

Di-Higgs searches in ATLAS and CMS LHCP, Puebla, Mexico, 20-25 May 2019

Xiaohu SUN on behalf of the ATLAS and CMS collaborations 2019-05-23

EDMONTON · ALBERTA · CANADA

ALBERTA

Introduction

- Search di-Higgs (HH) production
 - Standard Model (SM) non-resonant di-Higgs allows to directly probe Higgs self-coupling K_{λ} (= $\lambda_{3,measure}/\lambda_{3,SM}$), study the Higgs potential and constrain EFT couplings
 - BSM resonant di-Higgs originates from a heavy scalar or spin2 particle (EWK singlet, MSSM, 2HDM, RS KK graviton models etc.)

 $V = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$ $V \rightarrow -rac{M_H^2}{2}H^2 + \lambda_3 H^3 + \lambda_4 H^4$

$$\lambda_3 = \frac{M_H^2}{2v} \sim .13v$$

Di-Higgs experimental status

A pair of Higgs bosons provides a variety of decay modes

 $H \rightarrow bb$ is usually chosen for one Higgs boson given the largest branching ratio

 $H \rightarrow others$ is usually used to deploy triggers and suppress backgrounds

Small BRs like $H \rightarrow \gamma \gamma / ZZ$ can have strong sensitivity given their low-background level. They are large parts of the search projects

Experimental results to date from ATLAS and CMS are shown in this Higgs-decay matrix

HH→bbbb (ATLAS)

- Largest branching ratio
- •**Resolved**: 4 b-tagged anti-k_T jets (small-R)
- Jet pairing: $\Delta R(j,j)$ and mass difference between the 2 dijet system are used to pair the jets (90% correctness)
- •Boosted (merged): 2 anti-k_T jets (large-R), with 1 or 2 b-tagged track-jets associated to each large-R jet
- Dominant backgrounds are multijet and tt

ata / Bkgd

 \Box

Fit on m_{HH} for non-resonant and resonant

HH→bbbb (CMS)

Besides resolved and boosted, semi-resolved is explored: 2 b-tagged anti-k_T jets (small-R) and b-tagged anti-k_T jets (large-R)

JHEP04(2019)112 <u>JHEP 08 (2018) 152 JHEP 01 (2019) 040</u>

Jet pairing: mass difference between the 2 dijet system is used to pair the jets (54%) correctness)

Resonant searches

- Searches up to 3 TeV
- Local excess with spin0:
- •280 GeV with a maximal local (global) significance of 3.6σ (2.3 σ) in ATLAS (CMS **bbyy** and **bbtt** have small excess close here)
- •460 GeV with a maximal local (global) significance of 2.6σ (negligible) in CMS
- These excess are consistent with statistical fluctuation

LHCP2019, Puebla, Mexico

Non-resonant searches

- Limits on SM HH production in the unit of $\sigma_{SM}(pp \rightarrow HH)$:
- •13 (21) in ATLAS
- •75 (**37**) in CMS
- Put constraints on κ_{λ} and on EFT couplings in CMS

HH-bbtt (non-resonant)

- •ATLAS: 2 b-tagged jets, 1 leptonic Limits on SM HH production in τ + 1 hadronic τ or 2 hadronic τ
- •CMS: additionally require 1 btagged large-R jet for high-mass resonant searches
- the unit of $\sigma_{SM}(pp \rightarrow HH)$:
- •13 (**15**) in ATLAS
- •30 (25) in CMS

LHCP2019, Puebla, Mexico

PhysRevLett.122.089901 JHEP 01 (2019) 051 Phys. Lett. B 778 (2018) 101

 $\sigma(pp \rightarrow HH) \sim$ $k_t^4 \left| |B|^2 + \frac{k_\lambda}{k_t} (B^*T + TB^*) + \left(\frac{k_\lambda}{k_t}\right)^2 |T|^2 \right|$

• Put constraints on κ_{λ} , κ_t in CMS

$HH \rightarrow bbtt$ (resonant)

•CMS: fit on mhh

LHCP2019, Puebla, Mexico

PhysRevLett.122.089901 JHEP 01 (2019) 051 Phys. Lett. B 778 (2018) 101

•ATLAS: 1 lepton, 2 light jets for W, 2 btagged jets (for resolved) and 1 large-R jet

•CMS: 1 lepton, 2 large-R jets for W & H

$HH \rightarrow bbVV$ (2L, CMS)

HH→bbWW→bblvlv or HH→bbZZ→bbllvv

- •bbZZ analysis: 2 leptons, missing transverse energy, 2 b-tagged jets, 2 distinct BDTs trained for 2 mass ranges separately, on-shell Z only
- •bbWW/ZZ: 2 leptons, 2 b-tagged jets, **12<m_{ll}<m_z-15 GeV (off-shell Z)** to suppress quarkonia resonances, DY, tt, fit on parameterised DNN

LHCP2019, Puebla, Mexico

JHEP 01 (2018) 054

HH combination <u>ATLAS</u> coming soon Phys. Rev. Lett. 122 (2019) 121803

ATLAS combined upper limits: 6.9 (**10**) x SM HH cross-section

LHCP2019, Puebla, Mexico

CMS combined upper limits: 22 (13) x SM HH cross-section

HH combination <u>ATLAS</u> <u>coming soon</u> Phys. Rev. Lett. 122 (2019) 121803

LHCP2019, Puebla, Mexico

Xiaohu SUN

Constraints on κ_λ at 95% CL •ATLAS: [-5.0,12] (**[-5.8,12]**) •CMS: [-11.8,18.8] (**[-7.1,13.6]**)

Limits are set on cross-section in benchmarks with EFT Higgs couplings

Benchmark	κ_λ	κ_t	c_2	c_g
1	7.5	1.0	-1.0	0.0
2	1.0	1.0	0.5	-0.8
3	1.0	1.0	-1.5	0.0
4	-3.5	1.5	-3.0	0.0
5	1.0	1.0	0.0	0.8
6	2.4	1.0	0.0	0.2
7	5.0	1.0	0.0	0.2
8	15.0	1.0	0.0	-1.0
9	1.0	1.0	1.0	-0.6
10	10.0	1.5	-1.0	0.0
11	2.4	1.0	0.0	1.0
12	15.0	1.0	1.0	0.0
\mathbf{SM}	1.0	1.0	0.0	0.0

HH combination <u>ATLAS</u> <u>coming soon</u> Phys. Rev. Lett. 122 (2019) 121803

LHCP2019, Puebla, Mexico

HH combination <u>ATLAS</u> <u>coming soon</u> Phys. Rev. Lett. 122 (2019) 121803

•Constraints are imposed on EWK single model

•HH limits are comparable to indirectly SM single Higgs measurement in many regions

LHCP2019, Puebla, Mexico

HH combination <u>ATLAS</u> <u>coming soon</u>

- •Left: BSM Higgs searches (including Run1 HH exclusion); right: new HH exclusions
- •New HH exclusions:
- •2x more exclusion on tan β than Run1; extend to 550 GeV on m_A

ATLAS Higgs summary plots

Di-Higgs @ HL-LHC

•ATLAS includes bbbb, bbττ and bbγγ

•CMS includes bbbb, bbττ, bbγγ, bbVV (2-lepton) and bbZZ (4-lepton)

	Statistical-only		Statistical +	
	ATLAS	CMS	ATLAS	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	
combined	3.5	2.8	3.0	
	Combined		Comb	
	4.5	5	4.	

Combine ATLAS and CMS:

- •Expected significance 4σ
- •Expected precision on signal strength ~25%

LHCP2019, Puebla, Mexico

1902.00134 <u>CMS-PAS-FTR-18-019</u> <u>ATL-PHYS-PUB-2018-053</u>

Combined ATLAS and CMS (stat.+syst.): 68% CL interval on κ_{λ} 0.52 $\leq \kappa_{\lambda} \leq 1.5$ (indirect probe with loop correction in single Higgs "exclusive": $-0.1 \le \kappa_{\lambda} \le 2.3$) **Expected precision on \kappa_{\lambda} \sim 50\%**

Di-Higgs @ HE-LHC

- Scale up to HE-LHC from HL-LHC: cross section x4, luminosity 15 ab⁻¹
- Studied **bbtt** and **bbyy** with ATLAS assuming no systematic uncertainties
- Significance: 10.7σ in bbtt, 7.1σ in bbyy
- Precision on κ_{λ} : 20% (40%) in bbtt (bbyy)

LHCP2019, Puebla, Mexico

<u>1902.00134</u> **ATL-PHYS-PUB-2018-053**

Summary

- Extensive searches for di-Higgs are being performed in ATLAS and CMS
- Di-Higgs: 5x better upper limits compared to Run1 results
 - Approach a few times of SM di-Higgs cross-section
 - Start to study the second leading production mode VBF
 - Reach several TeV for di-Higgs resonance (more heavy resonance results in J. Ngadiuba's talk on Tuesday)
 - Expect evidence of SM di-Higgs production at the HL-LHC
 - Expect to measure Higgs-self coupling with 50% (20%) precession in HL-LHC (HE-LHC)
- Many other prospects are not included due to time (resonant HH 4b, VBF nonresonant, HH implications for theory etc.). See 1902.00134 !

Backup slides

LHCP2019, Puebla, Mexico

Di-Higgs experimental status

ATLAS 4b

(b)	Multijet	Background
-----	----------	------------

Dataset	f	$\mu_{ m multijet}$	$\alpha_{t\bar{t}}^{\mathrm{hadronic}}$	$\alpha_{t\bar{t}}^{\mathrm{semileptonic}}$
2015	0.22	0.0838 ± 0.0038	1.19 ± 0.45	1.44 ± 0.48
2016	0.15	0.2007 ± 0.0031	1.15 ± 0.25	1.7 ± 0.19

LHCP2019, Puebla, Mexico

ATLAS 4b Resolved

ATLAS 4b

2.5

3

m(G_{kk}) [TeV]

2

1.5

_	_
	_
	1
	_
	_
	I
	_
	_
	I
	_
	_
	_
	_
	_
	_
	_
	_
	_
	I
	_
	I
	_
	_
	_
	_
	_
	1
	_
	I
	_
	_
	I
	I
	_
	_
	_
	I
	_
	_
	_
	1
	_
	I
	_
	1
	_
	I
	_
	_
	- 1
	_
	_
	_
	- 1
	_
	_
	I
	_
	_
	_
	_
	_
_	the second s

LHCP2019, Puebla, Mexico

CMS 4b

Original Event break in two hemispheres

Resolved, for non-resonant

LHCP2019, Puebla, Mexico

Hemisphere library

filled in 1st pass, queried on 2nd

Mixed Event

using replaced hemispheres

BDT output

CMS 4b

CMS 4b

	ATLA
Source	Uncertainty (%
Total	± 54
Data statistics	± 44
Simulation statistics	± 16
Experimental Uncertainties	
Luminosity	± 2.4
Pileup reweighting	± 1.7
$ au_{ m had}$	± 16
Fake- τ estimation	± 8.4
<i>b</i> -tagging	± 8.3
Jets and $E_{\rm T}^{\rm miss}$	± 3.3
Electron and muon	± 0.5
Theoretical and Modeling Uncertainties	S
Тор	± 17
Signal	± 9.3
$Z \rightarrow \tau \tau$	± 6.8
SM Higgs	± 2.9
Other backgrounds	± 0.3

An additional study is performed including both VBF HH and ggHH production mechanisms in the definition of the scaling factor

$$\mu_{\rm HH}^{\rm ext} = \frac{\sigma_{\rm gg \to HH}^{\rm BSM} + \sigma_{\rm VBF \, HH}^{\rm BSM}}{\sigma_{\rm gg \to HH}^{\rm SM} + \sigma_{\rm VBF \, HH}^{\rm SM}}$$

where $\sigma_{\text{VBF HH}}^{\text{SM}} = 1.64^{+0.05}_{-0.06}$ fb [6]. The expected sensitivity of the analysis for $\mu_{\text{HH}}^{\text{ext}}$ improves by 1.3% compared to $\mu_{\rm HH}$. The improvement is smaller than the relative contribution of the VBF production cross section to the total one in the SM because of the nonoptimal selection efficiency of this analysis for the VBF events, as explained in Section 5.

(3)

CMS

VBF consideration

bbVV IVIV+IIVV

10²

10

10

300

LHCP2019, Puebla, Mexico

The HH candidates are reconstructed in three regions that are chosen in the kinematic space defined by the dilepton invariant mass $m_{\ell\ell}$ and the invariant mass m_{bb} of the two b-jets. The signal region (SR) is defined by the requirements 76 $< m_{\ell\ell} < 106$ GeV and 90 $< m_{bb} < m_{bb}$ 150 GeV. The choice of the latter requirement is guided by the mass resolution of the dijet system and is asymmetric around the Higgs boson mass because a fraction of b quarks decays semileptonically with a neutrino escaping detection, thus leading to a lower reconstructed dijet mass. The first control region (CR), dominated by tt events (CRTT), is defined by the condition $m_{\ell\ell} > 106$ GeV and the same m_{bb} requirement as for the SR. The second control region, which contains primarily Drell-Yan events (CRDY), is defined by the requirement for m_{bb} to be in the range from 20 to 90 GeV or above 150 GeV, while keeping the $m_{\ell\ell}$ selection of the SR definition. The two control regions (CRs) are used in this measurement to evaluate the amount of the dominant backgrounds (Drell-Yan and tt) in the SR via the simultaneous fit of all three regions, as described in Section 8.

bbZZ on-shell Z seems slightly more sensitive in higher mass searches than bbWW+bbZZ with offshell Z

Xiaohu SUN

Single Higgs

ATL-PHYS-PUB-2019-009

HH combination

HH combination

BDT

HH combination

LHCP2019, Puebla, Mexico

HH combination

HH combination

[dd] (HH upper limit on σ_{ggF} (pp 95% CL

K_λ

