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Abstract

We present results of a high statistics study of the chromo �eld distribution between
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potential in unpreceded accuracy.

(extended version)

September 7, 1994

1Work supported in part by DFG grant Schi 257/3-2 and EC contract CHRX-CT92-00551.
2Email: bali/schillin/schlicht@wpts0.physik.uni-wuppertal.de



1 Introduction

The issue of verifying the con�nement mechanism in Quantum Chromodynamics has
been a great challenge ever since the phenomenon of string formation between a static
Q �Q pair has been conceived by t'Hooft and Mandelstam [1] to be a dual Meissner
e�ect in the scenario of a Type II superconducting vacuum. Early lattice gauge theory
attempts to compute the colour �eld distribution, without recourse to modelling, were
necessarily limited by the available compute power and lattice methods of the period.
They rendered qualitative rather than quantitative results, with lattice resolutions, a,
and quark-antiquark separations, r, restrained to a > :15 fm and r = aR < 1 fm,
respectively [2, 3, 4, 5].

In recent high precision studies of SU(2) and SU(3) gauge theories [6, 7] the static
quark-antiquark potential has been found to be consistent with a linearly rising part
and a subleading ��=(12R) correction as predicted by the bosonic string picture [8, 9]
for separations above rt � :5 fm. Moreover, there are numerical indications for hybrid
potentials, with gluonic excitations separated by energy gaps n�=R [10, 11] as expected
from e�ective string theories [8].

A compelling evidence about the nature of the con�ning string from lattice gauge
theory (LGT) is still lacking. It would require measurements of �eld distributions
at quark separations well beyond rt. To study the geometry of the colour ux tube
between Q and �Q sources, one needs an increase both in resolution of the underlying
lattice and in the linear extent, r, of the string.

These requirements are not so easily met, since (a) the energy density carries dimension
a�4 and therefore imposes a lower limit onto the lattice spacing due to statistical noise
and (b) one is forced to work with very large lattices to attain large quark-antiquark
separations r = Ra. On top of this, one is of course faced with the ubiquitous problem
of �ltering ground state signals out of an excited state background.

Thus, in order to really determine the structure of strings in the heavy quark-antiquark
interaction, one cannot avoid a systematic high precision study, ensuring (a) good
scaling behaviour as well as (b) su�cient control on �nite size e�ects (FSE) and (c)
reliable signals for the ground state.

The superconducting picture for QCD has been modelled in terms of a dual e�ec-
tive Langrangian some time ago by Baker and collaborators and worked out subse-
quently [12]. Lattice gauge theory in principle o�ers the laboratory to test such con-
�nement models, as it allows for ab initio studies from the QCD Lagrangian. Within
the lattice community, there has recently been revived interest to study the rôle of
monopole condensation in the con�nement mechanism, by recourse to the maximal
Abelian gauge projection, in SU(2) gauge theory [13, 14, 15]. Some �rst encouraging
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evidence for the dual Meissner e�ect has also been reported [16]. Nevertheless, all
this pioneering lattice work on the con�nement mechanism has been carried out either
at rather smallish quark-antiquark separations, where the ux tube is not yet really
developed, or at rather large lattice spacing.

In fact, there de�nitely remains a gap: so far ux tubes of su�cient physical lengths
have never been observed on the lattice! In this paper, we intend to bridge this gap:
exploiting state-of-the-art lattice techniques | for noise reduction and ground state
enhancement | as well as the compute power (and memory!) of \small" Connec-
tion Machines CM-2 and CM-5, we will be able to demonstrate unambiguously that
quenched SU(2) gauge theory does imply ux tube formation over distances well above
the � Compton wavelength.

Reliable lattice calculations can only be based on trustworthy error estimates. For this
reason, we will expose the underlying lattice techniques in quite some detail (Section
2). There is a shorter Section 3, augmented by three appendices, on (a) weak coupling
and (b) string model issues that are helpful to appreciate certain qualitative features
of the �eld distributions and (c) sum rules for energy and action densities that provide
an important cross check of the lattice results. The numerical results are presented in
Section 4 which includes very precise potential data, determination of the Symanzik
� function and many pictures of the ux tubes3. Detailed checks on �nite size e�ects,
discretization e�ects and ground state dominance are provided, substantiating the
interpretation of lattice correlators in terms of continuum �elds. Section 5 contains a
discussion of the shape of the ux tube and the status of Michael's sum rules.

2 Lattice techniques

The numerical calculations are performed on lattices with hypercubic geometry and
periodic boundary conditions in all four directions with volumes L3

S�LT ranging from
164 up to 483 � 64. Throughout the simulation the standard Wilson action

SW = ��
X
n;�>�

U��(n) (1)

with

U��(n) =
1

2
Tr
�
U�(n)U�(n+ �̂)Uy

�(n+ �̂)Uy
� (n)

�
(2)

and � = 4=g2 has been used.

For the updating of the gauge �elds a hybrid of heatbath and overrelaxation algo-
rithms has been implemented [17]. The Fabricius-Haan heatbath sweeps [18] have

3We regret being unable to expose the colour ux tube in colour in this medium! A data base of
colour images is under construction. It can be accessed via anonymous ftp from wpts0.physik.uni-
wuppertal.de. The (compressed) .rgb and .ps �les are deposited in the directory pub/colorux.
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been randomly mixed with the overrelaxation step with probability ranging from 1=8
at � = 2:5 up to 1=14 at � = 2:74. The links have been visited in lexicographical
ordering within 24 hypercubes, i.e. within each such hypercube, �rst all links pointing
into direction 1̂ are visited site by site, then all links in direction 2̂ etc..

2.1 Prerequisites

In order to substantiate continuum results from lattice calculations it is of utmost
importance to investigate the impact of the �nite lattice volume as well as the scal-
ing behaviour with the lattice spacing a. This requires simulations both at (a) �xed
lattice coupling � (i.e. spacing a) with a varying number of lattice sites and (b) (ap-
proximately) �xed physical volume but di�erent lattice resolutions.

Of course one wants to work | within the computational means | as close as possible
to the continuum limit, i.e. at as large �-values as possible. The bottleneck is set by
the memory requirements due to the increase of the number of lattice sites (needed to
compensate for a smaller a) as well as by the computer time required to suppress the
statistical noise. Since the operators under investigation scale with the fourth power
of the lattice resolution (up to ln a terms from anomalous dimensions, see below), the
latter limitation is the more serious one, restricting all preceding lattice studies to
� � 2:5.

Though simulations at small � values allow for rather large physical volumes, lattice
artefacts are expected to spoil results at physically interesting scales. Moreover, we
should mention that our smearing procedure provides inferior ground state overlaps
at large lattice spacings. There is more reason to stay away from too coarse lattices:
one needs a su�ciently large T -range for veri�cation of T -plateaus in the bona �de

physical quantities. In addition, at smaller values of �, the lower limit T � 3, implied
by the minimal temporal extent of the h2iW operator, amounts to overly large physical
separations and leads to small signals of the Wilson loops.

In short, one has to �nd a way between Scylla and Charybdis: i.e. to compromise
between the shortcomings of both small and large lattice spacings a. We have chosen
to simulate at � = 2:5; 2:635, and 2.74 at various lattice volumes, ranging up to the
unpreceded volume 483 � 64. Our simulation parameters are summarized in Tab. 1.

As a by-product we compute the static potential and obtain the most precise set of
SU(2) string tension values that has ever been computed on the lattice. Details of the
�tting procedure are explained in Section 4.1.2. The (lattice) string tension K relates
the lattice spacing a to a physical scale: � = Ka2. We ascribe the \canonical" valuep
� = 440 MeV to the square root of the string tension. Needless to say that this

scale, taken from real world QCD Regge trajectories, only serves as an orientation for
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� = 2:50 � = 2:50 � = 2:635 � = 2:74
L3

S � LT 164 324 483 � 64 324

K .0350(4) .0350(12) .01458(8) .00830(6)
a=fm .0826(5) .0826(14) .0541(2) .0408(2)

a�1=GeV 2.35 (1) 2.35(4) 3.64(1) 4.83(2)
aLS/fm 1.32(1) 2.64(4) 2.60(1) 1.31(1)

MC sweeps 868000 255600 53800 152000
thermalization sweeps 2000 51000 4200 4000

meas., sweeps between meas.

Wilson loops 8680, 100 2046, 100 248, 200 1480, 100
colour ux distribution 8680, 100 2046, 100 248, 200 670, 100

plaquette 86800, 10 20460, 10 992, 50 14800, 10

Table 1: Simulation parameters. The physical scales have been computed from the

value

p
Ka = 440 MeV.

its poor man's quenched two colour version: SU(2) gauge theory. Nonetheless, the
quantitative agreement between the SU(2) and SU(3) potentials is remarkable. We
also point out that the e�ective string model with which we are going to compare our
results does not depend on the underlying gauge group.

From the string tension measurement we �nd the following (approximate) relation
between the present lattice spacings: a�12:5 : a

�1
2:635 : a

�1
2:74 � 1 : 1:5 : 2. Thus, the 164

lattice at � = 2:5 has approximately the same physical volume as the 324 lattice at
� = 2:74. The same holds true for the 324 lattice at � = 2:5 and the 483�64 lattice at
� = 2:635. These pairs of lattices can be used to investigate the a (in)dependence of
the results. In order to reveal possible volume e�ects, the 164 and 324 lattice outcomes
at � = 2:5 will be compared with each other.

As a prerequisite to the present investigation, let us consider the static Q �Q potential
which can be computed from Wilson loops, W (R;T ). A Wilson loop, i.e. an ordered
product of link variables along a closed rectangular path with spatial separation R and
temporal extent T , can be interpreted as a world sheet of a Q �Q pair: at Euclidean
time � = 0 a creation operator

�yR = Q(0)U(0! R)Qy(R) (3)

with a gauge covariant transporter U(0 ! R) is applied to the vacuum state j0i.
The Q �Q pair is then propagated to � = T by static Wilson lines in presence of
the gauge �eld background, and �nally annihilated by application of �R. A spectral
decomposition of the Wilson loop exhibits the following behaviour (T = e�aH denotes
the transfer matrix, T jni = e�Enjni):

hW (R;T )i =
Tr
�
�RT T�yRT LT�T

�
Tr (T LT )
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=
1P

m e�EmLT

X
m;n

jhmj�Rjn;Rij2 e�Vn(R)Te�Em(LT�T ) (4)

=
X
n

jdn(R)j2e�Vn(R)T �
�
1 +O

�
e�E1(LT�T )

��
;

where dn(R) = h0j�Rjn;Ri. jn;Ri is the nth eigenstate in the charged sector of the
Hilbert space with non-vanishing overlap to the creation operator �yR, while jni is the
nth eigenstate of the zero charge sector. Vn(R) denotes the nth excitation of the Q �Q
potential and the vacuum energy E0 has been set to zero. E1 is the mass gap, i.e. the
mass of the A+

1 glueball.

Actually, we are not restricted to on-axis Q �Q separations, R = (R;0;0). Planar
Wilson loops can be easily generalized to o�-axis separations by connecting sources
that do not share a common lattice axis. In the present investigation, the following
o�-axis directions have been realized:

d1 = (1; 0; 0) ; d2 = (1; 1; 0) ; d3 = (2; 1; 0) ;

d4 = (1; 1; 1) ; d5 = (2; 1; 1) ; d6 = (2; 2; 1) ; (5)

with separations midi up to m1;m2;m4 � LS=2 and m3;m5;m6 � LS=4. For the
largest lattice, LS = 48, this amounts to a measurement over a set of 108 di�erent
separations. All paths have been chosen as close to the shortest linear connection
between the sources as the lattice permitted.

2.2 Noise reduction

In this section we will shortly discuss the implications of noise reduction that we
achieved by integrating out the temporal links in the Wilson loops analytically [19].

The link integration amounts to the following substitution:

U4(n) �! V4(n) =

R
SU(2)dU Ue�Sn;4(U)R
SU(2)dU e�Sn;4(U)

(6)

with

Sn;�(U) =
1

2
Tr
�
UF y

�(n)
�

; F�(n) =
X
� 6=�

U�(n)U�(n+ �̂)Uy
� (n + �̂) : (7)

V4(n) is in general not an SU(2) element anymore.

In this way, time-like links are replaced by the mean �eld value they take in the neigh-
bourhood of (stroboscopically frozen) links that interact through the staples F�(n).
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Only those links that do not share a common plaquette, can be integrated indepen-
dently. This holds in particular for all temporal links within our spatially smeared
Wilson loops, i� R > 1.

In case of SU(2) gauge theory, V4(n) can be calculated analytically:

V4(n) =
I2(�f�(n))

f�(n)I1(�f�(n))
F�(n) ; f�(n) =

q
det(F�(n)) : (8)

In denote the modi�ed Bessel functions.

The statistical error, �O, of an observable, hOi, calculated without link integration,
is related by a constant s < 1 to the corresponding error with link integration, �Oli =
s�O. In order to discuss the impact of link integration on noise reduction, we start
from the na��ve expectation that each integrated link contributes equally to s, i.e.
we assume s = x2T with 2T being the number of integrated links used within the
construction of hOi.

In order to estimate the value of s, let us consider on-axis Wilson loops with inte-
grated temporal links. On symmetric lattices (LT = LS) we expect from the relation
hW (R;T )i = hW (T;R)i:

�W (R;T )

�W (T;R)
= x2(T�R) : (9)

This leads to the estimate for x2:

x2 = exp

 
1

T �R
log

 
�W (R;T )

�W (T;R)

!!
: (10)

Our data (with bootstrapped errors of the errors) is consistent with a factor4 x =
:889 � :001 (x = :890 � :001) for � = 2:5 (� = 2:635). Thus, application of link
integration at time T = 6 (the largest temporal extent, used in the computation of
the colour �eld operators, see below) amounts to a reduction of computer time by a
factor x�24 = 16:8� 0:4.

The improvement achieved by link integration tends to be smaller at smaller lattice
spacings. This is due to the fact that the physical extent of the neighbourhood to be
integrated out becomes smaller. On the other hand, the error of a non-link integrated
operator, measured on lattices with constant physical volumes but di�erent couplings,
also decreases with the lattice spacing (temperature ��1). At the bottom line, the
two e�ects almost cancel each other and the relative errors of link integrated Wilson
loops appear to remain rather independent of the lattice resolution, provided that the
physical lattice volumes and the number of measurements are kept constant.

4For small R and T where the statistical errors have reached the same order of magnitude as
the numerical machine accuracy, we performed additional computations of �O and �Oli on smaller
subsamples to ensure that the errors still follow the statistical 1=

p
Nmeas expectation.
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Figure 1: Visualization of a smearing iteration.

2.3 Ground state enhancement

The physically interesting ground state potential, V (R) = V0(R), can be retrieved in
the limit of large T :

hW (R;T )i =
X
n

Cn(R)e
�Vn(R)T �! C0(R)e

�V (R)T (T !1) : (11)

The overlaps Cn(R) = jdn(R)j2 � 0 obey the following normalization condition:X
n

Cn(R) = 1 : (12)

The path of the transporter U(0 ! R) used for the construction of the Q �Q creation
operator (Eq. 3) does not a�ect the eigenvalues of the transfer matrix and is by no
means unique. One can exploit this freedom to maximize the ground state overlap by
a suitable superposition of such paths, aiming at C0(R) � 1. At any given value of
R, the �nal deviation of C0(R) from one can serve as a monitor for the suppression of
excited state contributions actually achieved in this way.

In the present simulation an iterative procedure (with niter iteration steps) has been
applied [20, 21]: each spatial link Ui(n), occurring in the transporter, is substituted by
a \fat" link,

Ui(n) �! N

0
@�Ui(n) +

X
j 6=i

Uj(n)Ui(n+ ĵ)Uy
j (n+ î)

1
A (13)

with the appropriate normalization constant N and free parameter �. One such it-
eration step is visualized in Fig. 1. For this smearing, the links are visited in the
lexicographical ordering of the updating sweep.

We �nd satisfactory ground state enhancement with the parameter choice niter = 150
and � = 2.

One can de�ne approximants to the asymptotic potential values and overlaps, V (R;T )!
V (R) and C0(R;T )! C0(R) (T ! 1). Due to the positivity of the transfer matrix
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Figure 2: The ground state overlaps C0(R) versus R at � = 2:635. In addition to

the overlaps of smeared operators (diamonds), �nite T approximants, C0(R;T ) for the
overlaps from unsmeared (on-axis) operators are plotted. The dashed line denotes the

extrapolated large T limit for the unsmeared overlaps and should be a valid approxima-

tion to the large R behaviour.

T , these quantities decrease monotonically (in T ) to their asymptotic limits:

V (R;T ) = log

 
hW (R;T )i
hW (R;T + 1)i

!
= V (R) +

C1(R)

C0(R)
h(R;T ) + � � � (14)

C0(R;T ) =
hW (R;T )iT+1
hW (R;T + 1)iT = C0(R) + C1(R)h(R;T ) + � � � (15)

with
h(R;T ) = e��V (R)T

�
1� e��V (R)

�
; �V (R) = V1(R)� V (R) : (16)

In our analysis, we follow these approximants until they reach a plateau.

As we wish to maximize C0(R), we would like to acquire a qualitative understanding
of the underlying physics. For this purpose, we consider unsmeared on-axis Wilson
loops. Combining Eq. 11 with the R-T symmetry5 hW (R;T )i = hW (T;R)i and the
parametrization of the potential V (R) = V0 � e=R+KR we obtain

lnhW (R;T )i � lnC0(R;T )� V0T + eT=R �KRT (17)

= lnD � V0(R + T ) + e(R=T + T=R) �KRT

5This symmetry is only exact on lattices with LS = LT . However, within statistical accuracy it
also holds true on the 483 � 64 lattice.
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for large R and T and arrive at the estimate (with constants V0 and e obtained from
the potential analysis below),

C0(R;T ) = De�(V0�e=T )R or C0(R) = De�V0R : (18)

This parametrization of the unsmeared overlaps turns out to describe the o�-axis data
too if we allow for a smaller (direction dependent) constant V0.

The self-energy term V0=a diverges in the continuum limit, a! 0. Thus, the overlaps
at �xed physical separation6, r = Ra, decrease with increasing �. This feature is in
accord with the following consideration: in the scaling region the transverse size of the
Q �Q wave function is expected to remain constant in physical units while the transverse
extent of the string like creation operator remains on the scale of the lattice resolution.
Thus, the ground state overlap of this operator decreases with increasing correlation
length.

The ground state overlaps of smeared Wilson loops at � = 2:635 are shown in Fig. 2,
together with on-axis approximants to the unsmeared overlaps and the asymptotic
(large R) estimate of Eq. 18 (dashed curve), where the coe�cient D � 2:3 was
obtained by �tting the large T data to Eq. 18. There is obviously a dramatic im-
provement from the use of an extended creation operator. In case of the smeared
links, the (unsmeared) self-energy contribution V0 appears to be reduced to a number
f � V0 that is su�ciently small to allow for an expansion of the exponential factor
C0(R) = D exp(�fR) � D(1�fR): the ground state overlaps of smearedWilson loops
exhibit a linear R dependence throughout the observed R region. Moreover, rotational
invariance in terms of the overlaps is restored for all on- and o�-axis separations.

For � = 2:5 the overlaps vary between C0(
p
2a) = :95 and C0(rm) = :73 on the 324

lattice and from C0(a) = :98 to C0(rm) = :81 on the 164 lattice. Within the same
physical region the � = 2:635 overlaps range from C0(

p
2a) = :98 to C0(rm) = :81. At

� = 2:74 we have used an inferior set of smearing parameters (niter = 40 and � = 0);
yet we achieve overlaps of C0(a) = :96 and C(rm) = :84. We have chosen rm � 1:2
fm for the comparison. This scale corresponds to rma

�1 = 8
p
3; 12
p
3; 16
p
3 for the

three �-values, respectively. Even at �xed physical r the overlaps tend to increase
with �, unlike in the situation with unsmeared operators: the wave function becomes
smoother at increased correlation length and can be better modelled by the iterative
smearing procedure. For the largest distance realized (2:25 fm at � = 2:635) we still
achieve the value C0(24

p
3a) = :72.

The success of smearing is twofold: (a) for rather small values of T , extraction of the
ground state potential becomes possible and (b) the signal-to-noise ratio is greatly
improved as C0(R) (and the signal) increases, especially for large values of R.

6At �xed (lattice) R, a (slight) increase is observed and expected.
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2.4 Lattice determination of colour �elds

The central observables in our present investigation are the action and energy densities
in presence of two static quark sources (with separation R) in the ground state of the
binding problem:

�R(n) =
1

2
(ER(n) + BR(n)) ; (19)

�R(n) =
1

2
(ER(n)� BR(n)) ; (20)

with
ER(n) = hE2(n)ij0;Ri�j0i ; BR(n) = hB2(n)ij0;Ri�j0i (21)

and
hOij0;Ri�j0i = h0; RjOj0; Ri � h0jOj0i : (22)

The sign convention corresponds to the Minkowski notation with metric
� = diag(1;�1;�1;�1), in which BR(n) � 0, ER(n) � 0. We point out that the
Minkowski action density carries a di�erent sign relative to the (negative) Euclidean
action, i.e. SW = �Pn

1

2
hE2 �B2ij0i.

We shall extract these observables from the correlations between smearedWilson loops,
W = W (R;T ), and (unsmeared) plaquettes 2(� ) = U��(n; � ) (Eq. 2)7,

h2(S)iW =
1

2

hW(2(T=2 + S) +2(T=2 � S))i
hWi � h2i : (23)

S denotes the distance of the plaquette from the central time slice of the Wilson loop
and takes the values S = 0; 1; : : : (S = 1=2; 3=2; : : :) for even (odd) T .

The plaquette insertion acts as the chromo dynamical analogue of a Hall detector
in electrodynamics8. For 0 � S < T=2, h2(S)iW can be decomposed into mass
eigenstates as follows

h2(S)iW =
Tr
�
�
�
T T=2+S

2T T=2�S + T T=2�S
2T T=2+S

�
�yT LT�T

�
2Tr (�T T�yT LT�T )

� h2i

7We do not follow the authors of Ref. [4] who, in order to reduce statistical uctuations, advocate
to subtract hW2(n)i=hWi with the reference point, n, taken far away from the sources rather than the
vacuum plaquette expectation h2i. In this way, we avoid possible shifts of the normalization relative

to the vacuum energy and action densities. We would like to point out that we found no reduction
in statistical errors for smeared Wilson loop operators by using the above suggestion. However, we

have been able to con�rm this observation of Ref. [4] for unsmeared Wilson loops.
8We note in passing, that the authors of Ref. [22] have chosen to connect the plaquette to the

Wilson loop via two Wilson lines and take one overall trace instead of two separate ones, as this leads

to an improved signal to noise ratio. However, a prove that this observable indeed can be interpreted

as a colour �eld density in presence of a static Q �Q pair is missing. Moreover, the constraint through
sum rules is lost.
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= h0; Rj2j0; Ri � h0j2j0i

+ 2Re

 
d1

d0
h1; Rj2j0; Ri

!
e��V T=2 cosh(�V S)

+
jd1j2
jd0j2

(h1; Rj2j1; Ri � h0; Rj2j0; Ri) e��V T (24)

+ 2Re

 
d2

d0
h2; Rj2j0; Ri

!
e�(V2�V )T=2 cosh((V2 � V )S)

+ O(e��V ( 32T�S)) :

�V denotes the gap between the ground state and the �rst excitation (Eq. 16). In
principle, jdnj2 = Cn(R) and Vn(R) can be determined from smeared Wilson loops.
The non-diagonal O(e�(Vn�V )(T=2�S)) coe�cients can only be obtained from a �t to
the time dependence of the above operator. As we shall see in the next paragraph,
(V2 � V )=2 � �V . Thus, a measurement of the excited state colour �eld distribution
h2ij1;Ri�j0i appears to be unfeasible with the present method.

In string model calculations the separations between ground and excited state poten-
tials without gluonic angular momentum, i.e. within theA1g representation of the cubic
symmetry group, are found to be multiples of 2�=R [8, 10]. This feature is in accord
with numerical simulations of SU(2) and SU(3) gauge theories [10, 11]. Therefore, as
a net result, we expect the following asymptotic behaviour:

h2(S)iW = h2ij0;Ri�j0i
+ c1e

��T=R cosh(2�S=R) (25)

+ c2e
�2�T=R (1 + c3 cosh(4�S=R)) + � � �

with ci being free parameters. They are, contrary to the coe�cients of the spectral
decomposition of the Wilson loop (Eq. 11), not necessarily positive! Be aware, that
ci vary with the Q �Q separation as well as with the spatial position n of the plaquette
insertion.

The deviations from the asymptotic values are governed by O(e��V (T=2�S)) terms,
compared to order e��V T corrections in case of the potential (Eqs. 14, 16). So, the
issue of optimization for ground state dominance is certainly more critical for �eld
measurements. While the reduction of systematic errors would ask for large T -values,
the suppression of statistical uncertainties would lead one to the contrary. Obviously,
the reasonable strategy is to ensure that systematic and statistical errors are kept in
balance.

A weak coupling expansion of the plaquette yields the square of the Maxwell �eld
strength tensor F�� = F c

���c=2:

U�� = 1� a4

2�
F c
��F

c
�� +O(a6) : (26)
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Thus, by an appropriate choice of 2 = Ui4 (2 = Ujk) expectation values of squared
chromo electric (magnetic) �eld components can be obtained9, in the limit of large T :

2�

a4
hUi4(S)iW T!1�! hE2

i (n)ij0;Ri�j0i ; (27)

� 2�

a4
hUjk(S)iW T!1�! hB2

i (n)ij0;Ri�j0i ; j�ijkj = 1 : (28)

The �nite T corrections to these relations have been elaborated in Eq. 25. Note, that
E2

i = Ec
iE

c
i = 2TrE2

i .

2.5 Implementation of colour �eld operators

For measurement of the colour �eld distributions, the appropriate plaquette operators
are suitably averaged in order to obtain chromo magnetic or electric insertions in
symmetric position to a given lattice site, n. For the electric insertions two plaquettes
are averaged:

Ui4(n)!
1

2
(Ui4(n� ei) + Ui4(n)) : (29)

For the magnetic �elds four adjacent plaquettes are combined:

Ujk(n)!
1

4
(Ujk(n� ej � ek) + Ujk(n� ej) + Ujk(n� ek) + Ujk(n)) : (30)

Notice that while B2

i is measured at integer values of � , E2

i is measured between two
time slices. To minimize contaminations from excited states (Eq. 25), � is chosen as
close as possible to T=2. For even temporal extent of the Wilson loop, this means
S = 0 for the magnetic �eld operator and S = 1=2 for the electric �eld insertion, while
for odd T , S = 0(1=2) for electric (magnetic) �elds.

For measurement of the colour �eld distributions we have restricted ourselves to on-
axis separations of the two sources. All even distances R = 2; 4; : : : ; Rmax with Rmax =
8; 24; 36 for LS = 16; 32; 48, respectively, have been realized. In order to identify
the asymptotic plateau, T was varied up to10 T = 6. The colour �eld distributions
have been measured up to a transverse distance n? = 2 along the entire Q �Q axis.
In between the two sources and up to 2 lattice spacings outside the sources, the
transverse distance was increased to n?;max = 6; 10; 15 for the three lattice extents
LS = 16; 32; 48, respectively. In addition to \on-axis" positions, n = (n1; n2; 0), we
chose plane-diagonal points n = (n1; n2; n2) with n2 < n?;max=

p
2. We averaged

9Remember, that we do not obtain any information on the components of E and B themselves
since, in general, hO2i 6= hOi2.

10For historical reasons, on our small lattice volumes (164 at � = 2:5 and 324 at � = 2:74) only the
odd values T = 1; 3; 5; 7 have been realized.
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over various coordinates n, exploiting the cylindrical and reection symmetry of the
problem. All this amounts to 9576 (26244) di�erent combinations of R, T , and n on
the 324 (483 � 64) lattices, on which both hUjkiW and hUi4iW have been computed.

The temporal parts of the Wilson loops, appearing in the colour �eld correlator, have
been link integrated. Therefore, the electric components have only been determined
at distances larger than one lattice spacing away from the sources. For the case of the
324 lattice at � = 2:5 we have substituted the missing values by the corresponding
entries, computed on a 164 lattice without link integration. Distances so close to the
sources are not relevant to continuum physics anyway, due to contamination from the
heavy quark self-energy and lattice artefacts.

3 Theoretical expectations

3.1 Perturbative scenario

A perturbative order g4 computation of the lattice potential can be found in Ref. [23].
Here, we recall the one gluon exchange result only:

V (R) = �CF g
2 (GL(R)�GL(0))

a!0�! �CF g
2

1

4�R
(31)

where we have dropped the (divergent) self energy in the continuum expression. The
lattice gluon propagator GL(R) (Eqs. 78, 77) can be computed numerically on �nite
lattices. For SU(2) one has CF = (N2 � 1)=(2N) = 3=4. For completeness, this
expression is derived in Appendix A. A renormalization of the bare lattice coupling
g2 = 2N=� turns out to be the main e�ect of the loop diagrams that occur in the next
order.

In order to investigate the nature of lattice artefacts, we have performed a weak cou-
pling expansion of the action and energy densities. The lowest order term is a two
gluon exchange. To this order the action and energy densities turn out to identical,
both receiving just contributions from electric plaquettes. Details of the calculation
are contained in Appendix A. The lattice integrals of the result (Eqs. 83, 84) have
been computed numerically.

In the continuum limit one �nds the expression (from Eq. 90),

�
(c)
R (0; n?) = g2CF

1

(4�)2
R2

(R2=4 + n2?)
3

; (32)

for the energy density distribution in the central transverse plane. In Figs. 3 and 4 we
present a comparison of the dipole �elds on �nite (323) and in�nite lattices with their

13



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

-10 -5 0 5 10
n

Figure 3: Comparison between continuum and lattice dipole �elds in the center plane

between two sources, separated by R = 12. The ordinate, n, is the distance from the

Q �Q axis. The values have been multiplied by a factor (4�)2=(CF g
2). Crosses and the

solid line correspond to the in�nite volume results. Squares and the dashed line are

obtained at �nite volume, R=LS = 12=32.

continuum forms11, for separations R = 12 and R = 4, respectively. The �eld positions
are chosen both along a transverse lattice axis and a plane-diagonal (multiples of

p
2).

Up to order g4 corrections, perturbative lattice and continuum calculations equally
lead to12 X

n

a3�R(n) �
X
n

a3�R(n) �
V (R)

a
: (33)

As argued in the appendix, perturbation theory is expected to describe the energy
density better than the action density.

3.2 Nonperturbative expectation

In the limit of large Q �Q separations, i.e. if the width of the ux tube becomes small
relative to its length, an e�ective relativistic string model is expected to describe the

11The continuum formula on a �nite lattice has been elaborated in Appendix D.
12To obtain the continuum expression,

P
n
a3 simply has to be replaced by

R
d3x.
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Figure 4: Same as Fig. 3 for R = 4.

infra red aspects of the interaction. Classical solutions of such string Lagrangians
predict, in agreement with the strong coupling expectation of pure gauge theory, an
area law of Wilson loops and, thus, a linearly rising long range contribution to the
potential. However, in reality, a quantum mechanical string will uctuate. An ultra
violet cut-o� has to be imposed on the wave length of such uctuations, beyond which
longitudinal degrees of freedom become important and the (non renormalizable) string
theory looses its applicability. For a huge class of string models the string uctuations
lead to a universal subleading Coulomb type contribution [8], �(d � 2)�=(24R), to
the potential in the Gaussian approximation (d denotes the number of space-time
dimensions). For large R, excitations are expected to be separated from the ground
state by multiples of �=R [8].

The leading order expectation of string models for correlators of smooth, large Wilson
loops, W and 2 with boundaries @W and @2 is

hW2i � hWih2i / exp (�KA(@W; @2)) ; (34)

where A(@W; @2) is the minimal area of a surface with boundary @W [ @2 and K is
the string tension. Approximating the Wilson loop and the plaquette by circles, the
authors of Ref. [24] obtained in the limit n? � R

hE2

1
i / exp

�
�K�

lnR
n2?

�
: (35)
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Thus, the central width of the uctuating string

�2�R = hn2?i�R =

R
dn? n

3

?�R(0; n?)R
dn? n?�R(0; n?)

(36)

is expected to diverge logarithmically with the quark separation:

�2�R = �2
0
ln

R

R0

; (37)

where R0 is an ultra violet cut-o� parameter. In a quantum mechanical calculation,
this relation has been con�rmed in the Gaussian approximation for the probability
of the uctuating string, crossing the central transverse plane n1 = 0 at the position
n? [24].

For small distances, the perturbative result of Eq. 32 suggests a linear divergence of
the width:

�2�R =
R2

4
: (38)

For n? � R (and large r) where the string picture is applicable a Gaussian transverse
pro�le of the ux tube is expected. At large n?, however, correlators of (unsmeared)
Wilson loops with plaquettes can be viewed as glueball correlation functions in rotated
space-time. Thus, for n? � R;T an exponential form, governed by the mass gap,
might be expected13.

3.3 Sum rules

Some important consistency conditions, relating the local chromo �eld operators to
the global Q �Q potential have been derived by Michael [25]. In the following we will
shortly recall these sum rules. More details and comments related to contaminations
from excited states can be found in Appendices B and C.

The action sum rule relates the action to the derivative of the potential with respect
to the inverse coupling

X
n

a3�R(n) = �1
a

@V (R)

@ ln�
(39)

= �@ ln a
@ ln�

v(R)� 1

a

@V0

@ ln�
; (40)

13However, the wave function of the Q �Q pair, created at � = 0 has to be decayed into its ground
state, before the colour �elds are measured at � = T=2. Due to the structure of the action, a

Hamiltonian evolution in the strong coupling limit only allows hopping between neighbouring sites.

Thus, in this limit, communication occurs only between sites within the light cone n? < T=2 and the
limit n? � T is not justi�ed. As illustrated by the above example, the exponential decay prediction
for large n? has to be taken with care.
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where we have decomposed the potential V (R) = av(R)+V0 into a physical part, v(R),
that remains constant as a ! 0, and a diverging self energy contribution, V0. The
action sum rule is an exact relation. It is in accord with the perturbative expectation
Eq. 33, which follows by inserting the leading order expression for V (R) (Eq. 31) into
Eq. 39.

The energy sum rule involves derivatives with respect to anisotropic spatial and tem-
poral couplings. After relating the latter to the isotropic lattice coupling, �, via a
weak coupling series, one ends up with an approximate sum rule. Thus, unlike the
action sum rule, the energy sum rule is not exact on the lattice. Here, we just state
the leading order expectation

X
n

a3�R(n) =
�
v(R) +

V0

a

��
1 +O(��1)

�
: (41)

The correction to this energy conserving rule reects the fact that the local plaquette
operator undergoes a renormalization. However, mean �eld arguments (Appendix A)
suggest only small corrections. The energy sum rule is also in accord with Eq. 33.

The leading order contribution to the self energy V0, CFGL(0)g2, merely changes sign
when di�erentiated with respect to ln�. As a consequence, this contribution to both
the action and the energy sums diverges like 1=(a ln a). Due to the localization of the
self energy to the vicinity of the two sources, the peaks of the distributions diverge
like 1=(a4 ln a) in physical units (or like 1= ln a when measured in lattice units). The
physical part v(R) on the r.h.s. of the action sum rule is accompanied by an anomalous
dimension @ ln a=@ ln� / ln a. For this reason, the measured lattice action density �a4

is expected to scale like a4 ln a outside the peaks while the energy density vanishes like
a4 (in lattice units). E and B mix under renormalization group transformations since
the sum of both densities carries dimension a4 while its di�erence is accompanied by
a4 ln a. Thus, only the energy density and the combination (@ ln�=@ ln a)� are relevant
to the continuum limit.

4 Results

4.1 Static potential

To prepare the stage for the colour ux investigations, we had to calculate the static
Q �Q potential. It will render the string tension, which serves to �x the physical scale
and relates the results, obtained at di�erent � values to each other.
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Figure 5: V (R;T ) as a function of T for R = 20, R = 10, R = 5 and R = 2,
respectively, at � = 2:635. The plateau values obtained at T = 5 are indicated by the

horizontal dashed lines.

4.1.1 Data

The potential data has been obtained by the method described in Section 2.3. Finite T
approximants V (R;T ) and C0(R;T ) to the ground state potential values and overlaps
are computed according to Eqs. 14 and 15. These are traced until a plateau (in T )
is reached. The numerical situation is illustrated in Fig. 5 for a few typical quark
separations at � = 2:635. For the 164 lattice at � = 2:5 the Tmin = 3 approximant
has been found to agree with the plateau values while for the 324 lattices at � = 2:5
and � = 2:74, Tmin = 4 had to be taken and at � = 2:635 we went as far as Tmin = 5.
To exclude any remaining systematic bias on the �tted parameters, all �ts have been
performed for T = Tmin, and T = Tmin+1. Within statistical errors and �xed R range,
the �t parameters remained stable. For larger � values, the reduced physical t = Ta

separations appear to be partly compensated by better ground state overlaps.

We note, that the actual value of Tmin is not only a�ected by the ground state over-
laps but also inuenced by statistical errors that depend on the particular number of
measurements, physical volume and method (link integration).

In Tabs. 2{4 we have collected results on the potential values, V (R), and overlaps,
C0(R), up to a physical distance of about :7 fm. This scale has been obtained from the
relation � =

p
Ka = 440 MeV. For larger separations we refer to the parametrizations

presented below since no systematic deviations are observed from the interpolating
curve (that is dominated by the linear part of the potential). Remember, that all esti-
mates for the potential and overlaps constitute strict upper limits to their asymptotic
(T !1) values. The paths, displayed in the second column, are numbered according
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Figure 6: The potential, measured on the four lattices, scaled in units of the string

tension. The solid line refers to the string picture expectation V (R) = KR��=(12R).

R Path V (R) C0(R) R Path V (R) C0(R)

1.00 1 .3356( 2) .979(1) 4.90 5 .6671(10) .927(3)

1.41 2 .4292( 4) .975(1) 5.00 1 .6706( 9) .930(3)

1.73 4 .4735( 5) .970(2) 5.20 4 .6817(15) .928(5)

2.00 1 .4844( 4) .963(1) 5.66 2 .7012(14) .921(4)

2.24 3 .5137( 4) .963(2) 6.00 1 .7137(11) .915(3)

2.45 5 .5330( 5) .960(2) 6.00 6 .7157(13) .916(4)

2.83 2 .5585( 7) .954(2) 6.71 3 .7418(13) .902(4)

3.00 1 .5660( 6) .956(2) 6.93 4 .7532(23) .904(6)

3.00 6 .5698( 5) .952(2) 7.00 1 .7537(12) .904(4)

3.46 4 .5969(10) .945(3) 7.07 2 .7586(17) .904(5)

4.00 1 .6229( 6) .939(2) 7.35 5 .7701(14) .901(4)

4.24 2 .6379(10) .942(3) 8.00 1 .7931(16) .890(5)

4.47 3 .6479( 8) .934(3)

Table 2: Potential and overlap values at � = 2:5.
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R Path V (R) C0(R) R Path V (R) C0(R)

1.41 2 .37719( 4) .9799( 1) 6.93 4 .5826( 5) .921(2)

1.73 4 .41154( 7) .9754( 3) 7.00 1 .5839( 4) .923(2)

2.00 1 .41873( 6) .9694( 2) 7.07 2 .5853( 5) .922(2)

2.24 3 .44040( 8) .9694( 3) 7.35 5 .5909( 4) .919(2)

2.45 5 .45445( 9) .9674( 4) 8.00 1 .6033( 4) .913(2)

2.83 2 .47163(12) .9627( 5) 8.49 2 .6123( 7) .908(3)

3.00 1 .47604(11) .9620( 4) 8.66 4 .6154( 7) .907(3)

3.00 6 .47937(15) .9610( 6) 8.94 3 .6202( 7) .902(3)

3.46 4 .49685(16) .9563( 7) 9.00 1 .6211( 5) .904(2)

4.00 1 .51239(14) .9508( 6) 9.00 6 .6215( 7) .902(3)

4.24 2 .52051(24) .9512(10) 9.80 5 .6352( 7) .894(3)

4.47 3 .52678(18) .9465( 7) 9.90 2 .6367( 8) .895(4)

4.90 5 .53802(24) .9421(10) 10.00 1 .6388( 7) .895(3)

5.00 1 .54008(20) .9435( 8) 10.39 4 .6453(10) .888(5)

5.20 4 .54525(33) .9403(14) 11.00 1 .6556( 6) .887(3)

5.66 2 .55598(29) .9342(12) 11.18 3 .6580(10) .881(4)

6.00 1 .56349(26) .9326(13) 11.31 2 .6608(11) .881(5)

6.00 6 .56369(34) .9303(14) 12.00 1 .6726(10) .880(4)

6.71 3 .57818(36) .9248(16) 12.00 6 .6717(12) .872(5)

Table 3: Potential and overlap values at � = 2:635.

to Eq. 5.

In Fig. 6 we show the familiar scaling plot for the potential in form of the combina-
tion (V (R

p
K) � V0)=

p
K with V0 and K as obtained from the four- parameter �ts,

described below. Notice, that we can trace the potential up to the impressively large
separation of 2.3 fm! The curve represents the string picture prediction R� �

12R
. The

nice scaling between the potentials illustrates the restoration of continuum rotational
invariance at remarkably small lattice separations.

4.1.2 Potential �ts

Our potential values have been �tted to the parametrizations

V (R) = V0 +KR � e

R
(42)

and

V (R) = V0 +KR � e

R
+ f

�
1

R
�
�
1

R

��
(43)

with �
1

R

�
= 4�GL(R) ; (44)
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R Path V (R) C0(R) R Path V (R) C0(R)

1.00 1 .2786(1) .959(4) 8.94 3 .5325( 5) .913(4)

1.41 2 .3480(2) .963(4) 9.00 1 .5327( 5) .921(4)

1.73 4 .3780(2) .953(4) 9.00 6 .5329( 5) .917(4)

2.00 1 .3837(2) .941(4) 9.80 5 .5413( 5) .909(4)

2.24 3 .4021(2) .945(4) 9.90 2 .5430( 6) .926(4)

2.45 5 .4137(2) .943(4) 10.00 1 .5434( 6) .910(4)

2.83 2 .4273(3) .933(4) 10.39 4 .5474( 7) .907(4)

3.00 1 .4308(2) .941(4) 11.00 1 .5533( 6) .913(4)

3.00 6 .4340(3) .937(4) 11.18 3 .5550( 6) .912(4)

3.46 4 .4483(4) .930(4) 11.31 2 .5571( 6) .906(4)

4.00 1 .4588(3) .927(4) 12.00 1 .5635( 6) .904(4)

4.24 2 .4654(3) .943(4) 12.00 6 .5633( 6) .901(4)

4.47 3 .4698(3) .926(4) 12.12 4 .5653( 9) .915(5)

4.90 5 .4780(3) .924(4) 12.25 5 .5663( 8) .911(4)

5.00 1 .4788(3) .932(4) 12.73 2 .5711( 8) .917(4)

5.20 4 .4831(4) .935(4) 13.00 1 .5730( 7) .908(4)

5.66 2 .4904(4) .922(4) 13.42 3 .5771( 7) .898(4)

6.00 1 .4950(3) .921(4) 13.86 4 .5811( 9) .895(4)

6.00 6 .4955(4) .919(4) 14.00 1 .5825( 9) .898(4)

6.71 3 .5055(4) .927(4) 14.14 2 .5842(10) .897(5)

6.93 4 .5089(5) .919(4) 14.70 5 .5888( 9) .892(5)

7.00 1 .5085(3) .925(4) 15.00 1 .5920( 9) .903(5)

7.07 2 .5104(4) .933(4) 15.00 6 .5916( 9) .896(4)

7.35 5 .5135(5) .926(5) 15.56 2 .5980(10) .908(5)

8.00 1 .5214(5) .916(4) 15.59 4 .5973(10) .902(5)

8.49 2 .5273(5) .915(4) 15.65 3 .5987( 9) .900(5)

8.66 4 .5284(7) .923(4) 16.00 1 .6014( 8) .891(4)

Table 4: Potential and overlap values at � = 2:74.

where GL(R) is the lattice gluon propagator (Eqs. 78, 77), computed on an in�nite14

lattice. V0, K, e, and f are the �t parameters.

In the analysis we followed the �tting procedure, described in Ref. [26]. Four di�erent
�t algorithms have been applied to the data:

� uncorrelated �ts with the errors of potential values obtained on the original
sample (UN),

� uncorrelated �ts with errors calculated for each bootstrap separately with a
subbootstrap (UB),

14The lattice sums have been computed numerically on 10243, 20483, and 40963 lattices and ex-
trapolated in 1=LS to their in�nite volume limits.
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� = 2:5 ; LS � LT = 164

V0 K e Rmin;Rmax �2=NDF

UN .545(3)( 4) .0348(3)(4) .240(9)(32) 3.00,13.86 17=26
UB .547(3)( 8) .0346(3)(7) .244(8)(21) 3.00,13.86 19=26

CN .547(3)( 8) .0346(3)(7) .244(8)(20) 3.00,13.86 20=26

CB .546(4)(14) .0348(4)(9) .241(9)(44) 3.00,13.86 19=26

� = 2:5 ; LS � LT = 324

V0 K e Rmin;Rmax �2=NDF

UN .542(3)(12) .0354(3)(12) .24(1)(3) 3.00,24.25 50=59

UB .553(4)(20) .0345(3)(14) .27(1)(5) 4.24,24.25 34=56

CN .553(4)(30) .0345(4)(14) .27(1)(7) 4.24,24.25 48=56

CB .560(7)(20) .0340(5)(18) .29(2)(8) 4.00,17.32 35=44

� = 2:635 ; LS � LT = 483 � 64

V0 K e Rmin;Rmax �2=NDF

UN .523(1)(6) .01451( 4)(14) .269( 2)(15) 4.00,41.57 70=95

UB .519(1)(3) .01466( 5)(15) .250(10)(15) 4.00,41.57 91=95

CN .519(1)(2) .01466( 5)(14) .251(12)(16) 4.00,41.57 92=95

CB .518(7)(8) .01467(25)(31) .242(48)(62) 4.00,41.57 95=95

� = 2:74 ; LS � LT = 324

V0 K e Rmin;Rmax �2=NDF

UN .4816(12)(10) .00834(6)( 5) .217(3)( 5) 6.00,27.71 36=51

UB .4816( 9)(27) .00834(4)(12) .217(4)(14) 6.00,27.71 47=51

CN .4816( 9)(31) .00834(4)(13) .217(4)(17) 6.00,27.71 47=51

CB .4817(14)(55) .00834(6)(37) .218(6)(89) 6.00,27.71 48=51

Table 5: Three-parameter �ts according to Eq. 42. The �rst column labels the �t algo-

rithm. In the last two columns, the \best" �t range and corresponding �2=NDF values

are stated. The �rst errors are statistical only, the second errors include systematic

uncertainties.

� correlated �ts with the covariance matrix computed on the original sample (CN),

� correlated �ts with covariance matrices calculated on each bootstrap separately
(CB).

The �t range has been adapted automatically. For each range, a quality parameter,

Q = �
NDF

NDF;max

K

�K
; (45)

of the �t has been computed from the con�dence level, �. The largest quality cor-
responds to the \best" �t range. As a systematic error we have taken the scatter
between the �t parameters from �ts with Q � 3

4
Qmax.

In Tabs. 5 and 6 the results are listed for three- and four- parameter �ts, respectively,
together with their statistical and systematic uncertainties. In addition, the \best" �t
ranges and corresponding �2 values are included. Correlated and uncorrelated �ts show
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� = 2:5 ; LS � LT = 164

V0 K e f Rmin;Rmax �2=NDF

UN .545(1)(3) .0349(2)(4) .242(2)(5) .244(7)(14) 1.73,13.86 19=30
UB .545(1)(3) .0349(2)(3) .242(2)(5) .248(7)(26) 1.73,13.86 19=30

CN .545(1)(3) .0350(2)(4) .242(2)(5) .248(7)(28) 1.73,13.86 20=30

CB .545(1)(3) .0350(3)(4) .242(2)(5) .245(8)(27) 1.73,13.86 20=30

� = 2:5 ; LS � LT = 324

V0 K e f Rmin;Rmax �2=NDF

UN .550(2)( 6) .0347(2)( 5) .256(5)(14) .30(2)( 9) 2.83,24.25 45=60

UB .547(2)(10) .0350(2)( 9) .245(4)(23) .34(2)(14) 3.00,17.32 37=46

CN .547(2)( 9) .0350(2)(12) .245(5)(24) .34(2)(15) 3.00,17.32 37=46

CB .549(3)(14) .0348(3)(12) .251(9)(36) .33(4)(14) 3.00,17.15 37=45

� = 2:635 ; LS � LT = 483 � 64

V0 K e f Rmin;Rmax �2=NDF

UN .519(1)(2) .01467(3)(14) .254(2)(9) .29(2)(11) 3.00,39.84 67=95

UB .521(1)(2) .01459(2)( 8) .263(2)(6) .23(3)( 9) 4.24,41.57 74=93

CN .521(1)(2) .01458(2)( 8) .263(1)(7) .15(2)( 8) 4.00,36.00 71=90

CB .523(1)(3) .01451(7)(13) .267(4)(9) .16(7)(15) 4.00,27.00 56=76

� = 2:74 ; LS � LT = 324

V0 K e f Rmin;Rmax �2=NDF

UN .4823(4)( 7) .00832(3)(5) .2220( 9)(21) .21(1)(5) 2.45,26.00 38=62

UB .4828(3)( 8) .00830(2)(4) .2235( 9)(26) .19(1)(3) 2.83,27.71 51=62

CN .4828(3)( 5) .00830(2)(3) .2235( 9)(15) .19(1)(2) 2.83,27.71 51=62

CB .4827(5)(10) .00830(3)(6) .2234(14)(34) .20(2)(5) 2.83,26.00 51=61

Table 6: Four-parameter �ts according to Eq. 43. The �rst column labels the �t algo-

rithm. In the last two columns, the \best" �t range and corresponding �2=NDF values

are stated. The �rst errors are statistical only, the second errors include systematic

uncertainties.

little di�erence in �2 values, which gives evidence that correlations between potential
data at di�erent R-values are small. In the further analysis we use the results of the
CN four- parameter �ts for the string tension K and self energy V0.

As expected from perturbation theory the self energy, V0, decreases slightly with � from
V0 = :547 at � = 2:5 down to V0 = :483 at � = 2:74. On the two large lattice volumes,
the Coulomb coe�cients, e, are in agreement with the value �=12 � :262, as expected
in the string picture. On the smaller lattice volumes they come out somewhat smaller.
This might be a result of the di�erent �t ranges: on the large lattices the �t result is
dominated by the potential values from separations where the string picture is expected
to be applicable. The parameter f , used to account for the lattice symmetry turns
out to be of approximately the same size as e in all cases, indicating that violations
of rotational symmetry can be understood in terms of the lattice one gluon exchange,
contrary to SU(3) where values f � :6e have been found [7].
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�
p
K h2i � ~B�1

2loop(�) � ~B�1(�)

2.3 .3690(30) .39746 (1) 5.77 7.20(13)
2.4 .2660(20) .36352 (1) 6.04 7.28( 9)
2.5 .1870(10) .34802 (1) 6.31 7.36( 8)

2.5115 .1836(13) .34564 (1) 6.34 7.38( 8)
2.635 .1208( 1) .324308(2) 6.67 7.51( 6)
2.74 .0911( 2) .308721(2) 6.95 7.63( 5)
2.85 .0662( 6) | 7.25 7.81( 4)

Table 7: The \�-function" ~B�1(�) = @(lna)=@(ln�), obtained by use of the perturba-

tive two loop approximation, and by the interpolation procedure, described in the text.

The � = 2:3 and � = 2:4 values are taken from Ref. [27, 28], the � = 2:5115 value is

from Ref. [29], the � = 2:85 value from Ref. [6].

4.1.3 Determination of the �-function

From Eq. 99 it is evident that the action density diverges like

~B�1(�) =
@ lna

@ ln�
= � @g

@ ln�
B�1(g) =

g

2
B�1(g) (46)

as a function of a (see Eq. 39), where

B(g) = � @g

@ ln a
(47)

denotes the Callan-Symanzik �-function. For this reason, we shall set out in this
section to determine the �-function within the g2 = 2N=� region covered by our
simulations.

The �-function can be expanded in terms of the coupling:

B(g) = �b0g3 � b1g
5 � � � � (48)

with b0 = 11N=(48�2) and b1 = 34N2=(3(16�2)2). From Eqs. 47 and 48 one �nds the
familiar formula

a = ��1L f(�)
�
1 +O(��1)

�
with f(�) = e��=4Nb0(�=2Nb0)

b1=2b
2
0 : (49)

In Tab. 7, results for the square root of the string tension,
p
K, and the plaquette

expectation value are collected for various �. The results are taken from the present
simulation and Refs. [27, 28, 29, 6]. From Eq. 49 we obtain f(�)

p
K =

p
���1L (a) by

using a2 = K=�. In Fig. 7 the a dependence of �MS(a) = 19:82�L(a) is shown. As
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can be seen from the non-vanishing slope, within the � region accessible by present
computers, higher order contributions to the asymptotic formula Eq. 49 are important.
A cut-o� parameter �E(a) from the e�ective coupling �E = 3

4
(1 � h2i)�1, introduced

in Ref. [30], has also been computed. This cut-o� parameter is translated into the MS

scheme by the relation �MS(a) = 11:51�E(a). As can be seen, the slope is substantially
reduced but asymptotic scaling remains violated.

The di�erence between the ��1(a) sets indicates the size of higher order (perturbative
and non-perturbative) contributions to the �-function. Within the present � range
we �nd the points to fall quite well on straight lines (see Fig. 7)15; so we use a linear
interpolation of our data in the region 2:4 � � � 2:85, according to the parametrization

��1L (a) = ��1L (0) + �a : (50)

From the �tted slope, �, we obtain the relation

a = ��1L (a = 0)
f(�)

1� �f(�)
(51)

and arrive at

~B�1(�) =
@ ln f(�)

@ ln�
(1� �f(�))�1 =

 
� �

4Nb0
+

b1

2b20

!
(1� �f(�))�1 : (52)

The resulting values for � ~B�1, obtained in the two loop approximation and by the
above �t, are displayed in the fourth and �fth column of Tab. 7, respectively. De-
pending on how many of the points we include into our �t, we obtain values 52:2 <
�=
p
� < 59:5. This systematic uncertainty is incorporated into the errors of the ~B�1

values in the last column. Watch the di�erence between the \measured" �-function
and the corresponding perturbative expression decrease with the lattice spacing, as it
should be!

4.2 Colour �eld distributions

4.2.1 General features

We are now in the position to present a survey on the ux distributions and watch the
formation of ux tubes with increasing distance between the static sources.

In Figs. 8 and 9, we display the situation at � = 2:5 and Ra = 8a � :7 fm, for the
energy and action densities, respectively, in units of the string tension. Notice, that the

15However, for small a, the leading order correction should be proportional to g2 / 1= lna, instead.
So, it is not surprising that the linear e�ective parametrizations do not extrapolate to the same
continuum limit.
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mesh is not equidistant in the perpendicular direction because the o�-axis separations
n? / (1; 1) are included. We con�rm the earlier observation [3] that magnetic and
electric �eld energies are of similar size (within 20%), i.e. de�nitely dominated by
higher order contributions in g2. This results in a small energy density in the middle
of the ux tube, which in the case of Fig. 8 is nevertheless well above noise. The
vertical axis of Fig. 8 is expanded by a factor � ~B�1 = �@ ln a=@ ln� � 7:36, relative
to Fig. 9. This is suggested from the form of the sum rules (see Eqs. 39 and 41).
The �gures show that this is indeed a reasonable choice. The electric ux tube looks
distinctly broader around the sources: contrary to the values in the physical region,
the (self-interaction) values at the peaks of the action and energy density distributions
roughly equal each other. This observation, which is in accord with the sum rule
prediction, causes the above optical impression.

Fig. 10 illustrates the action density distribution at equal physical geometry as Fig. 9
but with �ner lattice spacing (R = 12 on the � = 2:635 lattice). The vertical scale
of Fig. 10 is contracted relative to Fig. 9 by the ratio of the corresponding two ~B
values. We observe nice scaling of the �elds outside the peaks. The latter diverge by
the expected additional factor a4

2:5=a
4

2:635 � 5.

The elongation of the ux distribution into a tube is traced in Figs. 9, 11, and 12 for
the action density. The physical source separations correspond to .7, 1, 1.35, and 1.7
fm, respectively. Our data representation avoids use of a smoothing procedure, as has
been applied in previous work [31, 32]. We are in the position to judge the signi�cance
of the actual data from its intrinsic uctuations. In this way, we are less bound to
be deceived by the beauty of some graphic interpolating algorithm. Indeed, given the
quality of our data, we can follow | for the �rst time in a lattice simulation | the
ux tube along distances of up to 1:7 fm or 30 lattice sites at � = 2:635 (Fig. 12)!

4.2.2 Finite a e�ects

In this subsection we will start to discuss the systematic errors on our �eld mea-
surements. A prominent e�ect would be expected from the limitation of the lattice
resolution a to which we will turn �rst.

The comparison shown in Fig. 12 between the action density distribution at a quark
separation of 1.7 fm, obtained at two di�erent lattice spacings, indicates scaling of
the results outside the self energy region. The same holds qualitatively true for the
situation at a distance of :7 fm as can be seen from Figs. 9 and Fig. 10. Thus, we are
driven to the conclusion that continuum results can be obtained from quark distances
as small as eight lattice spacings, at least at positions, separated by more than two
lattice sites from the sources.

Let us investigate the situation in some more detail. In Fig. 13 we compare longitudinal
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action ux tube pro�les obtained at � = 2:5 and � = 2:635 for r � :7 fm to each other.
One source is placed at the origin of the coordinate system. The data are appropriately
scaled in units of the string tension and in addition divided by the expected anomalous
dimensions from Tab. 7. The situation is displayed for x? � :17 fm. The latter distance
corresponds to n? = 2 and n? = 3 for the two � values, respectively. Though the data
are compatible to each other within errors, the values obtained at the �ner resolution
tend to be systematically below the corresponding � = 2:5 values. The same is found
in a comparison of transverse pro�les obtained on the two data sets at the center plane
between the sources (Fig. 14). However, due to the errors on the string tension values
and the �-function (Notice, that the vertical axis has been scaled by a factor K2!), a
relative overall scale error between the two data sets of about 8% is expected which
easily explains systematic deviations from our expectation.

We conclude that at separations R � 8 continuum action and energy density distribu-
tions can indeed be observed on the lattice. This conclusion is further supported by
the fact that cylindrical rotational invariance is restored (within errors) as can be gath-
ered from Fig. 14 where the values obtained at plane diagonal sites (multiples of

p
2)

neatly interpolate between the values, measured along a lattice axis. As we will see in
Section 5.1 violations of this rotational invariance are encountered for R � 6, even at
the center plane. However, for su�ciently small lattice resolution, these violations can
be understood in terms of lattice perturbation theory and eventually corrected to ob-
tain the corresponding continuum expressions. This is beyond the scope of the present
paper, where we are mainly interested in non-perturbative large distance e�ects.

4.2.3 Finite size e�ects

Lattice results for the heavy quark potential and colour ux distributions are subject
to �nite size e�ects (FSE). The impact of FSE onto (smeared) Wilson loops is twofold.
The ground state potential V (R) itself might depend on the �nite volume, due to the
infra red cut-o�. Contrary to the perturbative expectation, previous lattice studies of
the con�ned phase of SU(2) and SU(3) gauge theories [10, 20] show that this e�ect
already becomes negligible for lattice extents as small as LS � 1 fm. In the present
simulation we are able to con�rm this observation by comparing the 164 and 324

potential data at � = 2:5.

In addition one might worry about the impact of mirror sources, due to the toroidal
structure of the lattice: if one places sources at the positions 0 and R, the corre-
sponding state is virtually indistinguishable from a state created by so called mirror
sources. Thus, in the case of the (self adjoint) fundamental representation of SU(2),
one expects | in addition to a non-vanishing overlap of the creation operator with
a Q �Q state with separation D(0) = R | overlaps with states of internal separation
D(n) = R + mLS with mi being (not necessarily positive) integer numbers. Let
us consider for the moment the \perfectly" smeared Wilson loop (with no overlap
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whatsoever to excited states). One would thus anticipate

W (R; T ) =
X
m

cme
�V (D(m))T : (53)

In strong coupling these mirror copy e�ects are exponentially suppressed as the linear
size grows in all directions. For a large planar Wilson loop the leading order behaviour
is:

W (R;T ) = e�KRT
�
1 + e�K(LSLT�2RT ) + � � �

�
: (54)

However, in weak coupling, perturbation theory yieldsW (R;T ) = W (LS�R;LT �T )
in the non zero momentum sector. At least to the lowest order (O(g2=(L3

SLT ))) the
zero modes do not obey this behaviour [33]. Their inuence might become even more
important to higher orders, especially in the infra red regime of large R.

The na��ve geometrical expectation of Eq. 53 is not borne out by the data, neither
for the potential nor for the action and energy densities. This can be inferred from
selection rules due to symmetries of the creation operator. As we shall show in the
following, this indeed happens in case of the Wilson loop, due to a symmetry under
transformations by center group elements of SU(2) in the fundamental representation:
Z2 = f�1; 1g.

Let us introduce a non-trivial center transformation to all spatial links that point into
direction i and cross the hyperplane ni = k + 1=2:

� ik : Ui(n)! �Ui(n) for all n with ni = k : (55)

Obviously, the action is invariant under this transformation since each plaquette cross-
ing the transformation plane contains two such rotated links.

Our creation operator �y
R
= Q(0)U(0! R)Qy(R) (Eq. 3) contains the spatial trans-

porter U(0 ! R) that is a combination of various paths connecting the two quarks.
The smearing algorithm (Eq. 13) only permits continuous deformations of the straight
path. Thus, all paths cross the hyper planes ni = 0; : : : ; Ri � 1 an odd number of
times while all other planes are crossed an even number of times. Therefore, �y

R
j0i is

an eigenstate of � ik:

� ik�
y
R
=

(
��y

R
; 0 � k < Ri

�y
R

; elsewhere
: (56)

As the eigenvalues remain invariant under the Hamiltonian evolution they serve as
conserved quantum numbers. Consequently, in case of the gauge group SU(2), only
coe�cients cm with even mi are di�erent from zero in Eq. 53. Therefore, the e�ective
\periodicity"16 is 2LS rather than LS. For example, the leading order \pollution" for
the on-axis separation R carries the decay constant V (2LS �R). For a linearly rising

16Obviously, the coe�cients cm can di�er from each other, depending on the path combination,
appearing in the transporter U (0! R), unless Ri = mLS .
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long range potential, these large exponents cause a strong suppression of fake states.
This explains why such e�ects remain unseen in the present simulation, even at R as
large as 3=4LS .

The above arguments can be generalized to the local �eld strength measurement oper-
ators OR(n) = �R(n); �R(n). OR has no overlap to a Q �Q state, separated by LS �R.
The only relevant �nite size e�ects stem from the periodicity

OR(n) = OR(LS � n1; LS � n2; LS � n3) : (57)

For n taken along the Q �Q axis, energy and action densities are strongly suppressed
outside the sources: in case of a dipole �eld (the leading order perturbative expectation,
Eq. 32) the action and energy densities fall o� like (jn1j � R=2)�4 for jn1j > R=2.
Thus, FSE into the longitudinal direction are negligible. The n? distributions are
more sensitive to FSE as will be explained in Appendix D (see also Fig. 3).

A comparison of the potential computed on 164 and 324 lattices at � = 2:5 shows no
statistically signi�cant bias due to the volume17. The same holds true for the action
and energy density distributions as a comparison between the two lattice volumes
shows for the largest Q �Q separation realized on the smaller lattice, R = 8 (where FSE
should be strongest). As an example, the two data sets are displayed in Fig. 15 for the
longitudinal slice n? = 2. Fig. 16 shows the corresponding transverse distributions for
n1 = 0.

Since the � = 2:635 lattice is comparable in physical size to the 324 lattice at � = 2:5
while the � = 2:74 lattice has about the same physical extent as the 164 lattice, we
conclude that all our lattices are su�ciently large for the present purpose and that
FSE are below the statistical accuracy of the present investigation.

4.2.4 T-stability

In the two preceding subsections limitations in the lattice geometry have been discussed
to substantiate the relevance of our lattice results to continuum physics. Here, we
address the reliability of our ground state results in view of the (necessarily) limited
temporal extent of the lattice operators. We will explain in some detail how the
(T !1) results shown above have been obtained.

For the potential from unsmeared Wilson loops, one has to take T � R in order to
obtain asymptotic results as a consequence of Eq. 18. In the case of �eld strength

17The ground state overlaps tend to be smaller on the larger lattice, though the same smearing
procedure has been applied. We suspect that the number of smearing steps needs to be increased

when working on larger lattices due to a more extended wave function. However, within our statistical
accuracy, this is not in the colour �eld distributions.
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operators this amounts to T � 2R since excitations are damped by a decay constant
�V (R)=2 only (instead of �V (R)). For large R values, in which we are interested, it is
practically impossible to obtain signals at su�ciently large T . However, this situation
is considerably improved by the smearing procedure, described in Section 2.3. This
is evident from Fig. 17 that presents a comparison between smeared and unsmeared
results for the energy density in the center between two sources, separated by R = 4
at � = 2:74. Notice the logarithmic scale!

To all our (smeared) data we have performed four parameter �ts according to Eq. 25
as well as two- and three-parameter �ts of the form

h2(S)iW = h2ij0;Ri�j0i
+ c1e

��T=R cosh(2�S=R) (58)

+ c2e
�2�(T�2S)=R ;

where h2ij0;Ri�j0i and ci are the �t parameters. In case of two parameter �ts, c2
is constrained to zero. We note that, because of the di�erent temporal positions of
magnetic and electric insertions (i.e. di�erent values of S at �xed T ), the �ts have
been performed separately before combining the expectation values for E and B to the
energy and action densities, � and �.

In all cases, the agreement with our data was remarkable with �2=NDF values close to
one. For the two parameter �ts we had to exclude the T = 1 data point. The best
results have been obtained with the three-parameter �ts. In case of four parameters, c3
was found to agree with zero within the (large) statistical uncertainty. Within errors,
the T ! 1 extrapolated values coincided with the T = 3 value for large R and the
T = 4 value for small R in all cases. All our results refer to the extrapolated values
whose errors have been obtained by the bootstrap method [34].

In Figs. 18 and 19 we exemplify the time dependence of the electric and magnetic
energy density estimates, E and B, at � = 2:5 for a quark separation R = 6 at the
position n1 = 0, n? = 3. The corresponding two-, three-, and four-parameter �ts are
included, together with the T !1 extrapolated values. Due to the early ground state
dominance, the �ts yield fairly stable results. Notice, that due to the fact that the
distance S of the plaquette insertions from the central time slice alternates with T , the
parametrizations are discontinuous. For this reason, the �t values are just indicated
at integer values of T . In case of integrated quantities, needed for computation of
the width of the ux tube and comparison with the energy and action sum rules, the
summation was �rst performed over the electric and magnetic energy densities for �xed
T , separately, and the T -extrapolation was carried out subsequently, before combining
the components to the energy and action densities.
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5 Physics analysis

Having presented and substantiated our numerical results we are now ready to enter
the physics analysis.

5.1 Transverse shape
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We will focus on the transverse pro�le of �eld distributions in the center plane of the
ux tube. For small separation of the sources, r, perturbation theory is likely to apply,
and one might thus expect the (energy and action) distributions to follow the shape
of the dipole �eld (see Eq. 32)

fd(n?) =
1

(4�)

4�2

(�2 + n2?)
3

; (59)

where the width of the ux tube would increase linearly with R: � = R=2. In lowest
order this would be multiplied by CF� with � = g2=(4�).

For small R, the continuum form of Eq. 59 needs be replaced by a lattice sum, fl(n?),
that can be computed from Eqs. 83 and 84. Remember, that this is only the leading
order perturbative expectation. The data reveals that restoration of rotational invari-
ance takes place at unexpectedly small separations, especially in the action density.
To account for these higher order e�ects, that cancel lattice artefacts in a subtle way,
we will also allow for a mixture of both, lattice and continuum expressions.

As the source separation becomes large, compared to the transverse size of the object,
the string picture comes into play and we might expect (at least for small n?) the ux
distributions to be proportional to

fg(n?) =
1

2��4
exp

 
�n

2

?

�2

!
: (60)

The normalization has been chosen such that

X
n?

fl(n?) �
Z
d2n?fc(n?) =

Z
d2n?fg(n?) =

1

2�2
(61)

to allow for a direct comparison of the �tted coe�cients. The question arises how
the lattice data might connect between the two regimes. We will attempt to model
the transition region by �ts to the dipole parametrization, fc(n?), with � treated as
free parameter. This is motivated by the idea that due to antiscreening of the colour
sources, their e�ective charge increases when viewed at increasing distance from the
Q �Q axis, n?, which is tantamount to a rescaling of R.
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R method c1 c2 � A �2=NDF

2 1 | 0.043 (1) 1 0.0223(2) 16.0
2 2 0.0711( 8) | 1 0.0356(4) 17.4
2 3 0.0296( 8) 0.0252(5) 1 0.0280(5) 15.6
2 4 0.0570(10) | 0.90(1) 0.0354(8) 1.6
2 6 0.0310( 3) | 0.65(1) 0.0368(5) 7.4
4 1 | 0.082( 2) 2 0.0142( 3) 1.2
4 2 0.162(3) | 2 0.0205( 4) 5.5
4 3 0.017(3) 0.074( 2) 2 0.0150( 6) 1.2
4 4 0.065(7) | 1.55(5) 0.0136(17) 0.9
4 5 0.001(2) 0.077( 8) 1.09(1) 0.0134(14) 1.3
4 6 0.023(2) | 1.01(3) 0.011 ( 1) 1.6
4 7 0.011(4) 0.040(10) 1.03(6) 0.012 ( 3) 0.8
6 1 | 0.110( 6) 3 0.0086( 4) 1.9
6 2 0.166( 9) | 3 0.0095( 5) 1.5
6 6 0.090(30) | 2.2 ( 2) 0.0090(30) 1.6
8 1 | 0.210(20) 4 0.0082( 8) 0.8
8 2 0.260(30) | 4 0.0087(10) 0.8

Table 8: Results of �ts to the central transverse pro�le of the energy density distribution
at � = 2:5. c1, c2, and � are �t parameters. A is the integrated area.
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R method c1 c2 � A �2=NDF

2 1 | 0.0271( 5) 1 0.0143( 3) 3.7
2 2 0.0446( 8) | 1 0.0223( 4) 1.3
2 3 0.0383( 8) 0.0039( 5) 1 0.0211( 5) 1.3
2 6 0.0230( 9) | 0.83(3) 0.0160(10) 1.6
4 1 | 0.052( 1) 2 0.0093(2) 1.0
4 2 0.102( 2) | 2 0.0128(3) 3.3
4 3 0.019( 2) 0.043( 1) 2 0.0101(4) 0.9
4 4 0.045( 5) | 1.59(5) 0.009 (1) 0.5
4 5 0.040(10) 0.010(10) 1.59(6) 0.010 (3) 0.5
4 6 0.016( 2) | 1.03(3) 0.008 (1) 0.9
4 7 0.009( 3) 0.025( 8) 1.06(5) 0.007 (2) 0.5
6 1 | 0.063(4) 3 0.0054(4) 0.5
6 2 0.096(6) | 3 0.0054(4) 0.4
6 3 0.090(6) 0.004(4) 3 0.0053(4) 0.4
6 5 0.000(1) 0.068(4) 0.3(8) 0.0058(4) 0.5
8 1 | 0.13(1) 4 0.0063( 5) 1.1
8 2 0.170(20) | 4 0.0055( 6) 1.3
8 5 0.000( 1) 0.13(2) 1 (3) 0.0063(10) 1.2
8 7 0.000( 1) 0.13(2) 0.9(9) 0.0063(10) 1.2

Table 9: Same as Tab. 8 for the energy density pro�le at � = 2:635.
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R method c1 c2 � A �2=NDF

2 1 | 0.1395(6) 1 0.0734(3) 437.7
2 2 0.234( 1) | 1 0.1171(5) 443.6
2 3 0.105( 1) 0.0774(6) 1 0.093 (1) 455.0
2 4 0.468( 6) | 1.381(8) 0.123 (2) 41.6
2 5 0.560(10) 0.052 (2) 1.77 (2) 0.114(3) 3.9
2 6 0.217( 3) | 1.034(7) 0.101(2) 156.0
2 7 0.247( 6) 0.064 (1) 1.35 (1) 0.101(2) 12.1
4 1 | 0.304(2) 2 0.0527(4) 174.4
4 2 0.62(1) | 2 0.0783(5) 65.5
4 4 1.81(7) | 2.69(3) 0.128 (6) 11.8
4 6 0.64(2) | 1.75(2) 0.103 (5) 32.7
4 7 1.15(7) 0.131(5) 2.37(5) 0.125 (9) 5.4
6 1 | 1.11(2) 3 0.087(2) 19.0
6 2 1.67(3) | 3 0.096(2) 14.7
6 3 1.65(3) 0.01(2) 3 0.096(2) 15.7
6 4 5.7 (5) | 4.2 (1) 0.17 (2) 1.9
6 6 2.2 (2) | 2.82(6) 0.13 (1) 3.7
8 1 | 2.40(3) 4 0.093( 1) 12.7
8 2 3.03(4) | 4 0.101( 1) 20.0
8 4 10.1 (7) | 5.6 (1) 0.184(14) 1.2
8 6 3.7 (2) | 3.72(7) 0.13 ( 1) 2.9
10 4 14 (1) | 6.3(2) 0.21(2) 1.5
10 6 5.1(4) | 4.2(1) 0.15(1) 2.5
12 4 18 (1) | 6.8(4) 0.23(3) 1.0
12 6 6.5(7) | 4.5(1) 0.16(2) 1.2
14 4 27(1) | 7.8(2) 0.27(2) 1.4
14 6 10(1) | 5.2(2) 0.18(3) 1.0
16 4 19(1) | 7.4(2) 0.21(2) 1.0
16 6 7(1) | 4.9(3) 0.15(3) 0.8
18 4 38(2) | 9.4(2) 0.26(2) 1.1
18 6 13(7) | 6.1(3) 0.17(1) 1.0
20 4 16(1) | 7.2(2) 0.19(2) 0.6
20 6 6(1) | 4.7(3) 0.13(2) 0.6
22 6 12(1) | 5.8(2) 0.18(1) 1.4
24 6 13(2) | 6.1(3) 0.18(2) 0.7

Table 10: Same as Tab. 8 for the action density pro�le at � = 2:5.
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In this heuristic spirit, a wide variety of one-, two- and three-parameter �ts (with free
parameters c1; c2, and �) have been performed on the data, which are listed here in
shorthand notation:

1. c2fl(n?),

2. c1fd(n?) with � = R=2,

3. c1fd(n?) + c2fl(n?) with � = R=2,

4. c1fd(n?; �),

5. c1fd(n?; �) + c2fl(n?),

6. c1fg(n?; �), and

7. c1fg(n?; �) + c2fl(n?).

The stable �t results are collected in Tabs. 8{?? which also contain the integrated
area,

A =
c1

2�2

�
+
2c2
R2

�
: (62)

The formula is only exact in the in�nite volume limit. The second term has been
corrected by numerical computations of the corresponding lattice sums. In case of the
Gaussian and dipole parametrizations, additional �ts, according to the �nite volume
expressions, derived in Appendix D (Eq. 118), have been performed. Subsequently, the
results have been corrected for the �nite volume in the way, described in the appendix.
For the Gaussian pro�le the �nite size corrections on the integrated area are negligible
(below :2%). However, in case of a dipole distribution, though � is little a�ected by
FSE (up to 4%), the impact on the area is substantial (up to 25% at large R !).

In case of the dipole �ts to the energy density, the combination c1 + c2 = CF�c(R)
amounts to a kind of e�ective coupling on the scale R. Notice, that the odd numbered
ans�atze incorporate the lattice expression, fl, while the forms (2), (4), and (6) only
involve continuum formulae. Ans�atze (1) and (2) require one parameter only, while
(3), (4), (6) are based on two and (5), (7) on three parameters.

Energy pro�le We start with the discussion of the energy density data. We will
concentrate the analysis mainly on the preformation of ux tubes, along the guidelines
of perturbative prejudice. For our energy density resolution is not yet high enough to
map out the proper string region, r > :75 fm.

At � = 2:5 and R = 2 the data is very precise and excludes the one-parameter �ts
(1) and (2) as well as the two parameter �t with constrained width (3). The �rst
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acceptable results are reached with ansatz (4), yielding a width18 � � :9 The situation
is visualized in Fig. 20 where we compare ans�atze (1) and (4) against the data19.

This situation changes at R = 4 where ansatz (1) leads to good results at both � values
(while (2) fails), as can be seen from Figs. 21 and 22. Ans�atze (3) and (5) yield results
of equal quality with c1 � c2 which �ts very nicely into the lattice perturbative picture.
The data can also be parametrized by a continuum dipole with width � � 1:55 (ansatz
(4)). However, the result of ansatz (5) (c1 � c2) shows that the data prefers the
(one-parameter) lattice expression to the (two-parameter) continuum expression. At
R = 6 statistical errors allow for all parametrizations (apart from occasional numerical
instabilities).

We conclude that qualitatively the R = 2 data is described by leading order lattice
perturbation theory while the R = 4 and R = 6 data can be quantitatively understood
along this line.

It is gratifying to see that the e�ective coupling parameter �c(R) increases with R,
as is expected from asymptotic freedom. For � = 2:5 we obtain values ranging from
:06 < �2c(2a) < :075 (under exclusion of n? = 0) over :105 < �2c(4a) < :125 up to
:145 < �2c(6a) < :225 while at � = 2:635 we �nd the ranges :055 < �2c(2a) < :060,
:065 < �2c(4a) < :085 and :085 < �2c(6a) < :13, respectively. We note, that 4a2:5 �
6a2:635. Thus, these numbers give a consistent picture and should be put in perspective
to the bare couplings � = 2N=(4��) � :127 and � � :121 for � = 2:5 and � = 2:635,
respectively.

Action pro�le In case of the action density, a pure lattice Coulomb ansatz is expected
to fail since the action density is largely due to higher order e�ects. Nonetheless, it
would be interesting to see whether an admixture of this term within the parametriza-
tion remains necessary to account for lattice artefacts.

It turns out that this heuristic approach looks little promising as all �ts to the R = 2
and R = 4 action data yield values �2� NDF

20. Among the �ts, the three-parameter
forms (5) and (7) come closest to being successful. The �ts are not good enough,
however, to decide whether this gives genuine evidence for perturbative lattice e�ects
or trivially reects the higher exibility of a three-parameter ansatz.

From R = 6 up to R = 10 (R = 8 at � = 2:635) the dipole �ts with unconstrained

18The deviation from the expected value, � = 1, can be attributed to the fact that for small R the
lattice dipole tends to be more narrow than its continuum counter part (Fig. 4).

19Excluding the point n? = 0, we also �nd acceptable �ts with methods (2) and (3). The same
is the case at � = 2:635 where, due to the link integration procedure, no data point is available at
this position. It is interesting to see from the large coe�cient c1, that the data prefers the continuum

dipole over the lattice dipole.
20The � = 2:635, R = 2 data is exceptional since in this case we have omitted the n? = 0 point

from our �ts.
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width (4) appear to be the best parametrization of the data. Beyond these R-values,
we observe the data being equally well described by ansatz (4) and (6) at � = 2:5,
while at � = 2:635 from R = 10 onwards the Gaussian parametrization turns out to
be more robust than the dipole ansatz against statistical uctuations. From R = 12
onwards the other �tting methods also started yielding �2 � NDF values. Since these
�ts are unphysical in this region we have not included them into the table.

The quality of the dipole (4) and Gauss (6) �ts is exhibited for source separations
R = 8 and R = 12 at � = 2:5 in Figs. ?? and 24, respectively.

In conclusion, leading order lattice perturbation theory is found to describe the energy
density data well at small R. The �tted amplitude is in accord with asymptotic
freedom. The lattice dipole term helps �nding a parametrization for action density
data at small R, though it is not a dominant term. Continuum dipole �ts to the
action yield acceptable results from distances of about 0.5 fm onwards. Up to 1 fm
this continuum parametrization has a width larger than R=2. This e�ect is at variance
with the antiscreening picture of colour sources and might well be a lattice artefact
since a lattice dipole is broader than a continuum dipole in this R region (see Fig. 3).
For larger R, the combination 2�=R decreases to values substantially below 1. From a
separation of 1 fm onwards the Gaussian parametrization yields an equally good (and
occasionally superior) description of the data.

5.2 String formation

When the sources are adiabatically pulled apart, the accretion of action density, ��,
should | according to the string picture | be strictly localized in the center plane
between the sources. This holds for R large enough compared to the other inherent
length scales in the problem, i.e. the transverse width of the tube and the size of the
Coulomb dominated region. It is not a priori obvious when this R-asymptotia sets
in. The accretion phenomenon will be exploited to determine this transition point to
genuine string formation.

For this purpose, we di�erentiate the action density distributions with respect to an
increase in the source separation. This is done by computing the change, ��R =
�R � �R�2, under stretches (R� 2)! R.

In Fig. 25 we display the results for � = 2:5 and R = 6, 8, and 10, respectively. At
r = 10a � :85 fm, we �nd impressive evidence that �� is in fact zero outside the
center plane! This does not hold at smaller separations, where �� exhibits a net ow
of action into the center plane from the next neighbour planes. This latter feature
is in accord with the dipole picture described in Section 3.1. This action ow is a
substantial e�ect at R = 6 and decreases to the 5% level at R = 8. Within our
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resolution we thus conclude, that the transition point to string formation is located
at21 R � 9.

We might view the above analysis as a di�erential diagnosis of ux tube formation,
which provides much more sensitivity than the more conventional global tool o�ered
by the potential. In fact, the R = 9 transition point into the string regime appears
to be rather deep in the asymptotia of the linear part of the con�ning potential: it
corresponds to the point R

p
K = 1:7 in Fig. 6, which in physical units is :75 fm!

5.3 Sum rules

Within the string regime, Ra > :75 fm, one can write a di�erential version of the sum
rules:

F (
p
R2 � 1) =

1

2
(V (R� 1) � V (R+ 1)) (63)

= �a
3

2

X
n2;n3

(�R�1(0; n2; n3) + �R+1(0; n2; n3)) +O(��1) (64)

� �a�
Z xcut

0

dxx (�R�1(0; x) + �R+1(0; x)) : (65)

For the second equality we have assumed rotational invariance and large xcut. Likewise
we can write a di�erential action sum rule22:

F (
p
R2 � 1) � a� ~B(�)

Z xcut

0

dxx (�R�1(0; x) + �R+1(0; x)) : (66)

Notice, that the fundamental assumption made for the di�erential version of the sum
rules is only justi�ed for R + 1 � 9 at � = 2:5. Also, the data has to exhibit
approximate rotational invariance and xcut has to be chosen su�ciently large. We
start from numerically integrating the data. In varying xcut we try to �nd a plateau.
For R+1 � 10 a clear plateau is established while for the R+1 > 10 data, xcut = 10a,
the maximal distance for which we have performed measurements, had to be chosen.
Thus, these values are only lower limits on the r.h.s. of Eqs. 65 and 66.

As can be seen from Fig. 26 the action sum rule is consistent with our data forR+1 � 6.
This lends further support to the asymptotic character of our data (in T ). Violations
of rotational invariance appear to be small beyond the two directions on which we
have performed our measurements. Consistency of the energy density data with the
sum rule is found, albeit within reduced statistical accuracy.

21Strictly speaking, there is of course no transition point into the asymptotic regime, since the

transition is smooth!
22The anomalous dimension of the action density outside the sources and adjacent sites equals

~B(�), independent of the position, n.
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The �tted integrated action density, A (rescaled by the factor ~B), obtained in Sec-
tion 5.1 (Tab. 10), is also shown in Fig. 26 for a Gaussian and a dipole transverse
shape of the ux tube. The Gauss values are substantially smaller than suggested by
the force. This discrepancy can only be due to a slower n? ! 1 fall-o� of the data
than assumed by the Gauss ansatz. Notice, that the string picture is only applicable
for small transverse uctuations while a large portion of the integral stems from the
area of large n?. The dipole values are consistent with the force for large separations
R. It remains to be clari�ed whether this is just a lucky coincidence. At least for
:75 fm< r < 1:5 fm the large n? data also seems to be underestimated by a dipole
shape. The functional form of the pro�le can be studied in more detail by varying the
transverse spatial volume and exploiting the observed FSE (Appendix D).

5.4 Width of the ux tube

In addition to the (parametrization dependent) results on the width of the ux tube of
Section 5.1 (Tabs. 8{??), we attempt to compute this important parameter by direct
numerical integration:

�2� =

R ncut
0

dn? n
3

?�(0; n?)R ncut
0

dn? n?�(0; n?)
: (67)

The results, including their systematic errors from varying ncut, are displayed in Fig. 27,
together with the expectations from the above dipole and Gauss �ts. We realize that
this method is not a viable way to determine the R dependence of �: the relative error,
��, of the numerical integration is intolerably large and the two �t results also di�er
by a factor of about 1:5. This, of course, is related to the large weight with which
large n? points contribute to Eq. 67. For R � 10 the data is well described, both by a
dipole and by a Gaussian parametrization for our n? window within statistical errors,
and yet the two parametrizations di�er substantially at large n?.

The data on the numerically integrated widths for physical distances below :5 fm (the
largest separation at which numerical integration of the energy density data could be
performed) exhibits that the energy density values fall onto the line � = R=2 while the
action density values are signi�cantly larger. This tendency has also been observed in
Ref. [3] and is consistent with our �t results (Tabs. 8 and 10).

An alternative approach to study the functional dependence, �(R), is to constrain the
center plane analysis to the results of the di�erential action sum rule. In addition,
we apply a geometric method that will correlate results from di�erent R-values to the
extent that we end up with reduced relative errors and all uncertainty cast into a large
overall scale error. To quote the assumptions:

1. Accretion of additional energy and action when pulling the sources apart is
localized in the center plane.
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2. At su�ciently large R, the change of the transverse shape under variations of R
can be absorbed into two (independent) scale transformations.

Assumption (1) has been veri�ed from our data in Section 5.2 for distances r > :75 fm
and � � 2:5. Within our statistical errors, assumption (2) is also ful�lled in this
region, according to the �t results in Tabs. 10 and ??.

In this case, we can de�ne:

�2 = 
A

�h
: (68)

A is the area below the curve. It can be �xed by the sum rules with high accuracy.
For the action density we obtain A from

A = ~B�1(�)(V (R) � V (R � 1)) : (69)

Note, that here we have taken an asymmetric derivative of the potential. In case of
the energy density, A directly equals the force, up to a renormalization constant. h

denotes the action/energy density in the middle of the tube (n = 0).  is a geometry
factor. Depending on the parametrization it can take the following values23:

�  = 1

2
for a distribution, constant for n? < nmax and zero outside of this circle,

�  = 1 for a Gaussian shape,

�  = 2 for a dipole shape and

�  = 3 for an exp(�cjn?j) shape.

By employing the de�nition Eq. 68, a large portion of the error on the width is cast
into the (overall) uncertainty of the geometry factor .

In addition to data, obtained by use of the other methods, we have included the data
from this geometric method into Fig. 27 for the case  = 1 (triangles). The di�erences
between these points and the Gauss �ts (crosses) reect the fact that the large n?
data is not well approximated by the Gaussian form. Remember, that this very e�ect
has also led to an underestimation of the force in Fig. 26.

In Fig. ??, we display our geometric results ( = 1) for the action and energy densities
at � = 2:5 and � = 2:635, scaled in units of the string tension. The dashed vertical line
denotes the distance :75 fm above which the geometrical approximation is justi�ed.
As can be seen, the data exhibits scaling even below this limit. The width of the
energy density starts out to be smaller than the width of the action density, as has
been observed in Ref. [3], but increases faster. It then reaches the same magnitude as
the action density width, before it disappears under the noise level at about :8 fm.
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Above r = 1 fm the action density data is in agreement with a constant value

��a � 1:17
q
=� � 0:52 fm

p
 ; (70)

where we expect  to take values between one and two. Logarithmic �ts to the r > 1 fm
data according to the string picture expectation, Eq. 37, yield values

R0

p
K < 1=3 : (71)

No lower limit is imposed on the cut-o� since the data is also in agreement with a

constant. A curve with parametrization R0

p
K = 1=3 and �0

q
K= = 0:5 is indicated

in Fig. ??.

The strong parametrization dependence of the r.m.s. width, �, is reected in the dif-
ference by a factor of about 1.5 between the Gaussian and the dipole parametrizations
(and by the di�erent geometry factors, ). The half width, �, is much less sensitive
to the parametrization: both forms are valid interpolations of the data in the small
n? region. For the two parametrizations, � can be connected to � by the following
relations:

� = 2�
p
ln 2 � 1:67 � (Gauss) ; (72)

� = 2�
q
21=3 � 1 � 1:02 � (dipole) : (73)

The resulting half widths for energy and action densities in units of the string tension
are displayed in Fig. 29. We have attempted a �nite volume correction to the dipole
results by �tting the data to the functional form, described in Appendix D (Eq. 118),
and subsequently converting the resulting �1 values into � via Eq. 73. This amounts
to a reduction of � by less than 10%. Di�erences between the uncorrected dipole data
and the Gauss results (up to 6%) reect the systematic uncertainty due to the form
of the interpolating curve. We observe nice scaling between both � values. We also
con�rm the width of the energy ux tube to be smaller than the width of the action
ux tube for distances below :5 fm. Both densities increase till r � 1:1 fm. The action
density saturates at the level � � :7 fm.

We conclude that the data beyond 1 fm is in agreement with a constant but does
not contradict the expected string picture behaviour either. However, the ultra violet
cut-o�, r�10 , of the e�ective string theory is found to be larger than 3

p
� or 1:3 GeV.

This has to be compared with a lattice resolution of 2:35 or 3:64 GeV at � = 2:5 and
� = 2:635, respectively. Thus, we are not too far away from the limit of applicability
of the string theory.

23Note, that these values only apply to the in�nite volume case. At large �=LS , they tend to be
smaller.
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6 Summary and conclusions

We have demonstrated that Wilson loop plaquette correlations o�er a viable access to
a lattice study of the ux tube problem on the required length scale of one to two fm.

Prior to a workable application of this tool one must ascertain an essential improve-
ment of the lattice observation technique: the crucial ingredient of our method is the
smearing of the parallel transporter within the bilocal Q �Q creation operator. This
secures a controlled ground state preparation of long ux tubes within few lattice time
slices. Smearing is combined with integration on the time-like links of the Wilson loop
to cut noise.

As a result, we can observe ux formation in the action density over lengths well be-
yond 1.5 fm with spatial resolution .05 fm. We �nd that | due to a center group
symmetry of the Wilson loop | �nite size e�ects remain well below the level of accu-
racy reached in the present simulation, at least as long as LS is kept larger than 1.3 fm
and R � 3

4
LS . In particular, there are manifestly no e�ects of LS-periodic distortions

of the �eld distribution or potential due to mirror sources24. This implies that we
can safely accommodate a ux tube of length 1:9 fm on our largest lattice of volume
(2:7 fm)4! The energy and action densities exhibit the expected scaling behaviour, and
are consistent with the potential measurements through Michael's sum rules.

At small distances the ux tube is corrupted by lattice artefacts, which can be un-
derstood in terms of lattice perturbation theory. This holds in particular for the self
energy peak around the sources, whose non-scaling behaviour is well in accord with
perturbative expectations.

The transverse r.m.s. width of the action ux distribution in the midplane between
the sources rises with source separation, r, until it reaches a rather constant level for
separations between 1 and 2 fm. The physical value for this constant remains model
dependent and ranges between :5 and :75 fm, as we estimated from a set of transverse
pro�les, supplementing our measurements with various plausible assumptions on the
large n? behaviour. For the half width we �nd a plateau value of � � :7 fm. In the
preasymptotic domain, the action width is observed to rise by a factor six, distinctly
majoring the width of the energy distribution, before both reach their (common ?)
plateau values. A logarithmic increase as suggested by string pictures for the \asymp-
totic" R region is consistent with our data, suggesting a rather large ultra violet cut-o�
on inverse wavelengths in e�ective string models, r�10 > 1:3 GeV.

In the range r � :75 fm, we observe a remarkable stability of long ux tubes in the

24It goes without saying that an approach based on the measurement of Polyakov lines would
neither be amenable to such an improvement programme towards \early T asymptotics" nor would

it be safe from LS -periodic e�ects from mirror sources.
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sense that �eld accretion exclusively occurs in the center plane of the tube, as the
sources are further pulled apart. This is another important quantitative support for
the ux tube picture. The issue of establishing a de�nite tube pro�le (like Gaussian
transverse shape) will remain a rather elusive subject for any numerical approach like
ours.

The present research can readily be generalized to the situation of more than two static
sources, like three quark sources in SU(3) [35] or the case of \nuclear chemistry", with
two quark-antiquark pairs in SU(2). The latter has been studied recently by Green
and coworkers [36] in the context of hadronic potentials, while the former will help to
answer interesting questions related to the three-body character of colour forces in the
proton. Work along this line is in progress.

The methods described here should also be useful in the quantitative studies of the
con�nement mechanism in the maximal Abelian gauge [13, 14, 15].

During completion of this work, we have received a preprint of Haymaker et al. [32].
They work at �-values up to 2.5 and refrain from applying ground state enhancement
techniques. Instead, they attempt T -extrapolations on derived ux tube properties.
This enforces a smaller R range and implies less control on systematic e�ects.

Acknowledgements. G.B. thanks R. Sommer and B. Bunk for inspiring and helpful
discussions. M. L�uscher is acknowledged for suggesting the center group idea. We
are grateful to the Deutsche Forschungsgemeinschaft for providing the Datavault to
our 256 MByte CM-2 parallel computer, on which the 164 and 324 lattices were com-
puted. Moreover, we thank Prof. Rollnik and Dr. V�olpel for their support to simulate
the 483 � 64 lattice on the 2 GByte CM-5 at the Gesellschaft f�ur Mathematik und
Datenverarbeitung within the HLRZ setup.
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Appendix

A Weak coupling expansion of �eld distributions

In this appendix, we recall the one gluon exchange approximation to the lattice po-
tential and compute the leading order perturbative contribution to the electric energy
distribution.

With the lattice gluon propagator in Feynman-t'Hooft gauge,

a; �
k�! b; � :

�ab���P
�
�k2�

; �k� = 2 sin k�=2 ; (74)

a weak coupling expansion of the Wilson loop yields

W (R; T ) = 1 + CF g
2

TX
�;� 0=0

(G(R; � 0 � � )�G(0; � 0 � � )) ; (75)

where just terms, extensive in T , have been kept and the leading term one is the
expectation value of the loop with the interaction switched o�. Note, that we have
neglected the zero momentum contribution in the calculation that is suppressed by a
factor 1=(L3

SLT ). The colour factor CF can be calculated by contracting the colour
indices of the SU(N) generators Ta (a = 1; : : : ; N2 � 1):

CF =
1

N
TrfTaTbg�ab =

N2 � 1

2N
: (76)

Fourier transforming Eq. 74 yields

G(n) =
X
k 6=0

eikn

�k2�
; (77)

ki =
2�

LS

mi ; mi = �
LS

2
+ 1; : : : ;

LS

2
;

k4 =
2�

LT

m4 ; m4 = �
LT

2
+ 1; : : : ;

LT

2

for the real space gluon propagator on a �nite lattice. With

GL(R) =
X
�

G(R; � ) =
X
k6=0

eikRP
i
�k2i

(78)

and V (R) = � limT!1 ln (W (R; T ))=T one obtains

V (R) = �CF g
2 (GL(R)�GL(0)) : (79)
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By construction, the weak coupling expansion of the quantity (Eq. 23),

h2iW = h2i
 
h2Wi
h2ihWi � 1

!
; (80)

involves only interactions between the plaquette and theWilson loop. All self-interactions
of the plaquette and Wilson loop are cancelled by the denominator.

An expansion of the plaquette yields

h2i = 1� c1g
2 + � � � (81)

with c1 = 2Cfg
2(G(0)�G(1)) = CF g

2=4 on symmetric lattices. If we are interested in
the leading order behaviour only, the plaquette can be approximated by one. However,
at realistic values of the coupling higher order corrections are large. At � = 2:5 we �nd
for example h2i = :65198. This observation inspired Parisi to formulate a programme
of mean �eld improved lattice operators [37]. The idea is to split every lattice operator
into a part that corresponds to (discretization dependent) uctuations on the ultra
violet lattice scale and a physical infra red part.

More recently, the deviations of lattice results from perturbative expansions in terms
of the bare lattice coupling parameter have been explained as being due to large
contributions from tadpole diagrams [38]. This circumstance has revived the interest
in mean �eld or tadpole improved lattice perturbation theory and operators. The
hope is to suppress ultra violet contaminations by dividing every link in a given lattice
operator by its Monte Carlo mean �eld value u0. This is supposed to procure early
asymptotic scaling and reliable perturbation theory predictions.

A popular choice of u0 is the fourth root of the average plaquette. Following this
procedure, we should divide the expression on the r.h.s. of Eq. 80 by the average
plaquette. However, in the end, we are interested in the combination �h2iW only.
Since the plaquette in the action SW��U has also to be divided by its mean �eld value,
� is replaced by a mean �eld coupling �MF = �h2i. Performing both replacements,
the h2i contributions cancel. In this spirit, the de�nition of action and energy densities
in Section 2.4 represents already in itself a tadpole improved de�nition. Keeping in
mind that in the last step our operator will be multiplied by �, it is justi�ed to neglect
the multiplicative h2i factor in Eq. 80 even in a region where g2 depending deviations
from one are not small.

The two loops being disconnected in colour space, only singlets can be exchanged.
Thus, we expect an exchange of two gluons as the leading order contribution. Techni-
cally, this can be seen as follows: for computation of the product of two (real) traces,
both possible relative orientations of the Wilson loop and the plaquette have to be
averaged over. Thus, exchanges of single (bare or dressed) gluons cancel. The same
holds for a triple gluon vertex that can only be attached with two legs to one loop
and with one leg to the other. Due to the Lorentz structure of the propagator Eq. 74,
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magnetic plaquettes cannot interact by a direct exchange of gluons with the timelike
links of the Wilson loop.

The colour factor of the two gluon exchange between the disconnected loops turns out
to be:

1

N
TrfTaTbg

1

N
TrfTcTdg�ac�bd =

1

2N

1

N
TrfTaTbg�ab =

CF

2N
(82)

By squaring the one-gluon exchange contribution, dividing the expression by a factor
two to avoid an overcounting of gluon exchanges, and performing the T integration,
we obtain (Again, only terms extensive in T have been kept.):

hU(n)i4iW = yi(n)

=
CF g

4

4N
(GL(n� r1 + ei)�GL(n� r1) (83)

� GL(n � r2 + ei) +GL(n � r2))2 ;

where the sources are placed at the positions r1 =
R
2
e1. and r2 = �R

2
e1.

After averaging over the two plaquettes used for construction of the electric �eld
operator and multiplying by 2�=a4, we end up with

a4hE2

i (n)ij0;Ri�j0i = g2CF

yi(n) + yi(n� ei)
2

(84)

while
a4hB2

i (n)ij0;Ri�j0i = O(g4) : (85)

Many of the higher order diagrams contribute to B as well as to E. Thus, we would
expect a partial cancellation of higher order e�ects in the energy density

�R(n) =
ER(n)� BR(n)

2
: (86)

From X
n;i

yi(n) = 2 (GL(0)�GL(R)) ; (87)

we obtain
a4
X
n

�R(n) = g2CF (GL(0) �GL(R)) +O(g4) � V (R) : (88)

Note, that to order g2 the action density equals the energy density. However, the
action density is expected to deviate much more from the leading order perturbative
expectation since higher order electric and magnetic contributions are added and no
cancellations of diagrams occur.

Perturbation theory yields (up to a divergent self-energy part)

v(r) = �CF g
2
1

4�r
(89)
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for the continuum potential. The associated electric �eld is given (up to a colour fac-
tor) by g�1r (v(x+ r=2e1)� v(x� r=2e1)). In the continuum limit the di�erences in
Eq. 83 will be replaced by derivatives, yielding exactly this expression. After squaring
and expressing the result in lattice units, one obtains:

�
(c)
R (n) = g2CF

1

(4�)2
X
i

 
ni � �i1R=2

jn� e1R=2j3
� ni + �i1R=2

jn+ e1R=2j3

!2
+ � � � (90)

which is just the continuum limit of Eq. 84.

B Action sum rule

In order to derive the action sum rule we start from the de�nition (W = W (R;T ),
Dirac indices and spatial position are suppressed):

h2iW;2 =
1

T

LT�1X
�=0

 
h2(� )Wi
hWi � h2i

!
=

2

T

LT =2�1X
S=0

h2(S)iW : (91)

In Eq. 24, the spectral decomposition of the argument of the sum for 0 � S < T=2
has been carried out. For the plaquette position outside the loop, i.e. S � T=2, we
obtain:

h2(S)iW = const.� e�E1(LT�T )=2 cosh (E1(LT=2 � S)) + � � � : (92)

The signal is suppressed with the temporal distance of the plaquette insertions from
the Wilson loop, S � T=2, times the mass gap, E1 = mA+

1

a � 3
p
K, [39] in the

exponent.

After summing over all S, we obtain:

h2iW;2 = h2ij0;Ri�j0i

+
b

T
+
jd1j2
jd20j

e��V T +O
 
e��V T

T

!
: (93)

We have made use of the fact that the o�-diagonal (i.e. S dependent) pollutions, inside
and outside the loop are incomplete geometric series. The summation gives, apart from
the constant parts, only multiplicative 1�e�n�V (T+1) or 1�e�nE1(LT�T+1) factors. The
constant b��(n) is the sum of all o�-diagonal coe�cients from the expansions Eq. 24
and Eq. 92 of h2iW , weighted by corresponding coe�cients (1�e��Vi)�1 or (1�e�Ei)�1.

Together with

hWi =
Z
DU We�U ; U =

X
n;�>�

U��(n) ; (94)
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and the decomposition of the Wilson loop (Eq. 4) we obtain from Eq. 93:

X
n;�>�

hU��(n)iW;2 =
1

T

 
hUWi
hWi � hUi

!

=
1

T

@

@�
lnhWi (95)

=
1

T

@ ln jd0j2
@�

� @V

@�
� @�V

@�

jd1j2
jd0j2

e��V T � � � �

Note, that the equalities are exact! Thus, in the expansion of the derivative of the
Wilson loop the same terms appear as in Eq. 93.

A comparison of the 1=T coe�cients between the above equation and b of Eq. 93 yields

B =
X
n;�>�

b��(n) =
@ ln jd0j2

@�
: (96)

From the estimate for ground state overlaps of unsmeared operators Eq. 18 we obtain

B = �R@V0
@�
� ��1V0R (97)

for large R and weak coupling. The monotonous increase of the ground state overlap
at �xed R with � is con�rmed in the present simulation. Therefore, B is positive.
For smeared operators, V0 is replaced by some constant f that is small compared to
all R�1, such that the exponential can be expanded and the ground state overlaps
jd0(R)j2 exhibit the linear behaviour of Fig. 2. f is expected to be proportional to g2

to the lowest order such that B � ��1fR. Under the assumption that d1 dominates
other excited state overlaps, we obtain jd1(R)j2 � fR. Eq. 91 can also serve as a
de�nition for colour �eld measurement operators. However, we have preferred to use
h2iW instead, due to the better asymptotic behaviour: excited states are suppressed
by factors proportional to

p
Re��V T=2 �

p
Re�

�
R
T instead of R=T only.

From Eqs. 20, 21, 23, 27 and 28, one obtains:

X
n;�>�

hU��(n)iW;2
T!1�! a4

�

X
n

1

2
(E(n) �B(n)) = a4

�

X
n

�R(n) : (98)

By carefully comparing the coe�cients of the expansions one �nds many (exact) \sum
rules". In the following we list three such examples.

X
n

a3�R(n) = ��
a

@V

@�
; (99)

X
n

a3 (�0R(n) � �R(n)) = ��
a

@�V

@�
; (100)

X
n

a3�A+

1

(n) = ��
a

@E1

@�
: (101)
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�0R denotes the action density distribution of the �rst excitedQ �Q state without angular
momentum, �A+

1

is the action density distribution in presence of the lightest glueball
state.

The ground state potential consists of a constant physical part v(R) and a self energy
contribution V0 which diverges in the continuum limit:

V (R) = av(R) + V0 (102)

By using this decomposition, we obtain from Eq. 99 the action sum rule

X
n

a3�R(n) = �
@ ln a

@ ln�
v(R)� 1

a

@V0

@ ln�
: (103)

C Energy sum rule

The derivation of the energy sum rule, though the more intuitive one, turns out to
be more complicated. We start from the decomposition of the Wilson action into a
spatial and a temporal part

SW = ��tUt � �sUs : (104)

In the following, the spatial and temporal lattice spacings will be called as and at,
respectively. The asymmetry is de�ned by � = as=at. Following the steps of the
previous section, one �nds:

a4s
2�

X
n

ER(n) T!1 � �
X
n;i

hUi4(n)iW;2 =
�

T

@

@�t
lnhWi ; (105)

a4s
2�

X
n

BR(n) T!1 � �
X
n;i>j

hUij(n)iW;2 = �
1

T

@

@�s
lnhWi : (106)

A weak coupling expansion [40] relates the anisotropic lattice couplings to the isotropic
coupling �(as):

�s� = � + 2Ncs(�) +O(��1) ; (107)

�t� = � + 2Nct(�) +O(��1) : (108)

The coe�cients ful�l the relations:

cs(1) = ct(1) = 0 ; c0s(1) + c0t(1) = b0 =
11N

48�2
: (109)

The derivatives of the coe�cients have been calculated by Karsch in Ref. [40]. For
SU(2) the result is

c0s = c0s(1) = :11403 : : : ; c0t = c0t(1) = �:06759 : : : : (110)
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After expressing the derivatives in respect to the asymmetric couplings by derivatives
in respect to � and � and taking � = 1, we end up with:

a4
X
n

ER(n) = � @V

@ ln�

 
1 � N

�
b0

!
+ V

 
1 � N

�
(c0t � c0s)

!
(111)

a4
X
n

BR(n) =
@V

@ ln�

 
1 +

N

�
b0

!
+ V

 
1� N

�
(c0t � c0s)

!
(112)

Subtracting both expression yields the (exact) action sum rule Eq. 99.

Adding Eqs. 111 and 112 and dividing by a factor two yields the energy sum rule

X
n

a3�R(n) =
1

a

 
V

 
1� N

�
(c0t � c0s)

!
+

@V

@ ln�

N

�
b0 + � � �

!
(113)

=
�
v +

V0

a

� 
1� N

�
(c0t � c0s)

!

+

 
v
@ ln a

@ ln�
+

1

a

@V0

@ ln�

!
N

�
b0 + � � � (114)

The energy sum rule is not exact due to the perturbative origin of the relation be-
tween the symmetric and asymmetric couplings (Eqs. 107, 108). Of course, it would
be preferable to measure the corresponding derivatives of ln a directly on the lattice
instead.

Note that the coe�cient of the last term in Eq. 114 is identical to the action sum
Eq. 103. The factor @ lna=@ ln� appearing in front of v within this term carries an
anomalous dimension (as the action does), cancelling a ��1 factor. Thus, an additional
factor �v=4 seems to survive the continuum limit a! 0. Its origin is an incomplete
resummation of the series: the non-perturbatively determined coe�cients contribute
to all orders in ��1. The order ��1 term yielding the above �v=4 contribution has to
be cancelled by other anomalous terms appearing in higher orders of the expansion.
However, if consistently cutting the expansion at order ��2 by expanding the potential
perturbatively, the coe�cient one is reproduced in accord to the expected continuum
limit.

D Finite Size Corrections

In this appendix, we elaborate details on the computation of �nite size corrections on
the action/energy density distributions within the center plane. These FSE are mainly
due to the periodicity of the measurement operator,

OR(0; n2; n3) = OR(0; LS � n2; LS � n3) ; (115)
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at a given Q �Q separation, R = Re1. This mirror source e�ect should not be confused
with contributions from the replacementR! R�nLS which are negligible (as shown
in Section 4.2.3). We also neglect e�ects from mirror sources along the Q �Q axis which
are almost completely screened from the center plane since the colour �eld densities
fall o� at least as fast as (jn1j�R=2)�4 into the longitudinal direction. The e�ect from
mirror copies placed along the transverse directions can be substantial (depending on
the ratio �=LS).

We perform our calculations for two models, namely a dipole transverse shape,

fd(x?;1) =
c

�

�2

(�2 + x2?)
3

; (116)

and a Gaussian shape

fg(x?;1) =
c

2��4
exp

 
�x

2

?

�2

!
: (117)

fd(x?;1) and fg(x?;1) are the corresponding (in�nite volume) center plane en-
ergy/action density distributions.

As argued above it is justi�ed to neglect interactions between di�erent pairs of mirror
sources. We also assume that the chromo electric and magnetic �elds on the �nite
volume can be obtained by superimposing the (in�nite volume) �elds of all (pairs of)
mirror sources. Note, that we have to add the �elds rather than the action and energy
densities themselves. From the geometry it is clear that the perpendicular electric
and longitudinal magnetic �eld components vanish in the center plane. Under the
assumption that the (perpendicular) magnetic �eld component is proportional to the
(longitudinal) electric component, we �nd:

f(x2; x3;LS) =

 X
n2;n3

g (x2 + n2LS; x3 + n3LS)

!
2

(118)

with g(x2; x3) = g(x?) =
q
f(x?;1). The integrated area can be computed in the

following way:

A(LS) =
Z LS

0

dx2dx3 f(x2; x3;LS) (119)

=
X
n2n3

X
m2m3

Z
(m2+1)LS

m2LS

dx2

Z
(m3+1)LS

m3LS

dx3 g (x?) g (x2 + n2LS ; x3 + n3LS)

=
X
n2n3

Z
d2x? g (x2 � n2LS=2; x3 � n3LS=2)

�g (x2 + n2LS=2; x3 + n3LS=2) : (120)

In case of a dipole �eld with (in�nite volume) r.m.s. width, �, we have

gd(x?) /
�
�2 + x2?

��3=2
(121)
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and obtain for the area,

A(LS) /
X
n2n3

Z
2�

0

d�

Z 1

0

dr r
�
d2(n2; n3) + r2

�
1 � L2

S(n2 cos �+ n3 sin�)
2
���3=2

(122)

with

d2(n2; n3) = �2 +
L2

S

4
(n2

2
+ n2

3
) : (123)

After performing the radial integration, we arrive at:

A(LS) /
X
n2n3

1

d2

Z
2�

0

d�
1

4d2 � L2

S(n2 cos�+ n3 sin �)2
(124)

=
�

2

X
n2n3

1

d3
q
d2 � L2

S(n
2
2 + n23)=4

(125)

= A(1)
X
n2n3

 
1 +

L2

S

4�2
(n2

2
+ n2

3
)

!�3=2
(126)

with A(1) = c=(2�2).

For the Gauss �ts we have

gg(x?) / exp

 
� x2?
2�2

!
: (127)

Thus, we end up with

A(LS) =
X
n2n3

Z
d2x? exp

 
�x

2

?

�2

!
exp

 
�L

2

S

4�2
(n2

1
+ n2

2
)

!
(128)

= A(1)
X
n2n3

exp

 
�L

2

S

4�2
(n2

1
+ n2

2
)

!
: (129)

In conclusion, the results for both transverse pro�les read

A(LS) = A(1)
X
n2n3

gd (L2

S(n
2

1
+ n2

2
)=4)

gd(0)
and (130)

A(LS) = A(1)
X
n2n3

gg (L2

S(n
2

1
+ n2

2
)=2)

gg(0)
; (131)

respectively, with g(x?) =
q
f(x?;1) and A(1) = c=(2�2). For the typical dipole

r.m.s. width �=LS = 6=32 we �nd an increase of the area by 43% due to the �nite
volume while the corresponding Gaussian result (�=LS � 4=32) is only a�ected by
5�10�7. Notice, that the in�nite volume � can be obtained by �ts of the form Eq. 118
from �nite volume data.
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Figure 7: ��1
MS

(a)
p
� versus the lattice spacing a

p
�, both measured in units of the

string tension. The estimates for the � values have been obtained from the perturbative

two loop formula by use of the bare coupling (upper values) and the �E scheme (lower

values). Linear �ts to the data are indicated.
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Figure 8: The energy density distribution at � = 2:5, R = 8 (r � :7 fm) in units of

the string tension.
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Figure 9: The action density distribution at � = 2:5, R = 8 (r � :7 fm) in units of

the string tension.
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Figure 10: The action density distribution at � = 2:635, R = 12 (r � :7 fm) in units

of the string tension. Relative to Fig. 9 the vertical axis has been rescaled by the ratio

of the corresponding ~B(�) values.
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Figure 11: Same as Fig. 9 for R = 12 (r � 1 fm) and R = 16 (r � 1:35 fm).
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Figure 12: The action density distributions for quark separations R = 20 at � = 2:5
and R = 30 at � = 2:635, corresponding to r � 1:7 fm. The z axis of the �rst plot is

expanded by the ratio of the two ~B(�) values in respect to the second plot to account

for the anomalous dimension.
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Figure 13: Comparison of longitudinal action density pro�les at r = :7 fm between the

� = 2:5 data (R = 8) and the � = 2:635 data (R = 12) at n?a = :17 fm in units of the

string tension. The vertical axis has been multiplied by ~B(�). One source is placed at

position (n1; n?) = 0. The second source is located at n1
p
K � 1:6 (outside the visible

range).
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Figure 14: Comparison of transverse action density pro�les at the center plane of two

sources, separated by r = :7 fm between the � = 2:5 data (R = 8) and the � = 2:635
data (R = 12) in units of the string tension. The vertical axis has been multiplied by

~B(�).
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Figure 15: Di�erences between the longitudinal action density pro�les measured on 164

and 324 lattices at � = 2:5 for R = 8 and n? = 2.
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Figure 16: Di�erences between the transverse action density pro�les measured on 164

and 324 lattices at � = 2:5 for R = 8 and n1 = 0.
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Figure 17: Comparison between smeared and unsmeared �nite T energy density ap-

proximants in the center (n1 = n? = 0) between two sources, separated by R = 4 at

� = 2:74. The horizontal axis is the time T .
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Figure 18: Finite T approximants to the electric plaquette expectation value E6(0; 3)
in presence of two quarks (diamonds), separated by R = 6 at � = 2:5 at the position

n1 = 0, n? = 3 in lattice units. Two-, three- and four-parameter �ts are indicated,

together with the corresponding extrapolated asymptotic values (rightmost points with

error bars).
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Figure 19: Same as Fig. 18, but for the magnetic plaquette expectation, B6(0; 3).
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Figure 20: The central transverse energy density pro�le at R = 2, � = 2:5 together

with �t curves of methods (1) and (4).
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Figure 21: The central transverse energy density pro�le at R = 4, � = 2:5 together

with a �t to the lattice expression, fl (method (1)).
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Figure 25: Di�erences, ��R, between the action density distributions at R and R�2 for
R = 6; 8; and 10 (� = 2:5). The sources have been aligned. The labelling corresponds

to lattice units.
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Figure 26: The Q �Q force, obtained from the potential at � = 2:5, compared to the

integrated center plane action density, scaled by the anomalous dimension ~B in lattice

units. In addition to the numerically integrated data (num), the dipole and Gauss �t

results from Section 5.1 are displayed.
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Figure 27: The width of the ux tube, �, against R at � = 2:5 (in lattice units). The

dashed line corresponds to � = R=2. In addition to the numerically integrated results

from the energy and action density distributions, �t results to the action density from

Tab. 10, and results from the geometric method (with =1) are displayed.
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