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ABSTRACT

Resonance width effects in charged B decays to neutral D mesons and excited
kaon states Ki around 1400 MeV are shown to lead to large calculable final
state phases. CP asymmetries are defined for any charged B decay to three
pseudoscalar mesons involving intermediate overlapping resonance states.
Asymmetries up to about 10% are found in B+ → K+

i D0 → (Kπ)+D0. De-
cay distributions can be used to determine the weak phase γ of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. No separation of the contributions from
individual resonances is required.
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In order to observe CP violating effects in a physical process both a CP
violating weak phase and a CP conserving strong phase must be present [1].
In the standard model the weak phase is provided by phases of the CKM
matrix elements [2] while the strong phase must be supplied by the physical
system in question. In the case of neutral B decays the latter phase is due
to the well known oscillation effects. In order to obtain similar CP violating
effects in B± decay, some other mechanism must be supplied to provide the
strong phase. No evidence for final state phases in B decays has been found
yet [3][4]. It is possible that these phases are small in two body decays
because of the heavy B meson mass. In this Letter we shall examine a class
of decays of charged B mesons to hadronic quasi two body final states where
the strong phase is provided by resonant effects in the final state. In previous
papers this approach has been considered in the case of radiative B decays
[5].

The processes we wish to study here are of a class suggested some time
ago for a measurement of the weak phase γ [6], one of the angles of the
CKM matrix unitarity triangle [1]. It was shown that this angle may be
determined through the rate measurements of the following processes and
their charge-conjugates:

B+ → K+D̄0, B+ → K+D0, B+ → K+D0
1,2. (1)

D̄0, D0 are the two flavor states, identified for instance by the lepton charge
of their semileptonic decays, and D0

1,2 = (D0 ± D̄0)/
√

2 are the two CP-
eigenstates identified by decay modes such as K+K−, Ksπ

0. In the next
paragraph we explain briefly the method, drawing attention to the role played
by final state phases.

The amplitudes of the first two processes in (1) are governed by CKM
factors V ∗

cbVus, V
∗

ubVcs. The weak phase difference between them is γ. When
these amplitudes acquire different final state phases, the amplitude of the
third process, which is their coherent sum or difference, is expected to show
a CP asymmetry with respect to its charge-conjugate. The angle γ is de-
termined from the shape of the two triangles formed by the magnitudes of
the amplitudes of the three processes in (1) and their charge-conjugates. Al-
though in principle γ can be determined even if the above final state phases
were equal and no CP asymmetry were observed [6], it would be of great
importance to measure a nonzero asymmetry. Also, the potential accuracy
to which γ is determined in this way increases with a growing final state
phases difference [7]. For instance, a small final state phase difference would
inhibit a useful determination of γ if this angle were also small or near 1800.
This would correspond to skinny triangles for which the determination of γ
becomes quite challenging. The final state phases are basically unknown and
could be too small for giving rise to an observable asymmetry in B → KD0

1,2.
In this case it would be useful to find other related decay channels in which
final state phases are enhanced. Here we will show that when the K meson is
replaced by kaonic resonances, large calculable final state phases are expected
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to occur. This will not only improve the prospects of a precise measurement
of γ, but can potentially also lead to sizable CP asymmetries.

We are thus led to study the process

B+ → K+
i D̄0, B+ → K+

i D0, B+ → K+
i D0

1,2, (2)

in which Ki (i = a, b, ...e) are the five lowest lying resonances above the
K∗(892), the properties of which [8] are listed in Table 1. Since a strong
phase difference is required to obtain an asymmetry, and since the dominant
effect that we will be focussing on in this work results from resonance widths,
at least two such resonances must decay to a common final state. The final
states in Table 1 are f = Kπ, K∗π, Kρ.

Consider for illustration the final state f1 = Kπ, to which three of the
resonances decay, and let us study the process B → KiD → KπD (i =
c, d, e). We define s = (pK + pπ)2 = (pB − pD)2, and denote by θ the angle
between the B momentum and the K momentum in the Ki rest frame.
The amplitudes of the two processes involving D̄0, D0 in the final state are
Āf1

i (s, θ), Af1

i (s, θ), respectively. They are proportional to the B+ → K+
i D̄0,

B+ → K+D0 weak decay amplitudes: A(B+ → K+
i D̄0) = āi, A(B+ →

K+
i D0) = aie

iγ, respectively. āi and ai are assumed to involve small final
state phases which will be neglected. It should be noted that whereas large
final state phases were measured in two body D Decays [9], and sizable phases
are required to account for certain quasi two body D decays [10], such phases
are expected to be smaller in decays of the heavier B meson. We will show
later on how this assumption can be tested experimentally without having
to separate the various resonance contributions. We note that such phases
do not affect the considerations by which γ is determined. Their effect on
the calculated CP asymmetries would be the appearance of cosines of these
phase differences multiplying the respective interfering resonant amplitudes.

The two amplitudes, Āf1

i (s, θ), Af1

i (s, θ), involve a common s-dependence,
characterized by the resonance mass and width. We will assume a (normal-
ized) Breit-Wigner form:

Πi(s) =

√

miΓi/π

s − m2
i + imiΓi

. (3)

The (normalized) Ki decay amplitudes are given by a spin- characteristic θ
dependence, Θf1

i (z) (z ≡ cos θ), multiplied by the square root of the corre-

sponding decay branching ratios appearing in Table 1,
√

Bf1

i :

Θf1

c =

√

3

2
z, Θf1

d =
1

2

√

5

2
(3z2 − 1), Θf1

e =

√

1

2
;

Bf1

c = 0.07, Bf1

d = 0.50, Bf1

e = 0.93. (4)

The resulting amplitudes, obtained in a narrow width approximation, are:
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Āf1

i (s, z) ≡ A(B+ → K+
i D̄0 → (Kπ)+D̄0) = āi

√

Bf1

i Πi(s)Θ
f1

i (z),

Af1

i (s, z) ≡ A(B+ → K+
i D0 → (Kπ)+D0) = eiγai

√

Bf1

i Πi(s)Θ
f1

i (z). (5)

The amplitude involving the CP -eigenstate D0
1 in the final state is

Af1

(1)i(s, z) =
1√
2
[Āf1

i (s, z) + Af1

i (s, z)]. (6)

(Of course, a similar expression applies to D0
2). The total amplitudes for Kπ

with invariant mass in the region of the three overlapping resonances is given
by a coherent sum of the amplitudes through the separate resonances:

Āf1 =
∑

i

Āf1

i , Af1 =
∑

i

Af1

i , Af1

(1) =
1√
2
(Āf1 + Af1). (7)

We are neglecting a possible nonresonant KπD term, the contribution of
which in the relatively narrow resonance region is expected to be suppressed
by the ratio of the resonance widths to m(B)− [m(D)+m(K)+m(π)]. Note
that the first two amplitudes in (7) have well specified weak phases, their
difference being the angle γ.

In principle, the measured differential decay distributions, d2Γ̄f1/dsdz,
d2Γf1/dsdz, d2Γf1

(1)/dsdz, given by the square magnitudes of the amplitudes
in (7), may be used to extract the three separate resonance contributions in a
partial wave analysis. This would have simplified the theoretical study con-
siderably. However, this scenario may be experimentally difficult due to the
limitations of statistics and due to the large overlap among the resonances.
We will therefore base our discussion on more realistic considerations, in
which only the combined resonance decay distributions are assumed to be
measurable.

The method of measuring γ as described in [6] can now be applied in a
differential manner. The third relation of (7) can be described as a triangle
in the complex plane, of which the three sides represent the three ampli-
tudes. A similar triangle describes the amplitudes of the charge-conjugated
B− decays, in which only the sign of the weak phase γ has been changed.
The lengths of the sides of the two triangles are given by the square roots of

the differential rates,
√

d2Γ̄f1/dsdz,
√

d2Γf1/dsdz,
√

d2Γf1

(1)/dsdz and by the
charge-conjugate distributions. This determines the shape of the two trian-
gles for a given value of s and θ. The angle between the sides representing
Af1 and its charge conjugate is 2γ. The measured decay distributions for
B+ and B− decays provide a multitude of different pairs of triangles, all of
which share the common angle 2γ. The statistical power of this method of
determining γ (leaving out questions of branching ratios to which we come
later) is comparable to the one based on B → KD, in which a single pair of
triangles is determined from integrated rates. The advantage of excited kaon
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resonances would be that large final state phase differences between Āf1 and
Af1 occur in the resonance region. As mentioned in the introduction, this
has the effect of improving the precision to which γ can be determined.

Let us proceed to calculate a CP asymmetry. Such an asymmetry is
expected to occur between d2Γf1

(1)/dsdz = |Af1

(1)|2 and its charge-conjugate,

d2Γ̄f1

(1)/dsdz, due to the two interfering amplitudes, Āf1 and Af1 , which have
different weak phases and different strong phases in the resonance region.
The method developed below can be applied to calculate CP asymmetries
in any three body hadronic B decay, in which two of the final particles are
decay products of overlapping resonances.

From (5)(7) we obtain:

∆ ≡
d2(Γf1

(1) − Γ̄f1

(1))

dsdz
= 2

∑

i,j

(āiaj − ājai)(B
f1

i Bf1

j )1/2Θf1

i Θf1

j Im(ΠiΠ
∗

j ) sin γ.

(8)
For every pair of resonances this expression has the usual form, 2A1A2 sin(δ1−
δ2) sin(φ1 − φ2), namely a product of decay amplitudes, a sine of final state
phase difference (here given by Im(ΠiΠ

∗

j )) and a sine of the weak phase dif-
ference (γ). Allowing for final state phases in the weak amplitudes would
have introduced cosines of these phase-differences multiplying the respective
products of amplitudes. Another term, involving the sines of these phases,
multiplies the separate Breit-Wigner rates and integrates to zero in the asym-
metries as defined below.

Whereas the B+ B− partial rate−difference contains only the imaginary
part of interfering resonances, the sum contains both the decay rates through
resonances and the real part of their interference:

Σ ≡
d2(Γf1

(1) + Γ̄f1

(1))

dsdz
=

∑

i

(ā2
i + a2

i + 2āiai cos γ)Bf1

i (Θf1

i )2|Πi|2

+2
∑

i,j

[āiāj + aiaj + (āiaj + ājai) cos γ](Bf1

i Bf1

j )1/2Θf1

i Θf1

j Re(ΠiΠ
∗

j ). (9)

The decay distributions (8)(9) have a clearly distinguishable s-depen-
dence. For simplicity, let us neglect the small mass-differences among the
three relevant resonances and denote the common mass by m. We then find:

Im(ΠiΠ
∗

j) ≈
m2

√

ΓiΓj(Γj − Γi)

π

s − m2

[(s − m2)2 + m2Γ2
i ][(s − m2)2 + m2Γ2

j ]
,

Re(ΠiΠ
∗

j) ≈
m

√

ΓiΓj

π

(s − m2)2 + m2ΓiΓj

[(s − m2)2 + m2Γ2
i ][(s − m2)2 + m2Γ2

j ]
. (10)

The difference in the particle-antiparticle differential width is seen to be an
odd function of (s−m2), which changes sign at s = m2. On the other hand,
the sum is an even function and contains an interference term which does
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not change sign at s = m2. These expressions were obtained when neglecting
final state phases in āi, ai. It is easy to show that the sum of the rates picks
up also an odd term if these amplitudes are allowed to involve final state
phases. The absence of such a term in the measured decay distribution can
be used to test the assumption of negligible non-resonant strong phases.

Since the rate difference changes sign at s = m2 and would vanish if
integrated symmetrically around the resonance mass, it is useful to define
an s-integrated asymmetry using the sign function, θ(s − m2) ≡ +1 for
s − m2 > 0 and −1 for s − m2 < 0. In the case under consideration this
yields

∫

dsθ(s − m2)Im(ΠiΠ
∗

j ) ≈ 2

π

√

Γj/Γi

1 + Γj/Γi
ln(Γj/Γi)

=











0.25 i = c, j = d
0.30 i = e, j = d
0.07 i = e, j = c

. (11)

We neglected terms of order (Γi/m)2 and used the width parameters of Table
1. The above numbers which describe the integrated imaginary part of the
overlapping resonances could change somewhat with the resonance param-
eters but they tend not to be very sensitive to their precise values. These

“imaginary overlaps” and similar overlaps for other pairs of resonances are a

key point in any discussion of resonance effects on final state phases. In fact,
as mentioned above, they represent the s-averaged sines of the final state
phase difference corresponding to two interfering resonances. We see that in
some cases these phases may be large. Also, since their sign is predicted,
the sign of the resulting CP asymmetry will depend only on the relative
magnitudes of certain weak amplitudes.

In the case that the two resonances have different masses, mi 6= mj , the
corresponding rate difference changes sign at the s-value given by

s0 =
m2

i mjΓj − m2
jmiΓi

mjΓj − miΓi

, (12)

then a useful s-integrated asymmetry will involve the sign function θ(s−s0).
When integrating the particle-antiparticle asymmetry in angular distri-

bution over all angles θ one finds that the partial rate asymmetry vanishes,
unless two intermediate resonances with identical quantum numbers con-
tribute to the final state [5]. Thus, the usual z-integrated asymmetry will
project out the interference of resonances with identical quantum numbers.
To obtain a nonzero asymmetry when the intermediate resonance states are
of different quantum numbers, one may use (similar to the s- integration) a
suitable sign function of z. Two simple examples of such functions are:

1. θ(z), which projects out the interference of resonances with a unit spin
difference.
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2. θ(|z| − 1/2), which projects out the interference of spin 0 and spin 2
resonances.
In the case under discussion this yields

∫

dzΘf1

c Θf1

d θ(z) =
√

15/8 = 0.48,
∫

dzΘf1

e Θf1

d θ(|z| − 1/2) = 3
√

5/8 = 0.84,
∫

dzΘf1

e Θf1

c θ(z) =
√

3/2 = 0.87. (13)

We now define two CP asymmetries:

A1 ≡
∫

dsdzθ(s − m2)θ(z)d2(Γf1

(1) − Γ̄f1

(1))/dsdz

Γf1

(1) + Γ̄f1

(1)

,

A2 ≡
∫

dsdzθ(s − m2)θ(|z| − 1/2)d2(Γf1

(1) − Γ̄f1

(1))/dsdz

Γf1

(1) + Γ̄f1

(1)

, (14)

and calculate them using (8)(9)(11)(13):

A1 =
[0.045(ācad − ādac) + 0.031(āeac − ācae)] sin γ

∑

i(ā
2
i + a2

i + 2āiai cos γ)Bf1

i

,

A2 =
0.35(āead − ādae) sin γ

∑

i(ā
2
i + a2

i + 2āiai cos γ)Bf1

i

. (15)

The first asymmetry is suppressed largely due to the small decay branching
ratio (7%) of the 1− resonances to Kπ. The large numerical coefficient in the
second asymmetry demonstrates the power of this method in enhancing final
state phases. Note that the numerical coefficients depend only on the Kπ de-
cay branching ratios of the resonances and on the resonance mass-differences
and widths. They do not change by much within the uncertainties in these
experimental quantities. The sign of the asymmetries can be determined by
which of the amplitudes in the parentheses of the numerator is dominant.

To obtain numerical estimates for these asymmetries one needs to know
āi and ai, the weak amplitudes into D̄0K+

i and D0K+
i , respectively. In

principle, these could be determined experimentally if the three resonance
contributions could be separated. Some information is also obtained from
measuring the total decay rates into D̄0Kπ and D0Kπ final states in the
resonance region:

Γ̄f1 =
∑

i

ā2
i B

f1

i , Γf1 =
∑

i

a2
i B

f1

i . (16)

Theoretical calculations of the exclusive weak amplitudes are of course
model-dependent. This is particularly the case for the amplitudes ai, which
are generally expected to be color-suppressed. That is, they involve b̄ → ūcs̄
quark transitions in which the ūc system is incorporated into a D0 while
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the s̄ combines with the spectator quark to form the K+
i . Although color

suppression has been observed in D̄0π0, D̄0ρ0 final states [3], the level of sup-
pression might vary from process to process and is far from being understood.
Also, to carry out such a calculation, one would have to assume factorization
and to rely on quark model wave functions for the Ki resonances in order
to evaluate their weak decay constants. Two of the kaon resonances under
discussion are qq̄ P wave states, for which weak decay constants have not
been much investigated. Due to all these uncertainties, we will restrict our
study to crude estimates based on an educated guess instead of attempting a
model- dependent calculation. A model-calculation with similar results will
be presented elsewhere [11].

To estimate āc ≡ A(B+ → K+
e (1−)D̄0), we use the measured branching

ratio for B+ → ρ+D̄0 of 1.35% [3] multiplied by sin2 θc = 0.222, giving a value
ā2

c = 6.5×10−4. The amplitude of the corresponding D0 mode, ac, is expected
to be suppressed both by a color factor, to be taken as 1/3 and by the
ratio of CKM factors |VubVcs/VcbVus| = 0.36. Correspondingly, we estimate
a2

c = 9.4 × 10−6. The other amplitudes of the 2+ and 0+ P−wave states are
harder to estimate. Assuming factorization, the color- allowed contribution
to K+

d (2+)D̄0 is forbidden by angular momentum conservation. This state as
well as the corresponding one involving a D0 obtain contributions from color-
suppressed amplitudes. Thus, we will assume ā2

d ≈ a2
d = 4×10−6, a somewhat

smaller value than a2
c . The same value will be taken for a2

e. The color-allowed
amplitude of the 0+ state vanishes in the factorization approximation in a
flavor SU(3) symmetry limit in which the 0+ decay constant vanishes. With
SU(3) breaking, this decay constant can be estimated to be given by 0.3
times the K meson decay constant. A corresponding branching ratio of ā2

e =
2.4×10−5 is then obtained from the measured BR(B+ → π+D̄0) = 5.5×10−3

[3] multiplied by sin2 θc and by the SU(3)-breaking factor 0.32.
Thus, we estimate:

ā2
c = 6.5 × 10−4, a2

c = 9.4 × 10−6,

ā2
d = 4 × 10−6, a2

d = 4 × 10−6,

ā2
e = 2.4 × 10−5, a2

e = 4 × 10−6. (17)

With these values we find, for γ = π/2 and for Kπ in the above resonance
region:

BR(B+ → (Kπ)+D0
1) = 3.8 × 10−5, A1 = 1.2%, A2 = 2.7%. (18)

The two asymmetries are predicted to be positive. In the case of A2 this fol-
lows from our estimate that āe is the dominant of the four weak amplitudes
which are involved in the asymmetry. In the case of A1, in which āc is the
dominant amplitude, destructive interferences occurs between the contribu-
tions of the two pairs of resonances. We note that the rather small values
obtained for the asymmetries, in spite of the large final state phases found in
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(11), are the result of having two interfering amplitudes which differ roughly
by an order of magnitude.

By choosing the domain of energy integration more judiciously and/or
by using more suitable weight functions, CP violating asymmetries of about
5 to 10% are readily attained [11]. For instance, weighing the asymmetry
in decay distributions by ∆/Σ (defined in (8)(9)) has been shown to define
an optimal asymmetry [5]. This asymmetry obtains a value of about 10%
(again, for γ = π/2).

Similar asymmetry calculations were carried out for the two other reso-
nance decay modes, f2 = K∗π and f3 = Kρ [11]. Asymmetries in the range
of ∼ 1 to ∼ 10% are possible.

To summarize, we have shown that in quasi two body B decays to excited
kaon resonances and neutral D mesons (or any other mesons) large final state
phases are generated by the overlapping resonances. We explained how to use
decay distributions to determine the weak phase γ. A general definition of
(spin-dependent) CP asymmetries was given, which applies to any quasi two
body decay, in which the dominant final state phases are accounted for in a
calculable manner. Our method does not require resonance separation. Hav-
ing a good control over final state phases, the difficult part in CP asymmetry
calculations remains the evaluation of hadronic matrix elements. These dif-
ficulties, though, can get drastically reduced as the branching ratios for the
relevant modes become experimentally known, which is clearly a much eas-
ier task than measurements involving CP violation. Crude estimates were
shown to lead to asymmetries up to about ten percent. These asymmetries
are the result of the different orders of magnitudes associated with the two
interfering weak amplitudes. Clearly, larger asymmetries may be possible in
decays to resonance states in which amplitudes of comparable magnitudes
interfere. Work along these lines is in progress.
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Label Standard Notation JP mi Γi f1 = Kπ f2 = K∗π f3 = Kρ
Ka K1(1270) 1+ 1273 90 – 16% 42%
Kb K1(1400) 1+ 1402 174 – 94% 3%
Kc K∗(1410) 1− 1412 227 7% > 40% < 7%
Kd K2(1430) 2+ 1425 98 50% 25% 9%
Ke K0(1430) 0+ 1429 287 93% – –

Table 1: Properties and branching ratios of Ki resonances. Masses and
widths are given in MeV.
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