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We discuss a novel mechanism to generate gravitational waves in the early universe. A standard
way to produce primordial black holes is to enhance at small-scales the overdensity perturbations
generated during inflation. The latter, upon horizon re-entry, collapse into black holes. They must
be sizeable enough and are therefore associated to rare peaks. There are however less sizeable and
much less rare overdensity peaks which do not end up forming primordial black holes and have a non-
spherical shape. Upon collapse, they possess a time-dependent non-vanishing mass quadrupole which
gives rise to the generation of gravitational waves. By their nature, such gravitational waves are
complementary to those sourced at second-order by the very same scalar perturbations responsible
for the formation of the primordial black holes. Their amplitude is nevertheless typically about two
orders of magnitude smaller and therefore hardly measurable.

I. INTRODUCTION

A new era, dubbed gravitational wave astronomy, has begun since the detection of gravitational waves (GWs) produced
by the merging of two ∼ 30M� black holes [1]. At the same time, the very same discovery has given fresh life to the
physics of primordial black holes (PBHs) and, more in particular, to the prospect that all (or a significant part of) the
dark matter of the universe is in the form of primordial black holes [2, 3] (see Ref. [4] for a review and more references
therein).

A standard scenario to produce primordial black holes in the early universe is to generate during inflation a large
power spectrum of the scalar comoving curvature perturbation, Pζ ∼ 10−2 on small scales [5–7], i.e. greater (by at
least seven orders of magnitude) than the large-scale power spectrum which is ultimately responsible for the generation
of the CMB anisotropies as well as the seeds of the large-scale structure.

Such small-scale sizeable perturbations are subsequently transferred to the radiation fluid via the reheating process,
which transforms the vacuum energy responsible for inflation into relativistic degrees of freedom. This gives rise to
primordial black holes if the curvature perturbations are large enough upon horizon re-entry. In particular, a region
collapses to a primordial black hole if the overdensity is larger than a critical value δc . 1.

In this picture primordial black holes may be thought as originating from peaks of the density contrast δ(~x) =
(4/9a2H2)∇2ζ(~x), that is from maxima of the local overdensity, where H is the Hubble rate and a the scale factor.
The average density of maxima of a general three-dimensional Gaussian field can be calculated as a function of heights
of the maxima, which we call δpk, through peak theory [8] 1.

In order for the primordial black holes to form a non-negligible fraction of the dark matter, one requires the mass
fraction to be [8]

β ' 6 · 10−9
(
M

M�

)1/2

' 10−2ν2e−ν
2/2, (1.1)

where we have introduced the rescaled peak’s height ν = δpk/σ0 as a function of the variance of the overdensity

σ2
0 =

ˆ
dk

k
W 2(k,RH)Pδ(k). (1.2)

Here Pδ is the overdensity power spectrum, RH is the comoving horizon length RH = 1/aH and W (k,RH) is a window
function. From Eq. (1.1) one deduces that the peak’s height must be large compared to σ0,

ν =
δpk
σ0 ∼

> O(6÷ 8). (1.3)

1 The overdensity δ is not really a Gaussian field as it is related to the Gaussian, comoving curvature perturbation by a nonlinear relation.
Therefore, the overdensity statistics is unavoidably non-Gaussian [9–11]. Nevertheless, this point will not alter our conclusions.

ar
X

iv
:1

90
5.

13
45

9v
2 

 [
as

tr
o-

ph
.C

O
] 

 3
0 

Se
p 

20
19



2

This means that only very rare peaks end up forming primordial black holes.
What about those peaks of the small-scale overdensity power spectrum, with an amplitude not large enough to end

up as primordial black holes ? Do they imprint any observational signature ?
In this paper we argue that they do under the form of gravitational waves. The reason is simple. It is well-known that

a self-gravitating system emits GWs if it possesses a non-vanishing and time-dependent quadrupole [12]. Peaks with
moderate values of the amplitude are not spherical but, rather, ellipsoidal objects, that is they possess a quadrupole.
Furthermore, when the comoving Hubble radius grows and becomes of the order of the size of the peak, these overdense
perturbations decouple from the background and contract, leading to the generation of GWs.

To the best of our knowledge, this is a novel mechanism, which should not be confused with the generation of
GWs at second-order in perturbation theory by the comoving curvature perturbations at horizon re-entry [13–17]. For
instance, a distinctive feature of the mechanism we describe in this paper is that the source of GWs disappears in the
limit of spherical peaks. In the rest of the paper, we describe the mechanism in more details.

The paper is organised as follows. In Section II we start from peak theory to describe the origin of the mass
quadrupole. In Section III we compute the amount of GWs sourced by the quadrupole and in Section IV we discuss
the results, making a comparison with the second-order contribution. Section V summarises our conclusions. Finally,
a couple of Appendices provide additional details about the calculation.

II. THE ORIGIN OF THE MASS QUADRUPOLE

Our starting point is peak theory [8]. Consider a generic peak of the small-scale density fluctuations. We expand the
overdensity around the peak up to second-order (in spatial derivatives)

δ(~x) =
ρ(~x)− ρ̄

ρ̄
' δpk +

1

2
ζij(x− xpk)

i(x− xpk)
j , ζij =

∂2δ

∂xi∂xj

∣∣∣∣
pk

, (2.1)

where ~x are comoving coordinates, the gradient term vanishes since we are dealing with local density maxima, ζij is
evaluated at xpk and ρ̄ is the average energy density. We will ignore higher-order terms and, therefore, approximate
the isodensity contours of the perturbation by concentric ellipsoids. Rotating the coordinate axes such that they are
aligned with the principal axes of the constant-overdensity ellipsoid, we can write the expansion of the overdensity
around the peak in terms of the eigenvalues λi of the matrix −ζij/σ2 as

δ(~x) ' δpk −
1

2
σ2

3∑
i=1

λi(x
i − xipk)2. (2.2)

Here, σ2 is the characteristic square root variance of the components of ζij , and we use from now on the standard
definition

σ2
j =

ˆ
dk

k
k2jW 2(k,RH)Pδ(k). (2.3)

Eq. (2.2) can be rewritten as

2(δ − δpk)
σ2

= −
3∑
i=1

λi(x
i − xipk)2. (2.4)

We take the boundary of the peak to be the ellipsoid of overdensity δ = αδpk, with α < 1. The previous relation yields

2
σ0
σ2

(1− α)ν =

3∑
i=1

λi(x
i − xipk)2, (2.5)

the solution of which defines the boundary of the peak. The principal semi-axes of this ellipsoid are given by

a2i = 2
σ0
σ2

(1− α)

λi
ν. (2.6)
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While for peaks ending up in PBHs α is estimated to be 1/5 [18], here and henceforth we take care of peaks which
have a positive overdensity, and thus we will make the approximation 1−α ' 1. We turn now to the mass quadrupole
defined as

Qij = M ij − 1

3
δijMk

k , (2.7)

where (ri = axi are the physical coordinates)

M ij =

ˆ
Ve

d3r rirj ρr(t, ~r) ' a5(t)ρr(t)

ˆ
Ve

d3xxixj . (2.8)

Here and henceforth, Ve ≡ Ve(t) will indistinctly denote both the comoving and the physical volume of the peak.
Furthermore, we have approximated the radiation energy density by its background value ρr(t). In the principal axes
frame, the components of the inertia tensor are given by

Ĩij ≡
ˆ
Ve

d3xxixj =
4π

15
a1a2a3 · diag(a21, a

2
2, a

2
3). (2.9)

In general,

Iij = U ik ĨklU lj (2.10)

where U ij is a rotation matrix. The quadrupole then becomes

Qij =
4π

45
a5(t)ρr(t)a1a2a3U

ikU lj ·

 2a21 − a22 − a23 0 0
0 −2a22 + a21 + a23 0
0 0 2a23 − a21 − a22

kl

. (2.11)

This expression clearly shows that the quadrupole vanishes in the limit of a spherical peak.

III. THE AMOUNT OF GRAVITATIONAL WAVES.

In general, the GW sourced by a time varying quadrupole is [12]

hTT

ij (t, ~r) =
4G

c4
Λij,kl(r̂)

ˆ
d3s

|~r − ~s|
Tkl

(
t− |~r − ~s|

c
, ~s

)
, (3.1)

where ~r denotes the physical distance from the source (r̂ being its direction), Λij,kl the projector selecting the
transverse-traceless components, Tkl the radiation energy momentum tensor and G the Newton’s gravitational con-
stant. The quadrupole radiation can then be recast into the form

hTT

ij (t, r̂L) =
2G

c4
1

L
Λij,kl(r̂)

d2

dt2

(
Qkl
a(t)

)
≡ 2G

c4
1

L
Λij,kl(r̂)Q̈kl(t) (3.2)

where we have momentarily assumed that the GW radiation is observed from a physical distance a(t)L from the source.
Upon integrating the projectors Λij,kl(r̂) over the solid angle, the power emitted in GWs is given by the expression

PGW =
L2c3

20G
a2(t)〈ḣij ḣij〉. (3.3)

We will focus on the emission of GWs over the period extending from the time of horizon-crossing tH until the time
of turnaround tta, for which an analytical treatment is possible. At later stages, the evolution is non-linear and the
emission of GWs, if any, will occur through higher multipoles. We will come to this issue in the conclusions. Therefore,
our estimates are conservative lower bounds. The corresponding energy density of GWs at the time of production tH
and per Hubble volume VH is given by

ρGW(tH) =
1

VH

ˆ tta

tH

dtPGW =
3GH3(tH)

20πc5
a2(tH) (tta − tH)

〈...
Qij(t)

...
Qij(t)

〉
, (3.4)
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where we defined the time average of the quadrupole derivatives as

〈...
Qij(t)

...
Qij(t)

〉
=

1

tta − tH

ˆ tta

tH

dt
...
Qij(t)

...
Qij(t). (3.5)

The emitted energy density today will be obtained by rescaling Eq. (3.4) like a−4 as is appropriate for relativistic
degrees of freedom.

The typical comoving frequency of the GWs at the time of production can be deduced from the characteristic
momentum k? of the power spectrum. It is of the order of the Hubble rate when the overdensity peaks reenter the
horizon,

f? '
k?
2π

=
a(tH)H(tH)

2π
= 6 · 10−9

(
MH

M�

)−1/2
Hz. (3.6)

Here, MH is the mass contained within the Hubble volume at horizon crossing. Notice that, since the characteristic
physical frequency of the gravitational waves emitted is ∼ H, the time interval over which we average is larger than
the characteristic period of the emitted GWs.

In order to find the time evolution of the contracting ellipsoid, we isolate all the time dependent factors in the
physical positions and write

~r(t) = a(t) [1 + g(t)] ~q, (3.7)

where we parametrise the motion given by the peculiar velocities of the collapse with a time dependent parameter g(t)
(with g(t→ tH) = 0). Moreover, ~q is now the Lagrangian comoving position of the ellipsoid boundary and, as such, is
time-independent.

Notice that, having already isolated the source of the asphericity through the different values of the semi-axes, we
may take the evolution of the different axes to be the same at first order in the density perturbation.

Since the initial expansion with the Hubble flow cannot lead to any GWs emission, we must extract the quadrupole
time dependence induced by the peculiar motion. For this purpose, we write

〈...
Qij(t)

...
Qij(t)

〉
= Tr

{[ˆ
Ve

d3q

(
qiqj − 1

3
δijq2

)]2}
1

tta − tH

ˆ tta

tH

dt

[
d3

dt3
(
ρr(t)a

4(t)g5(t)
)]2

=

[
512π2

2025

(
σ0
σ2

)5

Ξ(ν, x, e, p)

]
1

tta − tH

ˆ tta

tH

dt

[
d3

dt3
(
ρr(t)a

4(t)g5(t)
)]2

, (3.8)

where one has to keep in mind that the combination ρr(t)a
4(t) is constant in a radiation dominated universe, so that

the time derivatives only act on g(t). Furthermore, we have defined a function Ξ(ν, x, e, p) encoding the geometry of
the ellipsoidal peak as

Ξ(ν, x, e, p)

2187
≡
(ν
x

)5 9e4 + 3e2 [2(p− 3)p+ 1] + p2(p+ 1)2

(1− 2p)3 [(p+ 1)2 − 9e2]
3 . (3.9)

Here e is the ellipticity, p the prolateness and x = −∇2δ/σ2 (not to be confused with the comoving coordinate). Those
three parameters encodes the information about the ellipsoidal shape in terms of the eigenvalues λi as

x = λ1 + λ2 + λ3, e =
λ1 − λ3

2 (λ1 + λ2 + λ3)
, p =

λ1 − 2λ2 + λ3
2 (λ1 + λ2 + λ3)

. (3.10)

Notice again that the quadrupole vanishes in the limit e = p = 0, that is, when the peaks become spherical.
Using the separate universe approach to describe the evolution of the overdensities in terms of the closed overdense

metric in Eq. (A.1), see Appendix A, the physical positions can be written as

~r(t) = A(t)~q (3.11)

from which we infer the relation

g(t) =
A(t)

a(t)
− 1 = −δ(tH)

H2(tH)(t− tH)2

4H(tH)(t− tH) + 2
+O(δ2). (3.12)
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Therefore, we find

〈
...
Qij(t)

...
Qij(t)〉 ≈

512π2

2025
a8(tH)ρ2r(tH)

(
σ0
σ2

)5

Ξ(ν, x, e, p)
1

tta − tH
[
7 · 10−4 · δ5(tH)H5(tH)

]
, (3.13)

where δ(tH) = νσ0. In order to have a feeling of the numbers involved, one can estimate the typical value of the
overdensity δ(tH) from the relation

δ(tH) = νσ0 ' 0.7 ·
( σ0

0.2

)
, (3.14)

where we have taken the reference value ν = 3.5 and we have chosen the variance such that it yields a significant
fraction of PBHs of masses M ∼M�. The time average of the third derivatives of the quadrupole is finally given by

〈
...
Qij(t)

...
Qij(t)〉 =

512π2

2025
a8(tH)ρ2r(tH)H5(tH)

(
σ0
σ2

)5
1

tta − tH
(
7 · 10−4 · σ5

0

)
ν5Ξ(ν, x, e, p), (3.15)

where the factor ν5Ξ(ν, x, e, p) depends on the geometrical parameters ν, x, e and p which describe the rescaled ellip-
soidal peaks. Assuming gaussian statistics, the comoving number density probability distribution of these geometrical
parameters reads [8]

Npk(ν, x, e, p) =
225
√

5

8π3

1

R3
∗

1√
1− γ2

x8e(2p− 1)
(
e2 − p2

) (
9e2 − (p+ 1)2

)
exp

[
−1

2
ν2 − 5

2
(3e2 + p2)x2 − (x− γν)2

2(1− γ2)

]
(3.16)

where

R∗ =
√

3
σ1
σ2

and γ =
σ2
1

σ0σ2
. (3.17)

The parameter γ is a measure of the width of the power spectrum: a very narrow power spectrum has a γ close to
unity. We can integrate over this probability distribution in order to get the expectation value for the geometrical
dependent factor ν5Ξ(ν, x, e, p):

E
[
ν5 Ξ(ν, x, e, p)

]
≡ VH

ˆ ∞
1

dν

ˆ ∞
0

dx

ˆ
χ(e, p)dedpNpk(ν, x, e, p) ν

5 Ξ(ν, x, e, p), (3.18)

where [8]

χ(e, p) =


1 if 0 ≤ e ≤ 1/4 and− e ≤ p ≤ e,
1 if 1/4 ≤ e ≤ 1/2 and− (1− 3e) ≤ p ≤ e,
0 elsewhere,

(3.19)

is a function which enforces the ordering λ1 ≥ λ2 ≥ λ3 ≥ 0. The corresponding range of integration is shown in Fig.
1, in which we also display the behaviour of this expectation value of ν5Ξ(ν, x, e, p) as a function of γ. The integration
range for the variable x runs over positive values since we only consider local maxima of the overdensity.

To determine the lower bound of the integration range for ν, note that our calculation applies to density peaks that
can be distinguished from the small underlying fluctuations in the mass distribution. To be more quantitative, we
follow [8] and consider the average profile of the density perturbation at the distance r from the center of the peak

δ(r) ' δpk
ξ(r)

σ2
0

(3.20)

where ξ(r) is the two-point correlation function. We can compute the root-mean-square deviation of the profile δ(r)
from the average profile as [19]

〈[δ(r)− δ(r)]2〉 = σ2
0

[
1− ξ2(r)

σ4
0

]
< σ2

0 . (3.21)
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FIG. 1: Left: Support of χ(e, p) enforcing λ1 ≥ λ2 ≥ λ3 ≥ 0. Right: Expectation value E
[
ν5 Ξ(ν, x, e, p)

]
as a function of the

parameter γ.

In order to have peaks that are statistically significant, we thus require

ν ≡ δpk
σ0 ∼

> 1. (3.22)

Therefore, we will integrate ν over the range ν > 1. This actually provides a lower estimate because it ignores isolated
peaks with significance ν . 1, which should in principle also be accounted for.

Finally, to compute the present-day energy density ρGW(t0), we start from the relation ρGW(t0) = a4(tH)ρGW(tH),
where

ρGW(tH) =
128πG

3375c5
a10(tH)ρ2r(tH)H8(tH)

(
σ0
σ2

)5 (
7 · 10−4 · σ5

0

)
E
[
ν5 Ξ(ν, x, e, p)

]
, (3.23)

in which we substitute

1

a(tH)
=

1

aeq

aeq
a(tH)

=
1

aeq

√
teq
tH

=
1

aeq

a(tH)H(tH)

aeqHeq
=

2πf?
a2eq

1

H0

√
2a−4eq Ωr

=
2πf?√

2

1

H0

√
Ωr
. (3.24)

We have used the relations a ∼ t1/2 and H ∼ 1/t, which are valid during the radiation phase. Moreover, Ωr and H0

are the current radiation abundance and Hubble rate respectively, while aeq stands for the scale factor at equality.
Taking into account that, in the Standard Model of particle physics, the effective degrees of freedom of the thermal
radiation change during the cosmological evolution, we introduce a factor cg ' 0.4 [17] in the energy density and we
finally obtain the present-day GW energy density parameter

ΩGWh
2 = 4 · 10−14

( σ0
0.2

)5 ( cg
0.4

)(
k2?
σ0
σ2

)5

E
[
ν5 Ξ(ν, x, e, p)

]
. (3.25)

This is the main result of this paper.

IV. RESULTS

To assess the importance of the GWs discussed in this paper, we assume as a representative example a log-normal
power spectrum of the comoving curvature perturbation with width w and amplitude Ag, peaked at a characteristic
scale k?

Pζ(k) =
Ag√
2πw2

exp

[
− ln2(k/k?)

2w2

]
. (4.1)

The parameters which enter our estimate of ΩGW, i.e. k2?σ0/σ2 and γ, depend only on the width of the power spectrum
w as can be seen from the left panel of Fig. 2. In the right panel of Fig. 2, we show the estimated ΩGW as a function of
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FIG. 2: Left: The parameters σ0/σ2 and γ dependence on the power spectrum width w. The two quantities reach a plateau for
wide power spectra due to the presence of a window function, that here we chose to be W (k,RH) = exp(−k2R2

H/2), cutting
the contributions of the high-k and the intrinsic cut-off at low momenta given by the gradients in the relation between ζ and δ.
Right: ΩGWh

2 as a function of w for a log-normal Pζ as in Eq. (4.1) compared with the max abundance sourced at second order
ΩII

GWh
2 by the same scalar perturbations.

w. Notice that for w = 0, one recovers the (unrealistic) Dirac delta power spectrum. We also stress that the majority
of the signal discussed in this paper comes from the peaks with ν ' 3.5 due to the presence of an overall factor of ν10

and the Gaussian exponential in Eq. (3.18), while those with larger values of ν, which eventually end up in primordial
black holes, do not contribute significantly.

By its nature, the gravitational wave production mechanism discussed in this paper should be regarded as comple-
mentary to the one taking place at second-order in perturbation theory [16, 17, 20–27] for the same power spectrum
of the curvature perturbation with a characteristic amplitude Ag, whose value is fixed by the value of the variance σ0
and set up to give enough primordial black holes to form the dark matter. In order to gauge their relative abundance,
we shall compare their contributions. We also stress the fact that the characteristic frequency of the GWs produced
by the two physically different phenomena are similar, i.e. f?. For completeness, the reader is referred to Appendix B
for a concise summary of the second-order GW source. The corresponding peak values of the GWs abundance ΩII

GW

are plotted in Fig. 2 as a function of the power spectrum width w. The estimate for the power spectrum (4.1) gives
an abundance in GWs which is typically smaller than the second-order contribution.

In Fig. 3 we have shown the sensitivity curves of the current and future experiments and indicated by markers the
corresponding peaks of the GW abundance for representative choices of the power spectrum peak frequency f?, for the
values w = 0, w = 0.3, w = 1, respectively. Despite the fact that the signal is within the reach of future experiments,
it will be difficult to disentangle it from the overwhelming second order one.

We have also checked that higher-order contributions, e.g. from the octupole or the current quadrupole [12] are
smaller than the quadrupole contribution. The same is true for the amount of GWs coming from the angular momentum
rotation of the ellipsoidal peak induced by the action of first-order tidal gravitational fields generating first-order torques
upon horizon-crossing [18]. Indeed, using the standard expressions for the GW emission from a rotating non-spherical

object [12], one recovers an expression further damped by ω6 ∼ (v/R∗)
6, where v ∼ 10−1

√
1− γ2 [18].

V. CONCLUSIONS

In this paper we have discussed a possible mechanism for the generation of GWs in the early universe, which is
intimately connected to the idea of producing PBHs via scalar perturbations during inflation when the latter are
enhanced at small scales. PBHs are generated by the collapse of rare peaks having an amplitude larger than some
critical threshold. Less prominent, albeit much more abundant peaks of lower amplitude (which do not end up in
PBHs) are those playing a key role in the GW production investigated in this paper. Since they are not as spherical
as the rare ones, they possess a nonvanishing quadrupole. Their density contrast grows as the Universe expands until
they decouple from the Hubble flow. Subsequently, these perturbations contract, but do not form a PBH. Instead, the
fluid bounces out, generating a compression wave when it encounters the surrounding plasma, giving rise to a series
of bounces [40].

The GW production that we have studied refers to the initial stage of the overdensity dynamics, till the turnaround
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FIG. 3: Comparison of the GWs abundance with the sensitivity curves of current/future experiments. The markers identify
the peaks of the density fraction for some representative choices of the power spectrum peak frequency f?, for the choices of
w = 0, w = 0.3, w = 1 respectively. The estimated sensitivity curves represent LISA [28] (power-law integrated sensitivity curve
expected to fall in between the designs named C1 and C2 in Ref. [29]), PTA [30–32], SKA [33, 34], DECIGO/BBO [35], CE
[36], Einstein Telescope [34, 37], Advanced Ligo + Virgo collaboration [38], Magis-AION-space [39] and Magis-100 [39].

point, when an analytical study is possible. In the subsequent stages, the evolution is non-linear and the possible
emission of GWs might occur through higher multipoles. In this sense, our estimate is conservative, but going beyond
it will require a thorough numerical investigation. The same is true for the relation between RH and k? which enters
in the GWs abundance through the factor (k2?σ0/σ2)5. In particular this dependence is due to the presence of the
window function in the variances, whose choice will change correspondingly the abundance of PBHs.

Our estimates indicate that the GWs from peaks would be in principle detectable by upcoming devoted experiments.
However, their amplitude is typically smaller than the second-order production associated to the small-scale scalar
fluctuations responsible for the birth of the PBHs and we expect this source to fully overwhelm the one discussed in
the present paper.
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APPENDIX A: TIME EVOLUTION OF THE OVERDENSITIES.

In this appendix we report the computation of the time evolution of the overdensities until turnaround. On physical
grounds one expects that at first stage the peaks in density are expanding following the Hubble flow. Then, after
horizon crossing time ∼ tH, when the internal gravitational attraction detaches them from the Hubble flow, the peaks
starts contracting. Such a contraction leads to the turnaround point (at time tta) when the velocities vanish. In
this stages we are going to describe the evolution of the overdensity using the separate universe approach as in, for
example, [41].

In order to distinguish the background quantities to those belonging to the separate universe, we are going to label
a, ρ̄r, H the former ones, while A, ρA, HA the latter ones. Locally, the metric describing a spherical region of density
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ρA(t) = ρ̄r(t) [1 + δ(t)] can be written as a close FRWL metric

ds2 = −dt2 +A2(t)

[
dr2

1−K(r)r2
+ r2

(
dθ2 + sin2 θdφ2

)]
(A.1)

where K(r), by being a constant in time, can be fixed at the starting point tH

K = δ(tH)a2(tH)H2(tH), (A.2)

where δ ≡ ρ/ρ̄r − 1 identifies the overdensity with respect to the background.
For a closed universe, the equation of motion for the scale factor A(t) is

H2
A(t) +

K

A2(t)
=

8πG

3
[ρ̄r(t)(1 + δ(t))] = [1 + δ(tH)]H2(tH)

a4(tH)

A4(t)
, (A.3)

since we are setting as initial conditions A(tH) = a(tH), HA(tH) = H(tH) and we used the fact that in a radiation
dominated universe the energy density scales as ∼ A−4.

In the closed universe reference frame, the ellipsoid has fixed Lagrangian coordinates qi and physical coordinates
evolving as ri(t) = A(t)qi. Solving the Friedmann equation one gets

A(t) = a(tH)
√

1 + 2H(tH)(t− tH)− δ(tH)H2(tH)(t− tH)2, (A.4)

and from this solution one can find the Hubble rate to be

HA(t) =
H(tH)− δ(tH)H2(tH)(t− tH)

1 + 2H(tH)(t− tH)− δ(tH)H2(tH)(t− tH)2
. (A.5)

The turnaround point is defined by setting Ȧ(tta) = 0 which gives

tta(δ(tH)) = tH + 1/δ(tH)H(tH). (A.6)

APPENDIX B: GWS FROM SECOND-ORDER.

Let us remind the reader about the second-order source of the GWs. The scalar perturbations which are responsible
for the formation of peaks inevitably act also as a second-order source of GWs.

Following the notation used in [16], in the Newtonian-gauge the equation of motion for the tensor perturbation can
be written as

h′′ij + 2Hh′ij −∇2hij = −4Tij`mS`m, (B.1)

where the primed quantities are derived with respect to the conformal time η andH = a′/a = a(t)H(t) is the conformal
Hubble parameter. Furthermore, in Eq. (B.1) we introduced a projection tensor Tij`m selecting the transverse and
traceless part of the source given, in radiation domination (RD), by [20]

Sij = 2∂i∂j
(
Ψ2
)
− 2∂iΨ∂jΨ− ∂i

(
Ψ′

H
+ Ψ

)
∂j

(
Ψ′

H
+ Ψ

)
. (B.2)

The scalar perturbation Ψ(η,~k) ≡ 2
3T (kη)ζ(~k) is related to the comoving curvature perturbation through the transfer

function which, in a RD era with constant degrees of freedom, is T (x) = (9/x2)
[
sin(x/

√
3)/(x/

√
3)− cos(x/

√
3)
]

[42]. The corresponding present GW abundance is [26]

ΩII
GW(k)

Ωr
=
cg
72

ˆ 1

−1
dd

ˆ ∞
1

ds

[
(d2 − 1)(s2 − 1)

s2 − d2

]2
I2
(
d√
3
,
s√
3

)
Pζ
(
k

(s+ d)

2

)
W 2

(
k

(s+ d)

2
, RH

)
· Pζ

(
k

(s− d)

2

)
W 2

(
k

(s− d)

2
, RH

)
, (B.3)

where the function I accounts for a time-integrated combination of the transfer functions, see [26, 43]. As we assumed
throughout the paper the comoving curvature perturbation ζ to be gaussian, we neglect the impact of NG corrections
to the spectrum of GWs induced at second order [15, 44, 45].
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