## Supplementary material for LHCb-PAPER-2019-013



Figure 1: Background-subtracted distribution of the  $\mu^+\mu^-$  invariant mass from selected  $B_s^0 \to J/\psi K^+K^-$  decays.



Figure 2: Projection of the fit to the decay-time distribution of  $B^+ \to J/\psi K^+$  candidates. The blue line shows the fit function and the black points the data.



Figure 3: (a) Ratio of the simulated  $\cos \theta_{\mu}$  distribution with the theoretical distribution  $(\sin^2 \theta_{\mu})$ for simulated  $B^+ \to J/\psi K^+$  decays in the pseudorapidity range 2–2.5. (b) Distribution of efficiency-corrected and background-subtracted  $\cos \theta_{\mu}$  for selected  $B^+ \to J/\psi K^+$  decays in the pseudorapidity range 2–2.5. The red line shows the fit projection using  $f(\cos \theta_{\mu}) = a(1+b\cos^2 \theta_{\mu})$ .



Figure 4: Values of the (left) a and (right) b parameters, obtained from a fit to the  $\cos \theta_{\mu}$  distributions of  $B^+ \to J/\psi K^+$  candidates with the function  $f(\cos \theta_{\mu}) = a(1 + b \cos^2 \theta_{\mu})$ , as a function of  $\eta(B^+)$ . The red line shows the result of a  $\chi^2$  fit of a constant line to the points. A consistency of a with a constant and b with -1 indicates a perfect efficiency correction.



Figure 5: Observed *CP* asymmetry in data (black points) folded in one  $B_s^0$  oscillation period. Per-event angular-dependent weights are applied to data to enhance the projection. The weights are calculated as  $w(\Omega) = \frac{(f_1(\Omega) \cdot N_1 + f_2(\Omega) \cdot N_2) - (f_3(\Omega) \cdot N_3 + f_7(\Omega) \cdot N_7)}{(f_1(\Omega) \cdot N_1 + f_2(\Omega) \cdot N_2) + (f_3(\Omega) \cdot N_3 + f_7(\Omega) \cdot N_7)}$ , where the individual terms are defined in Ref. [1]. The PDF (red line) was produced using pseudoexperiments with inputs from the baseline fit result, where the angular efficiency, decay-time efficiency and time-resolution effects are taken into account and perfect tagging is assumed. To account for tagging effects, the resulting distribution is multiplied by the average dilution,  $(1 - 2\langle \omega_{tag} \rangle)$ , obtained by applying the tagging calibration on the data sample.



Figure 6: Phase difference  $\delta_S - \delta_{\perp}$  in bins of  $m(K^+K^-)$ . The statistical and systematic uncertainties are summed in quadrature.



Figure 7: Regions of 68% confidence level in the  $\phi_s$ - $\Delta\Gamma_s$  plane for the Run 1 (in green) and Run 2 (in red)  $B_s^0 \rightarrow J/\psi K^+ K^-$  measurements and a combined contour (in blue). The  $\phi_s$  [2] and  $\Delta\Gamma_s$  [3] predictions are indicated by the thin black rectangle.

Results of the combination of the Run 1 and Run 2  $B_s^0 \rightarrow J/\psi K^+K^-$  LHCb analyses. The corresponding correlation matrix is given in Table 1.

$$\begin{split} \phi_s &= -0.081 \pm 0.032 \,\mathrm{rad}\,, \\ |\lambda| &= 0.994 \pm 0.013\,, \\ \Gamma_s &= 0.6572 \pm 0.0023 \,\mathrm{ps^{-1}}\,, \\ \Delta\Gamma_s &= 0.0777 \pm 0.0062 \,\mathrm{ps^{-1}}\,, \\ \Delta m_s &= 17.694 \pm 0.042 \,\mathrm{ps^{-1}}\,, \\ |A_{\perp}|^2 &= 0.2489 \pm 0.0035\,, \\ |A_0|^2 &= 0.5195 \pm 0.0034\,, \\ \delta_{\perp} - \delta_0 &= 2.87 \pm 0.11 \,\mathrm{rad}\,, \\ \delta_{\parallel} - \delta_0 &= 3.153 \pm 0.079 \,\mathrm{rad}, \\ \Gamma_d &= 0.6590 \pm 0.0016 \,\mathrm{ps^{-1}}. \end{split}$$

Table 1: Correlation matrix of the combined Run 1 and Run 2 measurements of  $B_s^0 \rightarrow J/\psi K^+ K^-$ , including statistical and systematic correlations.

|                                 | $\phi_s$ | $ \lambda $ | $\Gamma_s$ | $\Delta\Gamma_s$ | $\Delta m_s$ | $ A_{\perp} ^2$ | $ A_0 ^2$ | $\delta_{\perp} - \delta_0$ | $\delta_{\parallel} - \delta_0$ | $\Gamma_d$ |
|---------------------------------|----------|-------------|------------|------------------|--------------|-----------------|-----------|-----------------------------|---------------------------------|------------|
| $\phi_s$                        | 1.00     | 0.10        | -0.02      | -0.03            | 0.02         | 0.01            | -0.01     | 0.07                        | 0.00                            | 0.01       |
| $ \lambda $                     |          | 1.00        | 0.04       | -0.04            | -0.05        | 0.03            | -0.02     | -0.04                       | 0.03                            | -0.01      |
| $\Gamma_s$                      |          |             | 1.00       | -0.35            | 0.04         | 0.28            | -0.17     | 0.01                        | 0.01                            | 0.39       |
| $\Delta\Gamma_s$                |          |             |            | 1.00             | -0.01        | -0.62           | 0.40      | -0.05                       | -0.01                           | 0.04       |
| $\Delta m_s$                    |          |             |            |                  | 1.00         | 0.01            | -0.01     | 0.62                        | 0.02                            | 0.00       |
| $ A_{\perp} ^2$                 |          |             |            |                  |              | 1.00            | -0.67     | 0.03                        | 0.01                            | -0.02      |
| $ A_0 ^2$                       |          |             |            |                  |              |                 | 1.00      | -0.06                       | -0.06                           | 0.01       |
| $\delta_{\perp} - \delta_0$     |          |             |            |                  |              |                 |           | 1.00                        | 0.28                            | 0.00       |
| $\delta_{\parallel}-\delta_{0}$ |          |             |            |                  |              |                 |           |                             | 1.00                            | -0.01      |
| $\Gamma_d$                      |          |             |            |                  |              |                 |           |                             |                                 | 1.00       |

Results of the combination of all LHCb measurements of  $\phi_s$ . The corresponding correlation matrix is given in Table 2.

$$\begin{aligned}
\phi_s &= -0.042 \pm 0.025 \, \text{rad} \\
|\lambda| &= 0.993 \pm 0.010 \\
\Gamma_s &= 0.6563 \pm 0.0021 \, \text{ps}^{-1} \\
\Delta\Gamma_s &= 0.0813 \pm 0.0048 \, \text{ps}^{-1} \\
\Delta m_s &= 17.694 \pm 0.042 \, \text{ps}^{-1} \\
|A_{\perp}|^2 &= 0.2476 \pm 0.0032 \\
|A_0|^2 &= 0.5204 \pm 0.0033 \\
\delta_{\perp} &= 2.88 \pm 0.11 \, \text{rad} \\
\delta_{\parallel} &= 3.152 \pm 0.079 \, \text{rad} \\
\Gamma_d &= 0.6592 \pm 0.0016 \, \text{ps}^{-1}
\end{aligned}$$
(1)

Table 2: Correlation matrix of the combined LHCb  $\phi_s$  measurements, including statistical and systematic correlations.

|                      | $\Gamma_s$ | $\Delta\Gamma_s$ | $ A_{\perp} ^2$ | $ A_0 ^2$ | $\delta_{\parallel}$ | $\delta_{\perp}$ | $\phi_s$ | $ \lambda $ | $\Delta m_s$ | $\Gamma_d$ |
|----------------------|------------|------------------|-----------------|-----------|----------------------|------------------|----------|-------------|--------------|------------|
| $\Gamma_s$           | 1.00       | -0.17            | 0.16            | -0.08     | 0.00                 | 0.00             | -0.01    | 0.03        | 0.03         | 0.48       |
| $\Delta\Gamma_s$     |            | 1.00             | -0.50           | 0.32      | 0.00                 | -0.04            | -0.03    | -0.02       | 0.00         | -0.03      |
| $ A_{\perp} ^2$      |            |                  | 1.00            | -0.64     | 0.00                 | 0.03             | 0.01     | 0.02        | 0.00         | 0.03       |
| $ A_0 ^2$            |            |                  |                 | 1.00      | -0.06                | -0.05            | -0.01    | -0.02       | -0.01        | -0.01      |
| $\delta_{\parallel}$ |            |                  |                 |           | 1.00                 | 0.28             | 0.00     | 0.02        | 0.02         | -0.01      |
| $\delta_{\perp}$     |            |                  |                 |           |                      | 1.00             | 0.05     | -0.03       | 0.62         | 0.00       |
| $\phi_s$             |            |                  |                 |           |                      |                  | 1.00     | 0.06        | 0.02         | 0.00       |
| $ \lambda $          |            |                  |                 |           |                      |                  |          | 1.00        | -0.04        | 0.00       |
| $\Delta m_s$         |            |                  |                 |           |                      |                  |          |             | 1.00         | 0.01       |
| $\Gamma_d$           |            |                  |                 |           |                      |                  |          |             |              | 1.00       |

## References

- [1] LHCb collaboration, R. Aaij *et al.*, Measurement of CP violation and the  $B_s^0$  meson decay width difference with  $B_s^0 \rightarrow J/\psi K^+K^-$  and  $B_s^0 \rightarrow J/\psi \pi^+\pi^-$  decays, Phys. Rev. **D87** (2013) 112010, arXiv:1304.2600.
- [2] CKMfitter group, J. Charles *et al.*, Current status of the standard model CKM fit and constraints on  $\Delta F = 2$  new physics, Phys. Rev. **D91** (2015) 073007, arXiv:1501.05013, updated results and plots available at http://ckmfitter.in2p3.fr/.
- [3] M. Artuso, G. Borissov, and A. Lenz, *CP violation in the*  $B_s^0$  system, Rev. Mod. Phys. 88 (2016) 045002, arXiv:1511.09466.