moreover,
the product of the Lipatov vertices which defines the emission of the gluons have also cut-off dependence in order
to remove the infrared divergences (see Appendix A for the explicit expressions). This cut-off is denoted as µP .
Therefore, azimuthal harmonics vn(pT ) which are calculated using the Yukawa-type potential and the product of
Lipatov vertices, carry a dependence on these two infrared cut-offs µT and µP . We first compute v2 and v3 taking
several values of these parameters ∼ ΛQCD ≈ 0.2 GeV in order to see how strong the dependence is. The results
are shown in fig. 1. We can see that the height of the peak in v2 becomes smaller as µT gets larger and that the
shape is slightly different when µT 6= µP , with even a two-peak structure appearing in some case. On the other
hand the height of the peak in v3 gets smaller when µP has smaller values. Since in this paper we are interested
in the behaviour of the odd azimuthal harmonics, we will use in the rest of the document the values of µT and µP
that maximize v3, that is, µT = 0.4 GeV and µP = 0.2 GeV 3. As mentioned, we are omitting in these plots a peak
around pT = prefT which comes from the HBT contribution.

In fig. 2 we compute the azimuthal harmonics up to v5 using the definition eq. (18) and taking prefT = 1 GeV, for
different values of

√
sNN and η1 = η2 = η (we choose ∆η = η1 − η2 = 0 in order to maximize the values of the odd

harmonics). The HBT contribution coming from eq. (A.10) is also included in this plot. We can see that increasing
the center of mass energy decreases the value of the odd harmonics. This is the behaviour that one should expect
since when the Lorentz gamma grows up the non-eikonal corrections become smaller. We obtain the same behaviour
when increasing the pseudorapidity of the produced gluons. From this plot we conclude that non-eikonal corrections

3While these values lie close to ΛQCD, it is difficult to say how realistic they can be considered.
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are not important for collisions at high center-of-mass energies as the ones at the LHC but they can be important for
collisions at RHIC where

√
sNN ≤ 200 GeV. However, we note that one should be careful since by going to smaller

values of
√
sNN we are leaving the region of small x or high energies where our formalism can be safely applied.

We would like to also mention that in fig. 2, it is apparent that both even and odd harmonics peak around
pT ∼ prefT . This is due to the fact that prefT is chosen to be k1 and pT is defined as k2, and the values of both even
and odd harmonics maximise when the momenta of both produced gluons (k1 and k2 in our notation) are close to
each other.

On the other hand, the unrealistic peaked shape of the HBT contribution is due to the fact we have used a
simplistic approach, µ2(k,q) ∝ δ(2)(k + q). A more realistic approach would employ some function F [(k + q)

√
Bp]

(with Bp being the gluonic size of the projectile), which is peaked around k + q = 0, e.g. a Gaussian, in which case

we should obtain a bell shape with smaller values for the harmonics when pT = prefT . We will show results using a
Gaussian distribution below.

One interesting behaviour of the odd azimuthal harmonics, stemming from the non-eikonal effects, that we observe
in fig. 2 is that at any fixed energy the value of the odd harmonics decreases with increasing value of rapidity η. This
behaviour is completely natural since the size of the odd harmonics is directly related the non-eikonal corrections
in our framework. When expressed in terms of the rapidity, the eikonal expansion parameter can be written as
pTL

+e−η. With increasing value of the rapidity, non-eikonal corrections (and therefore odd harmonics) get smaller
and vanish completely in the strict eikonal limit.

Another interesting feature of our result is that odd harmonics depend strongly of the size of the target while even
ones are almost independent. Furthermore, all odd harmonics and all even harmonics show a good scaling with L+,
as can be seen in fig. 3. There we plot vn, using the definition eq. (18), divided by its value for L+ = 1.5 fm. While
the dependence with centrality and multiplicity would demand a detailed study and the variation of parameters in
the model, see e.g. [52, 78], the increase of L+ with increasing centrality should be one of the ingredients in such
dependence and this finding resembles qualitatively that in [52].

For the sake of completeness, we also compute the azimuthal harmonics using prescriptions eq. (19) and eq. (20).
Now, since we are integrating over variable k1, we have to regulate the 1/k2 term that arises in eq. (7). In order to
do so, we just substitute 1/k2 → 1/(k2 +µ2

g) and we choose µg = 0.4 GeV 4. The results are shown in fig. 4 and fig. 5
where we have used µT = 0.4 GeV, µP = 0.2 GeV and η1 = η2 = 1.5. The dashed lines are our results for a Dirac
delta in µ2(k1,k2), and we observe that the shape of vn(pT ) is very abrupt and unrealistic for small pT . This is
what we should expect since µ2(k1,k2) ∝ (2π)2δ(2)(k1 − k2) comes from assuming translational invariance and this
is only valid for large |k1 − k2| or Bp but, in our case, we are using small values for both |k1 − k2| and Bp. In order

to deal with this problem we make the substitution (2π)2δ(2)(k1 − k2) → 2πBp exp
(
− Bp

2 (k1 − k2)2
)

in the HBT
term eq. (A.10) since this is the dominant contribution. The corresponding results can be seen in the continuous
lines of fig. 4 and fig. 5 and they are smoother.

Writing eq. (21) as

GNE
2 (k−1 , k

−
2 ;L+) =

{ √
2 eη1(

k1 − k2 e∆η
)
L+

sin

[(
k1 − k2 e

∆η
)

√
2

e−η1L+

]}2

, (22)

we can study the dependence of the cross section with respect to the difference in rapidity between the produced
particles given by the non-eikonal corrections – this dependence is absent if non-eikonal corrections are neglected.

In fig. 6 we have plotted the ratio of the non-eikonal cross section with respect to the eikonal one both in the
forward (∆φ = 0) and the backward (∆φ = π) peaks and for η1 = 0, k1 = 1 GeV and k2 = 1.2 GeV (we set
k1 6= k2 to not include the HBT contribution). We can see that there is a sizeable difference between the peaks up to

4The effect of changing this value to 0.2 GeV affects the azimuthal harmonics for pT < 0.5 GeV when the delta function form of the
HBT term is used. For a Gaussian, see below, no sizeable effect of this change of µg is observed.
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Figure 2: Two particle azimuthal harmonics generated in the non-eikonal Glasma graph approximation, using the definition eq. (18).

The values were calculated using µT = 0.4 GeV, µP = 0.2 GeV and prefT = 1 GeV at different center of mass energies and gluon
pseudorapidities η1 = η2 = η. The symbols without lines indicate the HBT contributions.

1.5− 2 units in rapidity for
√
sNN = 20 and 60 GeV, and that the difference becomes negligible for higher energies,√

sNN = 200 GeV, as expected.
In fig. 7 we plot the cross section eq. (13) without the prefactors outside the curly brackets (that we call normalized

multiplicity) against ∆η and ∆φ using η1 = 0, k1 = 1 GeV and k2 = 1.2 GeV. We can see again that the differences
between the forward and backward peaks are visible up to 2.5 pseudorapidity units.

4. Conclusions

In this manuscript we have analyzed the effect on the non-eikonal corrections stemming from relaxing the shock-
wave approximation for the target which, therefore, acquires a finite length, on the two gluon inclusive cross section
in the CGC. We work in the Glasma graph approximation suitable for collisions between dilute objects (pp). While
the corresponding expressions were derived in a previous publication [76], here we focus on the numerical implemen-
tation, for which several model assumptions are made. We make no attempt to compare with experimental data but
only address the existence and size of the non-eikonal effects on the azimuthal structure.
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Figure 4: Azimuthal harmonics computed using the prescription of eq. (19). The parameters used for this plot are µT = µg = 0.4 GeV,
µP = 0.2 GeV and η1 = η2 = 1.5. The dashed lines are the result using µ2(k1,k2) ∝ (2π)2δ(2)(k1−k2) and the continuous lines employ

µ2(k1,k2) ∝ 2πBp exp
(
− Bp

2
(k1 − k2)2

)
.

We explore how the non-eikonal corrections break the accidental forward-backward symmetry present in usual
CGC calculations, and thus lead to sizeable odd harmonics. We discuss the different contributions: Bose enhancement
of the projectile and target wave functions and HBT, and check the stability of the qualitative behavior of the results
against variations in the functional forms and parameters in the model assumptions. We find a good scaling of
all even and all odd harmonics with respect to the length of the target, with even harmonics being constant and
odd ones growing with increasing length. The non-eikonal corrections vanish with increasing energy of the collision,
being sizeable up to the top energies at RHIC but negligible for those at the LHC. Furthermore, they turn to be
significant for pseudorapidity differences between the produced gluons up to about 2.5 units. Therefore, we conclude
that non-eikonal effects cannot be the dominant source of odd harmonics at the highest energies but they can be
relevant for those at RHIC.

The outlook of this work is its extension to dilute-dense (pA) collisions that will be the subject of a forthcoming
publication, and a comparison to experimental data.
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Figure 5: Azimuthal harmonics computed using the prescription of eq. (20). The parameters used for this plot are µT = µg = 0.4 GeV,
µP = 0.2 GeV and η1 = η2 = 1.5. The dashed lines are the result using µ2(k1,k2) ∝ (2π)2δ(2)(k1−k2) and the continuous lines employ

µ2(k1,k2) ∝ 2πBp exp
(
− Bp

2
(k1 − k2)2

)
.
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Appendix A. Expressions for Iuncor, ITBE, IPBE,a, IHBT and IPBE,b

In this Appendix we write the expressions for the different terms in eq. (13) and put them in a form suitable for
numerical computation.

Appendix A.1. The fully uncorrelated term: Iuncor

The first term that we will evaluate is Iuncor. This term corresponds to the fully uncorrelated two gluon production.
Although it does not contribute to the azimuthal harmonics, it gives the bulk of the two gluon cross section. Therefore,
it is important in order to have it properly normalized. From eq. (10), we have that

Iuncor = S⊥(N2
c − 1)

∫
d2q1

(2π)2

d2q2

(2π)2

µ2
T

(q2
1 + µ2

T )2

µ2
T

(q2
2 + µ2

T )2
Li(k1,q1)Li(k1,q1)Lj(k2,q2)Lj(k2,q2), (A.1)

where the product of two Lipatov vertices is

Li(k,q)Li(k,q) =
q2

k2[k2 + q2 + µ2
P − 2kq cosφ]

, (A.2)
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with φ is the angle between k and q. Furthermore we have introduced an infrared regulator µP in the momentum
of the projectile gluon to regulate this otherwise divergent integral5.

Since eq. (A.1) decouples into two identical integrals, the only integral that we have to deal with is∫
d2q

(2π)2

µ2
T

(q2 + µ2
T )2

Li(k,q)Li(k,q) =
1

(2π)2

∫ ∞
0

qdq
µ2
T

(q2 + µ2
T )2

∫ 2π

0

dφ
q2

k2[k2 + q2 + µ2
P − 2kq cosφ]

=
µ2
T

2π

∫ ∞
0

dq
q

(q2 + µ2
T )2

q2

k2
√

(k2 + q2 + µ2
P )2 − 4k2q2

. (A.3)

This integral can be solved analytically but the expression is rather lengthy.

Appendix A.2. Bose enhancement in the target wave function: ITBE

The second term that we will have to deal is ITBE. This term fixes q1 = q2 and therefore it is a Bose enhancement
in the target wave function. From eq. (11), we can write it as

ITBE = GNE
2 (k−1 , k

−
2 ;L+)

∫
d2q1

(2π)2

d2q2

(2π)2

µ2
T

(q2
1 + µ2

T )2

µ2
T

(q2
2 + µ2

T )2

[
(2π)2δ(2)(q1 − q2)

]
× Li(k1,q1)Li(k1,q2)Lj(k2,q2)Lj(k2,q1) + (k2 → −k2)

= GNE
2 (k−1 , k

−
2 ;L+)

∫
d2q

(2π)2

µ4
T

(q2 + µ2
T )4

Li(k1,q)Li(k1,q)Lj(k2,q)Lj(k2,q) + (k2 → −k2). (A.4)

Using eq. (A.2) and∫ 2π

0

dφ
1

a+ cosφ

1

b+ cos(φ−∆φ)
= 2π

a√
a2−1

+ b√
b2−1

ab+
√
a2 − 1

√
b2 − 1− cos ∆φ

(A.5)

to solve the φ integral, we obtain

ITBE =
µ4
T

2πk2
1k

2
2

GNE
2 (k−1 , k

−
2 ;L+)

∫ ∞
0

dq
q5

(µ2
T + q2)

4

×

1√
1− 4k21q

2

(k21+µ2
P

+q2)
2

+ 1√
1− 4k22q

2

(k22+µ2
P

+q2)
2

(k2
1 + µ2

P + q2) (k2
2 + µ2

P + q2) +

√
(k2

1 + µ2
P + q2)

2 − 4k2
1q

2

√
(k2

2 + µ2
P + q2)

2 − 4k2
2q

2 − 4k1k2q2 cos ∆φ

+ [(k−2 ,∆φ)→ (−k−2 ,∆φ+ π)], (A.6)

where ∆φ is the angle between k1 and k2 – the azimuthal correlation angle that we are interested to study.

Appendix A.3. Bose enhancement in the projectile wave function: IPBE,a

We will now separate the quadrupole contribution, eq. (12), into tree parts. The first of them, IPBE,a, fixes
k1−q1 = k2−q2 and therefore it is a Bose enhancement in the projectile wave function. This term does not contain

5Were the projectile a dense object, the natural infrared regulator would be its saturation scale.
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any non-eikonal correction and therefore it has the accidental symmetry (k2 → −k2) which implies, see section 3,
that it does not generate odd azimuthal harmonics. From the first term in eq. (12) we have

IPBE,a =

∫
d2q1

(2π)2

d2q2

(2π)2

µ2
T

(q2
1 + µ2

T )2

µ2
T

(q2
2 + µ2

T )2

(2π)2δ(2)
[
k1 − q1 − (k2 − q2)

]
× Li(k1,q1)Li(k1,q1)Lj(k2,q2)Lj(k2,q2) + (k2 → −k2)

=

∫
d2q

(2π)2

µ2
T

(q2 + µ2
T )2

µ2
T[

(q + k2 − k1)2 + µ2
T

]2
× Li(k1,q)Li(k1,q)Lj(k2,q + k2 − k1)Lj(k2,q + k2 − k1) + (k2 → −k2). (A.7)

This expression can be written in terms of modulus and angles of vectors using eq. (A.2),

Lj(k2,q + k2 − k1)Lj(k2,q + k2 − k1) =
−2k1k2 cos(∆φ) + k2

2 + 2k2q cos(φ−∆φ)

k2
2 (k2

1 − 2k1q cos(φ) + µ2
P + q2)

+
1

k2
2

(A.8)

and

µ2
T[

(q + k2 − k1)2 + µ2
T

]2 =
µ2
T[

µ2
T + q2 + k2

1 + k2
2 − 2k1k2 cos(∆φ)− 2k1q cos(φ) + 2k2q cos(∆φ− φ)

]2 . (A.9)

While the φ integral can be solved using the residue theorem, the result is very lengthy and we have decided to deal
with both the φ and q integrals numerically.

Appendix A.4. HBT contribution: IHBT

The second part of the quadrupole term, IHBT, fixes k1 = k2 and therefore it is an HBT contribution. From the
second term in eq. (12) we get

IHBT =

∫
d2q1

(2π)2

d2q2

(2π)2

µ2
T

(q2
1 + µ2

T )2

µ2
T

(q2
2 + µ2

T )2
GNE

2 (k−1 , k
−
2 ;L+)

[
(2π)2δ(2)(k1 − k2)

]
× Li(k1,q1)Li(k1,q2)Lj(k2,q1)Lj(k2,q2) + (k2 → −k2)

= GNE
2 (k−1 , k

−
2 ;L+)

[
(2π)2δ(2)(k1 − k2)

]
Tr[M ·M ] + (k2 → −k2)

=

[
(2π)2 1

k1
δ(k1 − k2)

]
Tr[M ·M ]

{
GNE

2 (k−1 , k
−
2 ;L+)δ(∆φ) + GNE

2 (k−1 ,−k
−
2 ;L+)δ(∆φ− π)

}
, (A.10)

where we have used that δ(2)(k1 − k2) = 1
k1
δ(k1 − k2)δ(∆φ) and defined

M ij =

∫
d2q

(2π)2

µ2
T

(q2 + µ2
T )2

Li(k1,q)Lj(k1,q). (A.11)

The matrix M can be easily solved by taking into account the definition of the Lipatov vertex.
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Appendix A.5. Bose enhancement in the projectile wave function: IPBE,b

The last part of the quadrupole term, IPBE,b, fixes k1 − q1 = −k2 + q2 and therefore it is a Bose enhancement
term in the projectile wave function. From the third term in eq. (12) we have

IPBE,b =
1

2
GNE

2 (k−1 , k
−
2 ;L+)

∫
d2q1

(2π)2

d2q2

(2π)2

µ2
T

(q2
1 + µ2

T )2

µ2
T

(q2
2 + µ2

T )2

(2π)2δ(2)
[
k1 − q1 − (−k2 + q2)

]
× Li(k1,q1)Li(k1,q2)Lj(k2,q1)Lj(k2,q2) + (k2 → −k2)

=
1

2
GNE

2 (k−1 , k
−
2 ;L+)

∫
d2q

(2π)2

µ2
T

(q2 + µ2
T )2

µ2
T[

(−q + k1 + k2)2 + µ2
T

]2
× Li(k1,q)Li(k1,−q + k1 + k2)Lj(k2,q)Lj(k2,−q + k1 + k2) + (k2 → −k2). (A.12)

In order to write this term just in terms of modulus and angles we have to have into account that

Li(k1,q)Li(k1,−q + k1 + k2) = − k2
1 − k1q cos(φ)

k2
1

[
k2

1 − 2k1q cos(φ) + µ2
P + q2

] +
1

k2
1

(A.13)

− k1q cos(φ)− k1k2 cos(∆φ)

k2
1

[
k2

2 − 2k2q cos(∆φ− φ) + µ2
P + q2

] +
−k1k2 cos(∆φ) + k1q cos(φ) + k2q cos(∆φ− φ)− q2[

k2
1 − 2k1q cos(φ) + µ2

P + q2
] [
k2

2 − 2k2q cos(∆φ− φ) + µ2
P + q2

]
and

Lj(k2,q)Lj(k2,−q + k1 + k2) = − k2
2 − k2q cos(∆φ− φ)

k2
2

[
k2

2 − 2k2q cos(∆φ− φ) + µ2
P + q2

] +
1

k2
2

+
−k1k2 cos(∆φ) + k1q cos(φ) + k2q cos(∆φ− φ)− q2[

k2
1 − 2k1q cos(φ) + µ2

P + q2
][
k2

2 − 2k2q cos(∆φ− φ) + µ2
P + q2

] − k2q cos(∆φ− φ)− k1k2 cos(∆φ)

k2
2

[
k2

1 − 2k1q cos(φ) + µ2
P + q2

] . (A.14)

The expression for |a(−q + k1 + k2)|2 is similar to eq. (A.9).
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