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A search for excited electrons produced in pp collisions at
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s = 13 TeV via a contact interaction
qq̄ → ee∗ is presented. The search uses 36.1 fb−1 of data collected in 2015 and 2016 by
the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron into
an electron and a pair of quarks (eqq̄) are targeted in final states with two electrons and two
hadronic jets, and decays via a gauge interaction into a neutrino and aW boson (νW) are probed
in final states with an electron, missing transverse momentum, and a large-radius jet consistent
with a hadronically decaying W boson. No significant excess is observed over the expected
backgrounds. Upper limits are calculated for the pp→ ee∗ → eeqq̄ and pp→ ee∗ → eνW
production cross sections as a function of the excited electron mass me∗ at 95% confidence
level. The limits are translated into lower bounds on the compositeness scale parameter Λ of
the model as a function of me∗ . For me∗ < 0.5 TeV, the lower bound for Λ is 11 TeV. In the
special case of me∗ = Λ, the values of me∗ < 4.8 TeV are excluded. The presented limits on Λ
are more stringent than those obtained in previous searches.
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1 Introduction

Excited leptons appear in a number of composite models [1–6] seeking to explain the existence of the three
generations of quarks and leptons in the Standard Model (SM). This analysis uses the model presented in
Ref. [6] as a benchmark. The composite models introduce new constituent particles called preons that bind
at a high scale Λ to form SM fermions and their excited states. The preon bound states are mapped into
representations of the SU(2) ×U(1) SM gauge group. The SM fermions are identified as a set of left- and
right-handed chiral states protected by the SU(2) symmetry from obtaining masses of the order of Λ [6].
The remaining vector-like states, SU(2) doublets and singlets, acquire masses of the order of Λ and are
thus interpreted as excited fermions. The effective Lagrangian introduces four-fermion contact-interaction
(CI) terms (Eqs. (1) and (2)) and gauge-mediated (GM) currents (Eq. (3)):

∆LCI =
2π
Λ

2 jµ jµ (1)

jµ = f̄Lγµ fL + f̄ ∗Lγµ f ∗L +
(

f̄ ∗Lγµ fL + H.C.
)

(2)

∆LGM =
1

2Λ
f̄ ∗Rσ

µν

[
g
τ

2
Wµν + g

′Y
2

Bµν

]
fL + H.C. (3)

Here, f = `, q and f ∗ = `∗, q∗ denote SM and excited leptons and quarks, and the subscripts L and
R stand for left- and right-handed components of the fermion field f , respectively. The jµ term is the
fermion current of f and f ∗. The Wµν and Bµν are the field-strength tensors of the SU(2) and U(1) gauge
fields, and g and g′ are the corresponding coupling constants of the electroweak theory. The left- and
right-handed excited fermions are both SU(2) doublets, with the weak hypercharge Y such that f ∗ electric
charges coincide with the ones of their ground states f . The weak hypercharge Y of the `∗L,R doublet is
−1, so that its isospin T3 = −1/2 component represents an excited lepton with electric charge Q = −1.
Therefore, the excited lepton model introduces two unknown parameters relevant for this analysis, the
excited lepton mass me∗ and the compositeness scale Λ, which define the preferred search channels and
kinematic properties of the final states. The four-fermion CI terms are suppressed by 1/Λ2 implying the
parton-level e∗ production cross section growing proportionally to ŝ. The considered models allow only
left-handed currents in the contact-interaction terms, and all dimensionless couplings defining the relative
strength of the residual interactions are set to unity [6]. The restriction me∗ < Λ follows from unitarity
constraints on the contact interactions [6, 7]. Branching ratios (B) for excited electrons as functions of me∗

for the case of Λ = 10 TeVare presented in Figure 1. Gauge-mediated decays dominate at me∗ � Λ while
the decay via a contact interaction becomes dominant for me∗ & Λ/3.

This article presents a search for excited electrons singly produced in pp collisions at
√

s = 13 TeV via a
contact interaction qq̄→ ee∗ and decaying either to an electron and a pair of quarks (eqq̄) via a contact
interaction or to a neutrino and a W boson (νW) via a gauge interaction, depicted in Figures 2(a) and 2(b),
respectively. Given the sensitivity of the search, the contribution of gauge-mediated production of the
excited electrons is non-negligible relative to the contact-interaction production only for me∗ < 200 GeV [8]
and thus neglected. The search uses 36.1 fb−1 of data collected in 2015 and 2016 by the ATLAS
experiment [9] at the Large Hadron Collider (LHC).

The present search uses two experimental channels. The first channel targets the production of excited
electrons via a contact interaction qq̄→ ee∗ and their decay via a contact interaction e∗ → eqq̄, resulting
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Figure 1: Branching ratios for excited electrons as a function of me∗ . The scale Λ is set to 10 TeV.
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Figure 2: Feynman diagrams for (a) ee∗ → eeqq̄ and (b) ee∗ → eνW .

in two energetic electrons and at least two hadronic jets j. In the second channel, the excited electrons
are produced via a contact interaction as well, but their decay is via a gauge-mediated interaction into a
W and a ν, where the W boson decays hadronically, yielding an ee∗ → eνqq̄ final state. Experimentally,
this gives final states with exactly one energetic electron, a large-radius (large-R) jet J produced by two
collimated quarks, and missing transverse momentum. The large-R jet approach is sufficient for the current
analysis, as the analysis selection with two resolved jets has minor efficiency. In the following, the final
states resulting from contact- and gauge-mediated decays of singly produced e∗ are denoted by ee j j and
eνJ, respectively. The combination of the two channels maximizes the sensitivity of the search for all
me∗/Λ values. For possible reinterpretations, the results are also presented in terms of model-independent
upper limits on the number of signal events and on the visible signal cross section.

Previous searches for excited leptons were carried out at LEP [10–13], HERA [14, 15], the Tevatron
[16–19], and the LHC [8, 20–26]. No evidence of excited leptons was found and bounds were set on me∗ ,
which is limited to be greater than 3 TeV for the compositeness scale Λ = me∗ [21].
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2 ATLAS detector

The ATLAS detector [9] is a multipurpose detector with a forward–backward symmetric cylindrical
geometry and nearly 4π coverage in solid angle.1 The three major subcomponents of ATLAS are the
tracking detector, the calorimeter, and the muon spectrometer. Charged-particle tracks and vertices are
reconstructed by the inner detector (ID) tracking system, comprising silicon pixel (including the newly
installed innermost pixel layer [27, 28]) and silicon microstrip detectors covering the pseudorapidity
range |η | < 2.5, and a straw-tube tracker that covers |η | < 2.0. The ID is immersed in a homogeneous
2 T magnetic field provided by a solenoid. The energies of electrons, photons, and jets are measured
with sampling calorimeters. The ATLAS calorimeter system covers a pseudorapidity range of |η | < 4.9.
Within the region |η | < 3.2, electromagnetic (EM) calorimetry is performed with barrel and endcap
high-granularity lead/liquid argon (LAr) calorimeters, with an additional thin LAr presampler covering
|η | < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is
performed with a steel/scintillator-tile calorimeter, segmented into three barrel structures within |η | < 1.7,
and two copper/LAr endcap calorimeters. The forward region (3.1 < |η | < 4.9) is instrumented with a LAr
calorimeter with copper and tungsten absorbers for EM and hadronic energy measurements, respectively.
Surrounding the calorimeters is a muon spectrometer (MS) with superconducting air-core toroidal magnets.
The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. The MS
includes three stations of precision tracking chambers covering |η | < 2.7 to measure the curvature of
tracks. The MS also contains detectors with triggering capabilities covering |η | < 2.4 to provide fast muon
identification and momentum measurements.

The ATLAS two-level trigger system selects events as described in Ref. [29]. The first-level trigger is
hardware-based while the second, high-level trigger is implemented in software and employs algorithms
similar to those used offline in the full event reconstruction.

3 Data and simulated event samples

The analysis uses the pp collision data recorded by the ATLAS detector in 2015 and 2016 at
√

s = 13 TeV
with a 25 ns bunch spacing. The total integrated luminosity collected in the data-taking periods with
normal operation of the relevant detector subsystems is 36.1 fb−1. To further improve the data quality,
events containing noise bursts or coherent noise in the calorimeters, as well as incompletely recorded
events, are excluded.

Events for the ee j j channel were recorded using di-electron triggers with transverse energy ET thresholds
of 12 and 17 GeV for both electrons in 2015 and 2016, respectively. For the eνJ channel, events must pass
at least one of the two single-electron trigger requirements with thresholds set at ET = 60 or 120 GeV in
2015, and ET = 60 or 140 GeV in 2016. Combining the lower-threshold trigger with the one with a higher
threshold but looser identification requirements, results in single-electron trigger efficiencies typically
exceeding 90% for the electrons in the phase space considered in the analysis [29]. Events with an eµ j j

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity

is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡
√
(∆η)2 + (∆φ)2.
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final state are used for background studies in the ee j j channel and are selected using a combination of the
two single-muon triggers with the transverse momentum pT thresholds of 26 and 50 GeV.

Selected events contain proton–proton collisions in the same or neighboring bunch crossing (pile-up). The
events used in the analysis contain 24 pile-up interactions on average, resulting in multiple interaction
vertices in an event. The primary vertex (PV) is defined as the vertex with the highest Σp2

T of charged-particle
tracks. This PV must have at least two tracks with the transverse momentum pT > 400 MeV.

The signal samples were simulated by Pythia 8.210 [30], using a leading-order (LO) matrix element (ME),
the NNPDF23LO [31] set of parton distribution functions (PDFs) and the A14 [32] set of tuned parameters.
The e∗ widths for the simulated signal samples were derived from CalcHEP 3.6.25 [33], which takes
into account phase-space effects due to quark masses. The samples were generated for a compositeness
scale Λ = 5 TeV and masses of excited electrons ranging from 100 GeV to 4 TeV. The effect of a finite
Λ-dependent e∗ width on the analysis is negligible for me∗ < Λ.

As shown in Section 5, the dominant backgrounds in the ee j j and eνJ channels are from Z/γ∗ + jets and
W + jets production, respectively. The sub-leading background in both channels is from tt̄ production,
followed by single-top and diboson production. The estimation of background processes involving prompt
leptons from W and Z/γ∗ decays relies on simulated event samples.

The Z/γ∗ + jets and W + jets processes were simulated using Sherpa 2.2.1 [34]. Parton-level final
states with up to two partons produced along with the Z and W bosons were generated at next-to-leading
order (NLO), and those with three or four partons were generated at LO, using the OpenLoops [35] and
Comix [36] for the NLO and LO cases, respectively. Double counting of events with the same partonic
final state generated by various combinations of the ME and parton shower (PS) was eliminated according
to the ME+PS@NLO prescription [37]. The NNPDF 3.0 [38] set of PDFs was used. The Z/γ∗ + jets and
W + jets simulated event samples were normalized to the next-to-next-to-leading-order (NNLO) inclusive
cross sections computed with the FEWZ program [39].

The tt̄ simulated event samples were generated at NLO accuracy in the strong coupling constant using
Powheg-Box v2 [40–43], with the top-quark spin correlations preserved, and the CT10 [44] PDF set.
Electroweak s- and t-channel single-top-quark events as well as events with a single top-quark produced in
association with aW bosonwere generated using Powheg-Box v1 [45, 46]. Parton showering, hadronization
and the underlying event were handled by Pythia 8.210 for tt̄ production and by Pythia 6.428 [47] for
single-top production. Pythia 8.210 and Pythia 6.428 used the A14 and Perugia 2012 [48] sets of tuned
parameters, respectively. The tt̄ simulated event sample was normalized to the inclusive cross section
calculated using the Top++ v2.0 [49] at NNLO accuracy in the strong coupling constant, with soft gluon
emission accounted for in the next-to-next-to-leading logarithmic order (NNLL). The single-top simulated
event samples were normalized to the cross sections computed at NLO+NNLL accuracy [50].

The Z Z , ZW and WW simulated event samples were generated using Sherpa 2.2.1. Events containing
zero or one final-state parton were generated using an NLO ME. Events with two or three recoiling quarks
or gluons were generated with a LO ME. The NNPDF 3.0 PDF set was used. The event generator cross
sections are used in this case.

Decays of b- and c-hadrons in the simulated event samples of tt̄, single-top, and signal processes were
handled by EvtGen v1.2.0 [51].

The pile-up interactions are described by overlaying minimum-bias events on each simulated signal or
background event. The minimum-bias events were generated with Pythia 8.186 [52] with the A2 [53]

5



set of tuned parameters and the MSTW2008LO [54] PDFs. The distribution of the average number of
interactions per bunch crossing in simulated event samples is reweighted to match the observed data.

All the simulated event samples were passed through a simulation of the ATLAS detector [55]. The
detector response was obtained from a detector model that uses Geant4 [56]. For the simulation of the
ee∗ → eeqq̄ signal samples, Geant4 based inner detector simulation was combined with a parameterized
calorimeter simulation [55]. The simulated event samples were processed with the same reconstruction
software as used for data.

4 Object and event selection

Events satisfying basic quality, trigger and vertex requirements are selected for the analysis using the
criteria applied to electrons, muons, hadronic jets, and their kinematic quantities. The looser baseline
selections are applied at stages which aim to eliminate double counting of detected objects (electrons,
muons, jets, tracks, vertices, etc.) in an event and double-counting of events in the two analysis channels.
The tighter final selection defines objects used in the analysis. In the following, both the baseline and final
object selections are specified in Table 1, and the order of the event criteria applied in the analysis is given
in Table 2. These selections form the preselection stage.

An electron candidate is reconstructed as a clustered energy deposition in the calorimeter matched to a track
from the ID [57]. The direction of an electron is taken from its track and the energy is measured from the
EM cluster. The energy is corrected for losses in the material before the calorimeter and for leakage outside
of the cluster [58]. The coverage of the ID limits the pseudorapidity of electrons to |η | < 2.47. Electrons
with 1.37 < |η | < 1.52 are excluded because they point to the barrel-to-endcap transition regions. To
reject electron candidates originating from hadronic jets and photon conversions, electrons are required to
satisfy a set of likelihood-based identification criteria determined by variables characterizing longitudinal
and lateral calorimeter shower shapes, ID track properties, and track–cluster matching. These criteria
are referred to, in order of increasing background rejection, as loose, medium and tight and are defined
so that an electron satisfying a tighter criterion always satisfies looser ones. The loose identification is
approximately 95% efficient for prompt electrons with pT > 30 GeV. In the same pT range, signal efficiency
for medium identification is greater than 90%. The efficiency of tight identification is greater than 85% for
prompt electrons with pT > 65 GeV [57]. Further rejection of background is achieved by applying EM
calorimeter and ID isolation requirements [57]. The loose isolation requirement applied in this analysis is
designed to achieve 99% selection efficiency for prompt electrons. Electrons originating from the primary
interaction vertex are selected by requiring the reconstructed electron track to have a transverse impact
parameter significance |d0 |/σd0

< 5, where σd0
is the uncertainty in the transverse impact parameter, and

a longitudinal impact parameter |z0 sin θ | < 0.5 mm.

Muons are reconstructed using a combined fit of tracks measured with the ID and MS. Muons from in-flight
decays of charged hadrons are suppressed with the medium set of identification requirements [59]. The
muon identification efficiency exceeds 96% for prompt muons with pT > 20 GeV. Muons are also subject
to a loose isolation requirement that uses ID tracks [59] and is 99% efficient for prompt muons at any
relevant pT and η. Muons are further required to originate from the primary vertex by imposing the same
criteria as for electrons on the ID track’s longitudinal impact parameter and transverse impact parameter
significance less then 3.
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Hadronic jets are reconstructed from clustered energy deposits in the calorimeters using the anti-kt
algorithm [60] with radius parameters R = 0.4 and R = 1.0. The reconstructed jets with R = 1.0 are
trimmed [61] to reduce contributions from pile-up interactions and underlying event by reclustering the jet
constituents into subjets using a kt algorithm with R = 0.2 and removing subjets carrying less than 5% of
the boosted jet’s pT. Jet calibrations are applied as described in Refs. [62, 63].

An event is removed if it contains a jet reconstructed with R = 0.4 and originating from non-collision
backgrounds, which is identified either by a substantial fraction of the jet energy being deposited in known
noisy calorimeter cells or by a low fraction of the jet energy being carried by charged particles originating
from the primary vertex and lying within a ∆R = 0.4 cone around the jet axis [64]. Rejection of pile-up jets
with |η | < 2.4 and pT < 60 GeV is achieved using a jet-vertex-tagger (JVT) discriminant [65] quantifying
the relative probability for a jet to originate from the primary vertex.

The R = 0.4 jets containing b-hadrons (b-jets) are identified using the multivariate b-tagging algorithm
MV2c10 [66] based on impact parameters of tracks within the jet cone and positions of secondary decay
vertices [67]. The b-tagging efficiency is 77% as measured in simulated tt̄ event samples [68].

To discriminate boosted jets originating from W boson decays from those produced through strong
interactions, the jet mass obtained by combining measurements from the calorimeter and tracking systems
and the substructure variable Dβ=1

2 [69, 70] are used. The function Dβ=1
2 is a ratio of three- to two-point

correlation functions based on the pT values and pairwise ∆R separations of jet constituents. The Dβ=1
2

variable is specifically sensitive to a two-prong substructure within a jet and tends to zero in a two-body
decay limit. A boosted jet is tagged as a W candidate if its mass falls within a certain mass window
around mW and its Dβ=1

2 value is sufficiently low. For the W-tagging procedure the mass window and the
upper bound placed on Dβ=1

2 are tuned, depending on the jet pT, to reach a nominal 50% signal efficiency
(W-tag50) with a multi-jet background rejection factor of 40–80 [71, 72]. The jet energy and mass are both
calibrated prior to applying the W-tagging discriminant. At the preselection level, only the upper bound on
Dβ=1

2 corresponding to W-tag50 is imposed.

The missing transverse momentum, with magnitude Emiss
T , is calculated as the negative vector sum of all

reconstructed objects associated with the primary vertex. This includes calibrated electrons, muons, and
R = 0.4 jets, and a track-based soft term (TST) using ID tracks not associated with the preselected hard
objects [73]. The TST is built from tracks with pT > 400 MeV and |η | < 2.5 which have a sufficient number
of hits in the ID, a good fit quality, and an origin consistent with the primary vertex.

Double counting of electrons, muons, and jets reconstructed by more than one lepton and/or jet algorithm
as well as misreconstruction of distinct physics objects produced in close proximity are resolved by the
overlap removal procedure. The procedure is applied to the baseline objects in the following order:

• electron–electron: if two electrons share an ID track then the lower quality electron is removed; if
both electrons are of the same quality then the lower-pT electron is removed;

• electron–muon: remove the electron which shares an ID track with the muon;

• electron–jet with R = 0.4: remove the jet if ∆R(e, jet) < 0.2 and, in the eνJ channel only, the jet is
not b-tagged; after repeating this step for all pairs of electrons and surviving jets, electrons within
∆R = 0.4 of a jet are removed;

• muon–jet with R = 0.4: if ∆R(µ, jet) < 0.2 and the jet has less than three ID tracks originating
from the muon production vertex and, in the eνJ channel only, the jet is not b-tagged, then the jet is
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removed; after repeating this step for all pairs of muons and surviving jets, muons within ∆R = 0.4
of a jet are removed.

The second overlap removal procedure applied only in the eνJ channel involves baseline electrons and final
boosted jets. The boosted jet is removed if a baseline electron is present within ∆R = 1.0 of the boosted jet
direction.

Table 1: Object definitions in the ee j j and eνJ channels. Muon selections are given in parentheses.

Selection type Objects ee j j eνJ

Baseline

Electrons

pT > 30 GeV (> 40 GeV) pT > 40 GeV
|η | < 2.47, excluding 1.37 < |η | < 1.52 (< 2.5)

quality loose (medium)
(muons) no isolation (loose isolation with ID tracks)

|d0 |/σd0
< 5 (< 3); |z0 sin θ | < 0.5 mm

Jets R = 0.4 jets, pT > 20 GeV

b-jets – R = 0.4 jets
|η | < 2.5, JVT

Final

Electrons
pT > 30 GeV pT > 65 GeV
quality medium quality tight

loose isolation

Jets
R = 0.4 jets R = 1.0 jets

pT > 50 GeV pT > 200 GeV
|η | < 2.8, JVT |η | < 2

One of the background sources common to both channels is a misidentification of hadronic jets, photon
conversions in the material or electrons from hadron decays as prompt electrons, referred to as the
fake-electron background (Section 5). As this background is estimated in a data-driven way, to avoid double
counting, the selected electrons in simulated background events are required to coincide with electrons
from the event generators (referred to as ‘truth matching’ in Table 2).

To correct for differences in various object reconstruction and identification efficiencies between the data
and simulated event samples, the simulated events are weighted to correct for differences in the trigger,
object reconstruction and identification efficiencies between the data and simulation [57, 59, 68]. The
correction weights are estimated using measurements in control data samples and are typically consistent
with unity to within 5%.

5 Background composition

Background processes in the ee j j final state are dominated by high-mass Drell–Yan Z/γ∗(→ ee) + jets
and tt̄ → bW(eν)bW(eν) production. Contributions from single-top, diboson, Z/γ∗(→ ττ) + jets,
W(→ eν)+ jets, and multi-jet production are subdominant. The W(→ eν)+ jets and multi-jet backgrounds
contribute to the ee j j sample through misidentification of jets as electrons.
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Table 2: Event selection sequences in the ee j j and eνJ channels. W-tag50 refers to the W-tagger with a 50% signal
efficiency. ‘Truth matching’ requires selected electrons to match electrons from the event generators.

ee j j eνJ

Overlap removal (1) between baseline between baseline
electrons, muons, jets electrons, muons, jets, b-jets

Jet cleaning Reject event if it has a baseline R = 0.4 jet of non-collision origin

Overlap removal (2) – between baseline electrons
and final R = 1.0 jets

Number of jets N jets
final ≥ 2 NJ

final ≥ 1

Number of leptons Ne
final = 2 Ne

final = 1
Ne

baseline ≥ 2 and Nµ
baseline = 0 Ne

baseline = 1 and Nµ
baseline = 0

Trigger matching Reject event if final electrons are not matched to the trigger objects
Truth matching Simulation only: reject event if a selected electron fails truth matching

Emiss
T

–

Emiss
T > 100 GeV

mJ mJ
final > 50 GeV

Dβ=1
2

Reject event if
final R = 1.0 jet does not satisfy
upper bound on Dβ=1

2 for W-tag50

The dominant backgrounds in the eνJ channel are due to the production of aW boson in association with jets
W(→ eν) + jets and tt̄ → bW(eν)bW(J) followed by single-top, Z/γ∗(→ ee/ττ) + jets, W(→ τν) + jets,
diboson, and multi-jet background production. The only sizeable source of events with a misidentified
electron is the multi-jet production.

The overall background composition in the ee j j and eνJ preselected event samples is shown in Table 3.

Table 3: Relative contributions of background processes to the total number of preselected background events. The
event yields are normalized to the theoretical cross sections. Contributions included into the fake-electron background
are denoted by “—”. The ’fake electron’ row includes all sources of events with misidentified electrons. These events
are vetoed in the simulated event samples to prevent double counting.

ee j j [%] eνJ [%]
Z/γ∗(→ ee) + jets 79 < 1
Z/γ∗(→ ττ) + jets < 1 < 1
W(→ eν) + jets – 27
W(→ τν) + jets – 3
tt̄ 16 58
Single-top 1 6
Fake electron 2 2
Diboson 2 4

Background processes with real electrons are predicted using the simulated event samples. Backgrounds
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with misidentified electrons are evaluated with a data-driven matrix method as in Ref. [74].

6 Analysis strategy

The analysis is based on measurements of event yields in a number of phase-space regions defined by the
discriminating variables described below. Signal regions (SRs) are constructed to maximize sensitivity to
the signal process as predicted by the benchmark model for given values of me∗ , in the presence of the SM
background. The signal selection efficiency is nearly independent of Λ, and therefore the SRs are optimized
for the different values of me∗ instead of using a two-dimensional Λ–me∗ signal optimization. Simulated
dominant background processes are constrained in dedicated control regions (CRs). The analysis is blind,
and to verify the background predictions after they are constrained by the CRs and before the SRs are
unblinded, validation regions (VRs) serve as transitions between CRs and SRs. Signal contamination of all
CRs and VRs is negligible. The following section discusses the selection criteria used in the various SRs,
CRs, and VRs, which do not overlap.

6.1 Signal regions

The SRs for the ee j j channel are constructed using the m`` , ST, m`` j j discriminating variables, where

• m`` is the invariant mass of the electron pair,

• ST is the scalar sum of the transverse momenta of the two electrons and the two jets with the highest
pT, and

• m`` j j is the invariant mass of the two electrons and the two jets with the highest pT.

The definition of the SRs is identical to the one used in the search for a singly produced excited muon
decaying into a muon and two jets at

√
s = 8 TeV with the ATLAS detector [22]. Further optimization

of the ee j j channel SRs does not result in a conclusive improvement of sensitivity to the signal process
compared to the initial SR definition given in Ref. [22]. The distributions of the discriminating variables
for the ee j j channel are shown in Figure 3 after applying the preselection requirements (Table 2) and
performing a background-only fit in the corresponding CRs.

The selection criteria for the SRs as well as the selection efficiencies for the ee j j channel are shown in
Table 4.

The SRs in the eνJ channel are optimizedwith discriminating variables at each value ofme∗ bymaximization
of the modified significance defined in Ref. [75] as

Z =
√

2 × ((S + B) × ln (1 + S/B) − S),

where S is the signal yield and B is the background yield in the defined region. This method is checked
with minimization of expected upper limit for cross section of the signal, which gives a similar result. The
maximization is performed by varying the criteria on the set of variables found to provide a maximum
discrimination between the signal and the background, mνW

T and
���∆φ(e, ®Emiss

T )
���, simultaneously, where:
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Figure 3: The distributions of (a) m`` , (b) ST, and (c) m`` j j used to discriminate the signal from background
processes in the ee j j channel. The distributions are shown after applying the preselection criteria. The background
contributions are constrained using the CRs. The signal models assume Λ = 5 TeV. The last bin includes overflow
events (the underflow is not shown). The ratio of the number of data events to the expected number of background
events with its statistical uncertainty is shown in the lower panes. The hashed bands represent all considered sources
of systematic and statistical uncertainties in the SM background expectation.
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Table 4: Selection requirements for the SRs used to test various mass hypotheses in the ee j j channel. They are
applied to the preselected event samples (see Table 2). Signal efficiencies are presented as the number of signal
events in each SR relative to that after the preselection and relative to that before any selection. Each signal region is
valid for one or more mass hypotheses, as shown in the second column.

me∗ min m`` min ST min m`` j j Efficiency relative to Total efficiency
[GeV] [GeV] [GeV] [GeV] preselection stage [%] [%]

SR1 100 500 450 0 36 2
200 51 10

SR2

300

550 900 1000

41 13
400 47 18
500 52 24
600 57 28
700 62 33

SR3 800 450 900 1300 68 37
900 73 41

SR4 1000 450 1050 1300 73 43
SR5 1250 450 1200 1500 77 46
SR6 1500 400 1200 1700 83 52
SR7 1750 300 1350 1900 87 55
SR8 2000 300 1350 2000 91 57
SR9 2250 300 1500 2100 91 58

SR10

2500

110 1650 2300

94 60
2750 96 61
3000 97 62
3250 97 62
3500 98 62
3750 98 62
4000 98 62

• mνW
T coincides with the transverse mass of the system of the missing transverse momentum and the

W boson in signal events and is given by

mνW
T =

√√√(
mW

)2
+ 2 ×

(√(
mW

)2
+

(
pWT

)2
× Emiss

T − pWx × Emiss
x − pWy × Emiss

y

)
,

where pWx(y) is the x(y)-component of the momentum of the W boson candidate reconstructed as the
R = 1.0 jet. The mνW

T is required to exceed a threshold that grows with me∗ .

•
���∆φ(e, ®Emiss

T )
��� coincides with the absolute value of the azimuthal angle between the neutrino and

the electron in signal events. This quantity provides discrimination between signal events and SM
processes involving the leptonic decay of a W boson.

Different sets of selection criteria are examined for each me∗ by applying a maximum or minimum
requirement on each of the two variables, i.e., min mνW

T , max mνW
T , min

���∆φ(e, ®Emiss
T )

���, and the most
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effective one is used for the corresponding SR. The distributions of the mνW
T and

���∆φ(e, ®Emiss
T )

���, as well as
in mJ variables are shown in Figure 4 for the eνJ channel after applying the preselection requirements and
the background-only fit in the CRs as discussed in Section 6.2 and Section 8.
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Figure 4: The distributions of (a) mJ , (b) mνW
T , and (c)

���∆φ(e, ®Emiss
T )

��� used to discriminate the signal and background
processes in the eνJ channel. The distributions are shown after applying the preselection criteria. The background
contributions are constrained using the CRs. The signal models assume Λ = 5 TeV. The last bin includes overflow
events (the underflow is not shown). The ratio of the number of data events to the expected number of background
events is shown with its statistical uncertainty in the lower panes. The hashed bands represent all considered sources
of systematic and statistical uncertainties for the expected backgrounds.

In the eνJ channel, the observables mνW
T and

���∆φ(e, ®Emiss
T )

��� are used to create the nine optimized SRs.

Each SR targets a model with a given mass of the excited electron. The SR is defined by applying the
preselection introduced in Section 4 and additionally requiring the criteria defined in Table 5, which include
a b-jet veto and selection on mνW

T and
���∆φ(e, ®Emiss

T )
���. The large-R jet also passes the 50% signal efficiency

requirement on mJ from the W-tagger.
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Table 5: Selection requirements for the SRs used to test various mass hypotheses in the eνJ channel. They are applied
to discriminating variables after the preselection (Table 2) criteria. Signal efficiencies are presented as the number of
signal events in each SR relative to that after the preselection and relative to that before any selection. Each signal
region is valid for one or more mass hypotheses, as shown in the second column. “N/A” means the requirement is not
applied for that SR.

me∗ min mνW
T max mνW

T min
���∆φ(e, ®Emiss

T )
��� Efficiency relative to Total efficiency

[GeV] [GeV] [GeV] [radian] preselection stage [%] [%]
SR1 100 0 200 2.7 61 3
SR2 200 100 N/A 2.4 59 4
SR3 300 100 N/A 2.1 56 5
SR4 400 200 N/A 1.8 40 5
SR5 500 300 N/A 1.5 38 5
SR6 600 400 N/A 1.2 38 6
SR7 700 500 N/A 1.2 34 6

SR8 800 600 N/A 0.9 36 7
900 38 8

SR9

1000

700 N/A 0.9

37 8
1250 42 9
1500 43 10
1750 44 10
2000 45 10
2250 45 10
2500 43 10
2750 44 10
3000 44 10
3250 42 10
3500 43 10
3750 42 10
4000 42 9
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6.2 Control regions

The control regions are used to derive normalization factors and to constrain systematic uncertainties in
the respective background yields (Section 8). The CRs are defined so as to ensure a high purity in the
corresponding background processes and a sufficient number of events, while having no overlap with
events in the respective SRs. To ensure that extrapolation uncertainties are small, the selection criteria for
the CRs closely follow those used in the corresponding SRs. An individual selection criterion is changed
to enrich the background of interest while ensuring no overlap with the signal region. Hence, separate
control regions are defined for each signal region. The other selection criteria are the same as for the signal
regions.

The CRs of the ee j j channel (Table 6) are introduced for the two largest sources of background, Z/γ∗ + jets
and tt̄. The Z/γ∗ CRs are defined by requiring

��m`` − mZ

�� < 20 GeV and the same ST and m`` j j selections
as in the corresponding SRs. The tt̄ CRs are defined by the full SR selections but at the preselection
require a single-muon trigger and exactly one electron and exactly one muon in the event, leading to an
eµ j j signature. The kinematic criteria used for the eµ j j signature (apart from the lepton preselection) are
identical to those in the nominal ee j j SR selection.

The CRs for the eνJ channel (Table 7) are defined for the W + jets and tt̄ background processes. The W
CR is defined by applying the same selection requirements as in the SRs (Table 5), including the b-jet
veto, but requiring the jets to fail the boosted jet mass W-tagger with the 80% signal efficiency (W-tag80).
Also, the

���∆φ(e, ®Emiss
T )

��� selection is removed for all W CRs in order to reduce the statistical uncertainties.
There is no W CR corresponding to SR1 since the W + jets background process is subdominant in such
a CR. The tt̄ CR events are required to have at least two b-jets, fulfil the respective SR selections from
Table 5, and have a leading large-R jet satisfying the mJ W-tag50 criterion. No additional requirements on
the kinematic properties of the b-jets are applied in the tt̄ CR. The tt̄ background prediction is corrected for
the difference in b-jet identification efficiencies between data and simulated events, and the corresponding
systematic uncertainties are accounted for. Theoretical uncertainties in the tt̄ kinematic distributions are
accounted for as described in Section 7.

6.3 Validation regions

The background estimation in the CRs is validated in additional phase space regions, the VRs. The VRs
are not included in any fits aimed at a signal search.

In the ee j j channel, a m`` VR is defined as the intermediate range between SR and Z/γ∗ CR. A further
requirement on the Emiss

T is introduced to split the m`` VR into regions dominated by Z/γ∗ and tt̄ processes.
A same-sign (SS) VR is defined in order to validate the fake-electron background estimate by selecting
events with m`` > 160 GeV in which both electrons are required to have the same electric charge Qe

(Table 6).

The mJ and b-jet VRs are introduced for the eνJ channel. The mJ VRs are defined by applying the
preselection requirements while inverting the requirement on the boosted jet massW-tagger interval relative
to the W CRs and SRs (Table 7). The b-jet VRs require the number of b-jets to be equal to one to validate
the application of tt̄ normalization derived in tt̄ CR with the two b-jets requirement to the SR with zero
b-jets. The requirements on mνW

T and
���∆φ(e, ®Emiss

T )
��� in the VRs are the same as in the corresponding SRs.
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Table 6: Selection requirements applied in addition to the preselection (Table 2) in the CRs, VRs, and SRs for the
ee j j channel. “Pass”, ‘fail” or “N/A” mean that the requirement is passed, failed or not applied, respectively.

Region Leptons m`` ST m`` j j Qe

SR 2 electrons pass pass pass N/A

Z/γ∗ CR 2 electrons
> 70 GeVand

pass pass N/A
< 110 GeV

tt̄ CR
1 electron

pass pass pass N/A
and 1 muon

m`` VR 2 electrons
> 110 GeV and

pass pass N/A
< mSR threshold

``

SS VR 2 electrons > 160 GeV N/A N/A Qe1 = Qe2

Table 7: Selection requirements applied in addition to the preselection (Table 2) in the CRs, VRs and SRs for the eνJ
channel. “Pass”, ‘fail” or “N/A” mean that the requirement is passed, failed or not applied, respectively. W-tag80
refers to the working point of the W-tagger with 80% signal efficiency.

Region mJ interval Nb-jets mνW
T

���∆φ(e, ®Emiss
T )

���
SR W-tag50 0 pass passpass

W CR W-tag80 0 pass N/Afail

tt̄ CR W-tag50 ≥ 2 pass passpass

mJ VR W-tag50 fail N/A pass pass
W-tag80 pass

b-jet VR W-tag50 1 pass passpass
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7 Systematic uncertainties

The systematic uncertainties of the search are divided into two categories: the experimental uncertatinties
and theoretical uncertainties in signal and background prediction. Details of the evaluation of experimental
uncertainties are provided in the references in Section 4.

The uncertainty in the combined 2015+2016 integrated luminosity is 2.1%. It is derived from the calibration
of the luminosity scale using x-y beam-separation scans, following a methodology similar to that detailed
in Ref. [76], and using the LUCID-2 detector for the baseline luminosity measurements [77].

The uncertainties in the electron energy scale and resolution result in less than a 1% effect for simulated
background or signal event yields in the SRs. In addition, uncertainties are taken into account for the
electron trigger (< 2%), identification (< 3%), and reconstruction (< 1%) efficiencies, and for the isolation
requirements (< 6%).

The effect of the uncertainty in the muon momentum on tt̄ background event yields in the tt̄ CRs of the
ee j j channel does not exceed 1%. Differences between data and simulated event samples in the muon
identification and trigger efficiencies are also taken into account and are less than 1%.

The impact of the R = 0.4 jet energy scale (JES) and resolution (JER) uncertainties on the background
event yields is 1–5% (JES) and 1–6% (JER) in the SRs of the ee j j channel. The signal selection efficiency
change in the SRs of the ee j j channel due to the JES uncertainties never exceeds 2%, while the effect of
the JER uncertainty is negligible. Uncertainties associated with R = 1.0 jets in the eνJ channel arise from
uncertainties in the calibration of the JES and the jet mass scale. The impact on the background event
yields in the SRs ranges between 20% and 40%, and the effect on signal yields is below 10%. Uncertainties
related to the b-tagging efficiency corrections are also taken into account in the eνJ channel, and the effect
on tt̄ yields is always below 5%.

The procedure to estimate fake-electron background includes a systematic uncertainty, which is 10–40% of
the fake-electron background estimate in the SRs, depending on the pT of the electron candidates.

Theoretical uncertainties affect the simulated event samples of backgrounds and signal. For the background
samples, they lie in the PDF set, the value of αS , and missing higher order corrections in perturbative
calculations. The latter effect is estimated by varying the renormalization and factorization scales by factors
of one-half and two, excluding those variations where both differ by factor of four. The PDF uncertainty
is estimated using the envelope of the NNPDF3.0 PDF set [78] and the two alternative PDF sets, the
MMHT2014 [79] and CT14nnlo [80]. The uncertainty due to αS is estimated by varying its nominal value
of 0.118 by ±0.001. For the tt̄ background, the theoretical uncertainty also includes effects of the matching
between ME and PS via the variation of the Powheg-Box hdamp parameter. The effects of the ME and
hadronization model choice are assessed for tt̄ and single-top MC samples by replacing the Powheg-Box
ME by aMC@NLO [81] and the Pythia 8 hadronization model by the one implemented in Herwig 7 [82].
The theoretical uncertainties in the signal prediction are estimated using the PDF set variations only. The
theoretical uncertainties for background yields range from 7% to 22% in the SRs of the ee j j channel and
from 3% to 10% in the SRs of the eνJ channel.
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8 Statistical analysis and results

The statistical analysis of the search is based on a maximum-likelihood fit. The signal hypothesis test is
performed using a likelihood-ratio test statistic in the asymptotic approach [75].

The likelihood function is constructed as the product of Poisson probabilities of the SR and the CRs as in
Ref. [83]. The normalizations of the backgrounds which have CRs, i.e., Z/γ∗ + jets and tt̄ for the ee j j
channel and W + jets and tt̄ for the eνJ channel, are free parameters, denoted by β, in the fit. These
corrections are used to scale the background predictions in the SRs. Their values and uncertainties after
the background-only fit in the CRs are summarized in Table 8. The deviation of the β values from unity
reflects the fact that at high ST the simulated events do not accurately describe the data. This is also
observed, for example, in the leptoquark search by ATLAS [84]. After the fit in the corresponding CR, the
background yields agree with the data in all VRs within the uncertainties. The final fit combining CRs and
SRs results in negligible shifts of the background normalization factors with respect to the CR-only fits.
Systematic uncertainties are incorporated into the likelihood function with a set of nuisance parameters
with Gaussian constraint terms. Statistical uncertainties from the simulated event samples are included
as nuisance parameters with Poisson constraint terms. Correlations of the systematic uncertainty effects
across regions are taken into account. The signal normalization (strength) is obtained by maximizing the
likelihood function for each signal hypothesis. The statistical analysis is performed using the RooStats [85]
and HistFitter [86] software.

Table 8: Background normalization factors with 68% confidence intervals after the background-only fit in the CRs.
CRs not defined in the eνJ channel are denoted as “N/A”. The βW normalization factor in the eνJ SR1 is fixed to
unity.

ee j j eνJ
βZ/γ∗ βt t̄ βW βt t̄

CR1 0.94+0.04
−0.04 0.95+0.08

−0.07 N/A 0.8+0.2
−0.2

CR2 0.82+0.04
−0.04 1.0+0.2

−0.2 0.79+0.08
−0.08 0.8+0.2

−0.2
CR3 0.79+0.04

−0.04 0.8+0.2
−0.2 0.79+0.08

−0.08 0.8+0.2
−0.2

CR4 0.81+0.05
−0.05 0.8+0.3

−0.3 0.77+0.10
−0.10 1.0+0.4

−0.3
CR5 0.80+0.06

−0.05 1.3+0.5
−0.4 0.72+0.10

−0.10 1.2+0.5
−0.4

CR6 0.76+0.06
−0.06 1.4+0.5

−0.5 0.83+0.10
−0.10 0.7+0.4

−0.4
CR7 0.78+0.07

−0.07 1.0+0.6
−0.5 0.91+0.11

−0.18 0.13+1.17
−0.13

CR8 0.74+0.07
−0.07 1.2+0.8

−0.7 0.65+0.15
−0.22 1.7+1.6

−0.9
CR9 0.64+0.08

−0.07 1.4+1.1
−0.9 0.66+0.14

−0.20 1.6+1.6
−0.9

CR10 0.62+0.10
−0.09 1.3+0.7

−0.5 N/A N/A

The observed and expected yields in the SRs for the ee j j and eνJ channels after the combined maximum-
likelihood fits to only background processes in the CRs and SRs are shown in Tables 9 and 10, respectively.
When calculating the uncertainties on the expected yields in the SRs, all correlations between the nuisance
parameters estimates are taken into account. No significant excess above the expected SM background is
observed, and limits on the excited lepton model parameters are set at 95% confidence level (CL), using
the CLs method [87]. The upper limits on the signal production cross section times branching ratio σ × B
as a function of me∗ are presented in Figures 5(a) and 5(b) for the ee j j and eνJ channels, respectively.
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The fluctuations observed in the limit for the eνJ channel for me∗ points below 1 TeV are caused by the
selection criteria optimized separately at each mass points.
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Figure 5: Upper limits on σ × B as a function of me∗ in (a) the ee j j channel and (b) the eνJ channel. The ±1(2)σ
uncertainty bands around the expected limit represent all sources of systematic and statistical uncertainties.

The lower limits on the compositeness scale parameter Λ as a function of me∗ for the ee j j and eνJ channels
are presented in Figures 6(a) and 6(b). They are calculated from the upper limits on σ × B, taking into
account the B dependency on both the me∗ and Λ parameters. The limits on Λ in the ee j j channel are
extrapolated to the values of me∗ > 4 TeV, since the signal selection efficiency remains constant for the
highest me∗ values in SR10, as is shown in Table 4. A unified likelihood function is constructed for the
ee j j and eνJ channels at each me∗ value considered in order to extract a combined limit on Λ as a function
of me∗ . The correlations of systematic uncertainty effects between the two search channels are included.
The combined limit is presented in Figure 6(c) along with the individual limits from the ee j j and eνJ
channels as well as the limit set by ATLAS in the eeγ search channel at

√
s = 8 TeV [21].

Observed and expected model-independent upper limits on the number of signal events in the signal regions
of the ee j j and eνJ channels are shown in Table 11 along with the upper limits on the visible signal cross
section, which is defined as the production cross-section times the overall signal efficiency.
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Figure 6: Lower limits on Λ as a function of me∗ for (a) the ee j j channel, (b) the eνJ channel, and (c) combined
limits for both channels. The ±1(2)σ uncertainty bands around the expected limit represent all sources of systematic
and statistical uncertainties. The limits for me∗ > 4 TeV are the result of extrapolation. The individual observed
lower limits for the ee j j (same as (a)) and the eνJ (same as (b)) channels are shown with the blue dot-and-dash
lines in (c) for the reference. The exclusion limit set by ATLAS in the eeγ search channel [21] using 13 fb−1 of data
collected at

√
s = 8 TeV is also shown with the red dotted line in (c).
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9 Conclusion

A search for a singly produced excited electron in association with a SM electron is performed using ee j j
and eνJ final states with the ATLAS detector at the LHC. The search utilizes data from pp collisions at√

s = 13 TeV with an integrated luminosity of 36.1 fb−1. No significant deviation from the SM background
expectation is observed in either channel. Upper limits are calculated for the pp → ee∗ → eeqq̄ and
pp → ee∗ → eνW production cross sections as a function of the excited electron mass me∗ at 95%
confidence level. Lower limits on the compositeness scale parameter Λ are set at 95% confidence level as a
function of me∗ . For excited electrons with me∗ < 1.5 TeV, the lower limit on Λ is 11 TeV, and it decreases
to 7 TeV at me∗ = 4 TeV. In the special case of the excited lepton model where me∗ = Λ, the values of
me∗ < 4.8 TeV are excluded. The sensitivity of the search is significantly better than the previous results
obtained by ATLAS and CMS from LHC Run 1. Model-independent upper limits on the number of signal
events and on the visible signal cross section in the signal regions are presented. The latter vary between
0.20 (0.26) fb and 3.34 (0.88) fb for the ee j j (eνJ) channel.
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