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Abstract

Femtoscopy is an experimental method used to study the spatio-temporal characteristics of

the particle-emitting “sources” of ultra-relativistic particle collisions. This method allows

us to measure the size, shape, and lifetime of the kinetic freeze-out region of the particles

created in the collisions as they are emitted from the expanding system. Studying these

source regions allows us to investigate the dynamics of the system as it evolves from the

hot, dense state of matter known as the Quark-Gluon Plasma into a dilute, free-streaming

hadronic gas. The analysis of the extracted femtoscopic radii and their dependences on event

centrality, momentum, and particle species can help put constaints on unknown quantities

used in theoretical models such as time-scales and particle-particle scattering parameters.

The femtoscopic tool is the two-particle relative momentum correlation function, which

connects the final-state momentum distributions measured by the detector to the space-

time distributions of particle emission, which are on the order of 10−15 m, or femtometers,

and cannot be directly measured. These correlations are sensitive to the quantum statistics

of identical particles as well as the strong and/or Coulomb interactions between particles.

Neutral kaon femtoscopy acts as an excellent complement to similar analyses of other

particle species. Kaon analyses are generally able to reach higher values of transverse mo-

mentum (KT) and transverse mass (MT =
√
K2

T +m2) than the more commonly studied

pion analyses. The comparison of kaon radii with those of pions and protons allows us

to check for universal MT-scaling, which is predicted by some hydrodynamic models. The

study of neutral kaons also acts as a convenient consistency check for the charged kaon anal-

ysis, as both analyses are expected to produce similar results while employing significantly

different analysis methods, e.g. directly measured tracks vs. decay vertex reconstruction
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and Coulomb-dominated vs. strong-dominated final-state interactions.

This thesis will present K0
SK

0
S femtoscopic correlations in Pb-Pb collisions at

√
sNN = 2.76 TeV at the LHC with ALICE. This analysis will be the first centrality- and

KT-differential study of K0
SK

0
S correlations in heavy-ion collisions, presenting femtoscopic

results for three centrality bins and four KT bins. This thesis will present results for both

one-dimensional and three-dimensional femtoscopic analyses, the latter being the first of

its kind for the K0
SK

0
S system.
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Chapter 1

Introduction

The field of ultra-relativistic heavy-ion collisions has been extremely influential in expanding

the scientific community’s collective knowledge of the strong interaction. Over the past

several decades, high-energy nuclear collisions have been used to search for the Quark-Gluon

Plasma (QGP), a new1 state of matter which consists of deconfined quarks and gluons and

exists only at very high temperatures and energy densities. Once the QGP was discovered,

high-energy nuclear physicists continued to study these collisions in order to learn more

about the characteristics of the QGP and the strong interaction in general, giving the

physics world an experimental helping hand to better understand this fundamental force

whose effects are notoriously difficult to calculate theoretically. During the past several

years, the Large Hadron Collider (LHC) at the European Organization for Nuclear Research

(CERN) has instituted a high-energy heavy-ion collision program, and the dedicated heavy-

ion collaboration ALICE (A Large Ion Collider Experiment) has performed analyses and

published results on all aspects of the exciting physics involved in these collisions.

Femtoscopy is one of the experimental tools used by physicists to study high-energy

heavy-ion collisions. It is an interferometric analysis that connects the experimentally mea-

sureable final-state momentum of particles to the experimentally unmeasureable geometry

of the particle-emitting sources and infers information about the dynamics of the hot, dense

matter that exists between the initial collision and the subsequent dissolution of the sys-

1Before high-energy collision experiments, the QGP had probably already been formed on Earth during
collisions of highly-energetic cosmic rays with our atmosphere. Besides these terrestrial occurrences, the
QGP likely existed during the early stages of the evolution of the universe after the Big Bang and also
possibly exists in the cores of high-density neutron stars.
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tem. Femtoscopic analyses have been performed for many different particle types at several

different collision energies, and studying all of these analyses together has helped physicists

to better understand the interactions of particles during and after the QGP phase. The

neutral kaon K0
S is a particle species that has not been extensively studied by the commu-

nity even though its femtoscopic correlation presents an excellent complement to the more

commonly studied pion and charged kaon analyses.

In this thesis, we will present K0
SK

0
S femtoscopic correlations in Pb-Pb collisions at

√
sNN = 2.76 TeV at the LHC with ALICE. This analysis will be the first centrality- and

KT-differential study of K0
SK

0
S correlations in heavy-ion collisions. This will also be the

first three-dimensional K0
S femtoscopic analysis. The thesis is organized as follows: Chap-

ter 2 will discuss the strong interaction, the Quark-Gluon Plasma, and heavy-ion collisions;

Chapter 3 will describe the experimental setup of the LHC accelerator and the ALICE

detector; Chapter 4 will detail the theoretical formalism of femtoscopy and discuss the col-

lision characteristics we can study using femtoscopic analyses; Chapter 5 will describe the

various neutral kaon states and the combined two-kaon states and will derive the K0
SK

0
S

femtoscopic correlation; Chapter 6 will explain many of the experimental details used to

complete the work of this thesis; Chapter 7 will present the results from this analysis; and

Chapter 8 will summarize this thesis.
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Chapter 2

Ultra-relativistic Heavy-Ion
Collisions and the Quark-Gluon

Plasma

Ultra-relativistic heavy-ion collisions are the primary tool for physicists to study the work-

ings of the strong interaction, or strong nuclear force, which is one of the fundamental forces

which make up the Standard Model, the prevailing theory which describes the interactions

of particle physics. The constituents of the strong force are quarks, which are subatomic

particles that combine to form hadrons, and gluons, which are the massless bosons ex-

changed by quarks interacting via the strong force. In this chapter, we will briefly discuss

ultra-relativistic heavy-ion collisions and then look at Quantum Chromodynamics, the the-

ory that governs the dynamics of the strong interaction, as well as one of its most important

predictions, the Quark-Gluon Plasma (QGP). We will study the various signatures of the

QGP and look at some of the related results from ALICE.

2.1 Ultra-relativistic heavy-ion collisions

In ultra-relativistic heavy-ion collisions at the LHC, Pb20882 nuclei collide with a center-of-

mass energy per nucleon-nucleon pair of
√
sNN = 2.76 TeV. At these energies, the de Broglie

wavelength (λ = h/p) of the nucleons is much smaller than the size of the nucleus. Also,

the nucleon-nucleon interaction range is only ∼ 1 fm. Thus, the nucleus-nucleus collision

should really be understood as a combination of individual nucleon-nucleon collisions. In

3



Figure 2.1: A representation of colliding nuclei in a high energy heavy-ion collision. Note
the Lorentz-contracted incoming nuclei, the impact parameter b, and the denotion of the
participant and spectator nucleons (plot taken from [1]).

this picture, the geometry of the incoming nuclei becomes very important. Fig. 2.1 shows

a representation of colliding nuclei. The incoming nuclei are drawn as thin “pancakes” in

the lab frame due to their relativistic Lorentz contraction; at energies of E ∼ 1 TeV, the

nucleon’s Lorentz gamma factor is γ = E/m ∼ 1000, so rz,rel = rz,non-rel/1000. We define

the impact parameter b as the distance between the centers of the nuclei. b = 0 refers to

a central collision where the two nuclei fully overlap. As b increases, the collisions become

more peripheral, until b & 2Rnucleus where the nuclei may “collide” only electromagnetically

or simply pass by each other. Fig. 2.2 shows a diagram depicting collisions of different

centralities.

Since we stated that the nucleus-nucleus collision is really a series of nucleon-nucleon

collisions, we define two group of nucleons: participants are nucleons within the nucleus

overlap region which undergo collisions, and spectators are those nucleons outside the over-

lap region which simply pass by without colliding. While the specators do not participate in

the collision, they are often detected down the beam line and used to measure global event

parameters such as the centrality (size of b) or event plane (direction of b⃗ ). Using this simple

geometry, one can estimate the number of participant nucleons, Npart, as well as the number

of “binary” nucleon-nucleon collisions, Ncoll, using the Glauber model [2, 3]. Briefly, the

4



Figure 2.2: A representation of colliding nuclei at different centralities, shown in the plane
transverse to the beam direction. The black line signifies the impact parameter b connecting
the centers of the two nuclei.

Glauber model estimates the numbers of collisions and participants by distributing nucleons

within a nucleus according to some assumed nuclear density profile and integrating over the

geometries of the colliding nuclei (in both transverse and longitudinal directions), assum-

ing some nucleon-nucleon inelastic cross section. Note that generally Ncoll ≈ 2 − 3 Npart

because a nucleon can partipate in several collisions as it passes through the other nucleus.

The Glauber model is extremely useful for setting up the initial geometric conditions (to

first order) from which theoretical models can evolve the system to make predictions of

final-state observables.

2.2 The strong interaction and Quantum Chromodynamics

As mentioned earlier, the strong interaction is the force that acts between quarks and gluons

within the nuclei of matter. Quarks come in six flavors: up, down, strange, charm, bottom,

and top (as well as the negative-flavor quarks, or “anti-”quarks). Quarks are electrically

charged with fractional charges of +2/3 e (u,c,t) or −1/3 e (d,s,b); anti-quarks have opposite

sign charges. Quarks also have another quantum number called color, which takes one of

three values commonly known as red, blue, and green (as well as “anti-” colors). Gluons

also have color, but they are bi-colored, while quarks carry only one color. This leads to

the fact that quark-gluon interactions involve the changing of the quark color. Thus, the

prevailing theory which describes the strong nuclear force interactions is known as Quantum

5



Chromodynamics2, or QCD.

An interesting aspect of QCD is that since gluons carry color, they can interact with

each other via the strong interaction. This is different than in Quantum Electrodynamics

(QED), where the intermediary bosons, photons, do not carry electric charge and thus

cannot interact with each other. Thus, the strong interactions have Feynman diagrams

with gluon loops as well as quark loops (see Fig. 2.3). The quark loops lead to “charge

screening”, which makes the force weaker at large distances (similar to the electromagnetic

force). However, the gluon loops lead to “charge anti -screening”, which causes a stronger

force at large distances. In QCD, the anti-screening actually dominates, and we see a

coupling progression opposite to what we see in QED: strong interactions become weaker at

short distances and stronger at large distances. The large and short distance regimes and

their associated coupling values are known respectively as confinement, or infrared slavery,

and asymptotic freedom. Fig. 2.4 shows a qualitative representation of the opposite trends

of the QED and QCD coupling parameters. In the large momentum-transfer region, the

weak coupling allows one to use perturbative methods to study QCD [4]; an example is

the study of hard-scattered partons and the production of high-energy particles. However,

perturbation theory cannot be used in the low-Q2 regions where the coupling becomes

stronger. This complicates any attempts of calculating production processes for the bulk of

the matter produced in heavy-ion collisions.

The result of confinement is that in the low momentum-transfer regime |Q| . 1 GeV/c,

quarks are confined together in color-neutral3 groupings known as hadrons. Hadrons can

be three-quark systems known as baryons or quark–anti-quark systems known as mesons.

The property of confinement causes the interaction strength to increase as quarks are pulled

apart from each other. In fact, at a certain critical interaction strength, it becomes more

energetically favorable for an extra quark–anti-quark pair to be produced from the stored

energy; these new quarks combine with the original quarks to form new hadrons. Hence, in

experiments, we can only detect hadrons and never lone quarks.

2Chromos is the Greek word for “color”.
3Color neutrality can consist of red+green+blue or anti-red+anti-green+anti-blue (baryons) or

color+anti-color (mesons).
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Figure 2.3: Examples of the one-loop Feynman diagrams showing quark and gluon loops
which lead to color screening and anti-screening, respectively. Plot taken from http://

cronodon.com/Atomic/QCD.html.
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Figure 2.4: Qualitative diagram of the running coupling parameters for QCD and QED,
showing the opposite trends exhibited by the two forces [5].
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2.3 Quark-Gluon Plasma

The result of the running of the strong coupling constant and the concept of asymptotic

freedom is that the interaction strength of the strong force drops in the region of high

momentum transfer, or at very small distances. Thus, it was hypothesized that at very

high energy density, the color force acting between quarks and gluons should become weak

enough that this matter would be a weakly interacting gas. Instead of the usual case of

quark confinement, there would be a new state of matter consisting of deconfined quarks

and gluons. This state has been given the name Quark-Gluon Plasma4 (QGP) due to the

analogous relation to the electromagnetic plasma of dissociated ions and electrons. This

novel state of matter has been found in the high-energy heavy-ion collisions at RHIC [7–10]

and the LHC, and many physicists were surprised to find that the deconfined quarks and

gluons did not act as a weakly interacting gas but as a strongly-coupled hydrodynamic

system, behaving like a near-perfect liquid with extremely low viscosity [11].

After this hypothesis was proposed, subsequent questions arose about the transition

from confined hadrons to a deconfined QGP. For example, is it a smooth transition or a

canonical phase transition marked by critical (discontinuous) behavior of some parameter?

At what energy or temperature does this transition happen? Lattice QCD, the computa-

tional technique used to study the complicated dynamical equations of the strong inter-

action, suggests that the critical temperature for the deconfinement of partons is around

Tc ≈ 155− 175 MeV, which corresponds to a critical energy density of ϵc ∼ 1 GeV fm−3 [12].

Determining the type of phase transition is a bit tricky, as lattice results are very sensitive

to the choice of the parameters used, such as quark masses and chemical potentials. Fig 2.5

shows the possible types of phase transitions predicted by lattice calculations for different

values of the quark masses.

Another interesting aspect about the QGP is that there is another venue for this hot,

dense state of matter outside of high-energy collisions: the early universe. In the evolution

of the early universe according to Big Bang cosmology, the universe expanded from a sin-

4First coined by Shuryak in the late 1970s [6].
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Figure 2.5: The QCD phase diagram of 3-flavor lattice QCD for various u/d (degenerate)
and s quark masses [13].

gularity at time zero. After ∼ 10−5 s, the temperature of the universe had cooled to about

∼ 100 MeV [12]. Shortly before this, the state of matter of the whole universe was likely a

quark-gluon plasma similar to those created in the lab today. Thus, the heavy-ion studies

at RHIC and the LHC help give us insight into the physics of the early universe.

2.4 Evolution of a heavy-ion collision

The key stages of a heavy-ion collision consist of pre-equilibrium, thermalization, expansion,

and decoupling. We will take a brief look at each of these stages now.

Nucleons are often described by their constituent, or valence, quark content,

e.g. p = [u, u, d] and n = [u, d, d]. However, at the high energies of heavy-ion collisions,

a nucleon actually contains many partons of various types. Fig. 2.7 shows the parton

distribution function as a function of x, defined as the longitudinal momentum fraction

carried by the parton, x = pz/
√
sNN. This plot shows the effective multiplicity of each

specific type of parton with a certain x. The collisions of high-energy nucleons generally

9



Figure 2.6: Evolution of a heavy-ion collision (plot taken from [14]).

Figure 2.7: Parton distribution function as a function of longitudinal momentum fraction
x (plot taken from [15]).

10



probe the low-x part of the distribution, and from Fig 2.7, we can see that in this dynamical

region, the number of gluons dominates over the number of quarks. The quark content

itself is actually dominated by the sea quarks, which are qq̄ vacuum fluctuations coming

from gluon splitting, while the valence quarks are a negligible factor. The large number

of partons present in high-energy nucleons complicates the calculations necessary for

theoretical models aiming to describe these collisions.

As the nuclei pass through each other, the colliding nucleons deposit their energy into

the space between the outgoing nuclei, producing the bulk partonic matter which will later

thermalize into the QGP. As stated earlier, these production processes cannot be calculated

perturbatively and require phenomenological models to describe them. Exactly how the

quarks and gluons of the bulk matter are created or “liberated” is not completely under-

stood; see discussions of color strings [16] and Color Glass Condensate [17] for more details.

The time shortly after the partons are created and before they have interacted enough to

become thermalized is known as the pre-equilibrium stage. The dynamics of the partons in

this stage can be described using various transport theories, such as the relativistic Boltz-

mann equation and quantum transport theory [18,19]. These microscopic transport theories

attempt to explain the thermalization process of the partonic matter.

Another important aspect of the very early moments of the collision are hard parton-

parton collisions that can hard-scatter partons with large momentum transfer. As stated

earlier, the hard-scattered parton will create qq̄ pairs which can combine with other partons

to form particles with large momentum and/or large mass. Photons can also be produced by

the interactions of the sea of quarks and anti-quarks present among the colliding nucleons.

These particles produced early in the collision can be used as hard probes of the bulk matter

which is produced shortly afterward; such probes and their uses are discussed in the next

section.

The secondary partonic collisions that occur after the nuclei collide lead to a equipartion-

ing of the deposited energy, and the matter develops into a locally thermalized system. In

this stage, we can switch from microscopic transport theories to relativistic hydrodynamics

to describe the system. Evidence [7,8] shows that the QGP behaves as a near-perfect liquid

11



with viscosity per entropy density near the quantum lower limit [20]. The thermalized sys-

tem will expand according to the laws of hydrodynamics due to the pressure gradients that

exist between the hot, dense system and the vacuum outside. This hydrodynamic behavior

produces collective flow, in which the particles are boosted together radially outward from

the system.

As the system expands, the temperature and energy density will decrease until the

system reaches the critical values at which the partons will transition from a QGP to a

deconfined hadronic system. The partons combine into hadronic bound states, either three-

quark baryons or two-quark mesons. This occurs around the predicted critical values of

ϵcrit ∼ 1 GeV/fm3 and Tcrit ≈ 155 − 175 MeV. After hadronization, the system is still

dense enough that the hadrons can participate in elastic and inelastic rescatterings with

each other. Also, many of the initial hadronic bound states created during hadronization

will decay into more stable decay products.

Eventually, after resonances have decayed and the collisions are no longer energetic

enough to be inelastic, the multiplicities of each hadronic species will become fixed; this is

known as chemical freeze-out. Chemical freeze-out seems to happen shortly after hadroniza-

tion; statistical thermal model comparisons with data have extracted temperatures of

Tchem ≈ 150 − 160 MeV [21]. Also, the chemical freeze-out is likely species-dependent,

as light-quark and strange-quark hadrons seem to exhibit different chemical freeze-out tem-

peratures [22]. The hadrons continue to rescatter elastically until the system is too dilute

for any interactions to occur; this is known as kinetic freeze-out. Again, it is very likely that

different particle species freeze-out kinetically at different times. Experimental results ex-

tract kinetic freeze-out temperatures of Tkin ≈ 100− 150 MeV [23], depending on the event

centrality, since dense central collisions take longer (i.e. lower temperature) to freeze-out

than more dilute peripheral collisions. After kinetic freeze-out, the particles will stream

freely away from the collision site and enter the detector, where their momentum will be

measured at the same value as when they “froze-out”.
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2.5 Signatures of the QGP

Since the QGP that exists inside heavy-ion collisions only lasts for ∼ 10 fm/c, or ∼ 10−23

s, we cannot directly observe it in the laboratory. Instead, there are several signatures of

the QGP that can be observed in the detection and analysis of the final-stage particles that

are actually measured. The following subsections will list several of these signatures and

will briefly discuss the results found by ALICE.

Direct photons: Temperature

As stated above, the critical energy density and temperature when deconfinement occurs

are calculated to be ϵcrit ∼ 1 GeV fm−3 and Tcrit ≈ 155 − 175 MeV. One way to estimate

the temperature of the QGP is by the measurement of direct photons. Direct photons in pp

collisions come from quark-gluon Compton scattering, quark–anti-quark annihilation, and

jet fragmentation; if a QGP is formed, an additional photon signal is expected to come

from the scattering of the thermalized partons [24–26]. Fig. 2.8 shows the ALICE results

for direct photon measurement [27]. One can see the excess at low pT of measured photon

production in Pb-Pb collisions compared to calculations from scaled pp collisions, suggesting

the existence of a thermalized medium.

One can then fit the low-pT part of this distribution with a simple exponential dN
pTdpT

∼

e−pT/T to extract the temperature of the thermalized system which emitted the photons.

ALICE extracted a temperature T = 304± 51 MeV, concluding that the system was above

the predicted QGP critical temperature and thus in the QGP phase. One should note

here that recent research suggests that this temperature alone is not conclusive evidence

of the presence of QGP, as this is only an “effective temperature” that can be significantly

enhanced above the true temperature due to the presence of strong radial flow [28].

Charged-particle multiplicity: Energy density

In heavy-ion collisions, the charged-particle multiplicity (or pseudorapidity density)

dNch/dη can be related to the initial energy density of the system via a relation derived by
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Figure 2.8: Direct photon invariant yield measured by ALICE in Pb-Pb collisions at√
sNN = 2.76 TeV for 0-40% centrality. Note the excess of photons at low pT over the

NLO predictions from scaled pp collisions, suggesting a thermalized medium, i.e. QGP. The
low-pT distribution is fit with an exponential to extract an effective temperature.

Bjorken [29]. ALICE measured the density of primary charged particles at mid-rapidity in

0-5% central collisions to be dNch/dη ≈ 1600 [30]. This corresponds to an initial energy

density of ∼ 15 GeV fm−3 5, which is well above the predicted QGP critical energy density

of ∼ 1 GeV fm−3.

High-pT suppression

High-energy partons that are scattered from a nucleon-nucleon collision will lose energy

as they traverse the QGP medium [32]. There are several types of energy loss that will

affect the partons: vacuum energy loss (i.e. color flux tubes due to confinement), collisional

energy loss from multiple elastic collisions with thermal particles, and gluon radiation [12].

The vacuum energy loss, as its name suggests, is not specific to a QGP medium; however,

the collisional and radiative energy losses are medium-induced effects which suggest the

presence of a QGP. We can check for this additional energy loss by comparing the data

from heavy-ion collisions to that from pp collisions, where we do not expect a QGP to have

5This number is quoted in many places and is generally attributed to [31], but the reference itself does
not directly calculate this number, and no explicit calculation could be found elsewhere.
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Figure 2.9: Charged-particle RAA for central collisions from ALICE, STAR, and PHENIX.
The ALICE data shows a stronger suppression than the RHIC data.

formed.

While the energy loss of the partons cannot be directly measured, it will be reflected in

the final-state distribution of the hadrons measured in the detector. The common experi-

mental method of measuring high-pT suppression is to compare the pT spectrum measured

in AA collisions to that from pp collisions, where the latter has been scaled to match the

number of colliding nucleons in the AA system. This is known as the nuclear modification

factor or RAA. Fig. 2.9 shows the RAA in central collisions measured by ALICE, STAR, and

PHENIX [33]. The plot shows a stronger suppression at the LHC, suggesting an enhanced

energy loss and a denser medium than that found at RHIC.

Jet quenching

A similar effect to single-particle high-pT suppression is jet quenching. As a hard-scattered

parton flies away from the hadron in which it previously existed, it will fragment into many
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Figure 2.10: Nuclear modification factor RCP for charged jets from ALICE.

new hadrons which will travel together in a “jet”. Reconstruction of the entire jet, rather

than just looking at each individual hadron, allows more direct access to the parton energy

by integrating over the hadronic degrees of freedom. The effect on the jets should be similar

to that of the individual hadrons: due to the energy loss suffered by the parton in the QGP

medium, we expect a suppression of the number of high-pT jets in AA collisions compared

to that from a colliding system where we would not expect a QGP to form. Fig. 2.10 shows

the ALICE jet-quenching results [34]; in this case, the ratio presented is RCP, which is the

ratio of central collisions divided by peripheral collisions (here, 50-80%), where we would

expect to find a much less dense system. One can clearly see the suppression of ≈ 50− 70%

in central collisions and a diminishing suppression as one goes to more peripheral collisions.
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Figure 2.11: ALICE results for J/ψ (left) and Υ (right) suppression in Pb-Pb collisions.

Quarkonium suppression

Another method used to study the QGP is the analysis of heavy quark–anti-quark bound

state mesons known as quarkonium. These come in two flavors: charmonium, a cc̄ state

whose ground state particle is known as J/ψ; and bottomium, the bb̄ state represented by the

Υ particle. In a QGP, the deconfined medium exhibits the effect of color screening, which is

the damping of the color field caused by the presence of mobile color charge carriers, similar

to Debye screening in electromagnetism. If the screening length becomes smaller than the

binding radius of the qq̄ system, the quarkonium will dissolve, i.e. the quark will no longer

“see” its anti-quark partner. Thus, one should expect a suppression in the charmonium

yield measured in heavy-ion collisions [35].

Fig. 2.11 shows the ALICE results [36] for J/ψ and Υ suppression, which is measured

using RAA, the aforementioned ratio of the yield in Pb-Pb collisions to that from scaled pp

collisions. A clear suppression is seen, suggesting the presence of a hot, deconfined QGP

medium. A similar analysis has been performed in p-Pb collisions, which allow one to study

cold nuclear effects, i.e. the effects present before and during the collision due to the presence

of a nucleus. While a suppression is seen in the p-Pb event, it agrees with the predictions

of models taking into account these cold nuclear effects without the need for a hot QGP

medium [36].
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Figure 2.12: Strange hadron yields in Pb-Pb collisions relative to those from pp collisions
from ALICE [38], showing strangeness enhancement. The reference to Be in the y-axis label
is for a related plot that is not shown here.

Strangeness enhancement

Since the valence quarks of the colliding nuclei consist of only u and d quarks, s quarks

must be produced in the hard collisions (ss̄ created by broken color flux tubes) and will be

suppressed compared to the lighter quarks due to their masses. However, in a QGP, extra

ss̄ pairs can be created via gluon fusion, and the deconfined partons (u, d, s, and g) can

reach a chemical equilibrium which would lead to an increase in final-state strange hadron

production [37].

Fig. 2.12 shows the ALICE results [38] of the strange particle yields in Pb-Pb collisions

relative to those from pp collisions. A clear enhancement is seen for all particles and increases

with event multiplicity. The enhancement also increases with the strangeness content of the

particle, i.e. Ω−(sss) > Ξ−(dss) > Λ(uds).
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Flow

Another signature of the QGP is the hydrodynamic flow of particles, specifically in the

transverse direction where the flow must be created by pressure gradients between the hot

center of the system and the vacuum beyond the edge. The discovery of hydrodynamic flow

in high-energy nuclei collisions was one of the main forces behind the paradigm shift in the

heavy-ion community from the expectations of the QGP exhibiting ideal-gas-like behavior

to the realization that it is in fact a strongly-coupled plasma that behaves like a liquid. To

be clear, while the formation of a QGP will necessitate a flowing system, the presence of

flow does not by itself signal the presence of a QGP [39]. However, models which combine

an early hydrodynamic QGP phase followed by a non-fluid hadronic phase describe the

data well [40]. In fact, one of the main motivations for studying flow is to provide us with

constraints on the properties of the system with respect to the different phases, e.g. initial

conditions, equation of state, viscosity, and the specific contributions from the hadronic and

partonic phases [41].

In particular, one usually looks at anisotropic flow, which measures the anisotropy of

the detected momentum distribution as a function of the azimuthal angle. For non-central

AA collisions, the overlapping region of the colliding nuclei has an almond shape, and the

pressure gradients that arise between the center of the hot, dense medium and the edge of

the system vary with the azimuthal angle φ. These anisotropic gradients lead to anisotropies

in the momentum distribution of the emitted particles. The parameters that one studies

are the flow coefficients [42], which are defined as

vn = ⟨cos [n(φ−Ψn)]⟩, (2.1)

where φ is the azimuthal angle, n is the order of the flow harmonic, Ψn is the nth-order

reaction plane, and the brackets denote the average over all particles and (usually) all

events. Fig. 2.13 shows various results for the second-order flow coefficient v2, commonly

known as elliptic flow. The left plot shows an increase in v2 of about 30% from RHIC to

LHC. This increase is attributed to an overall increase in average pT, as it can be shown
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Figure 2.13: (Left) Results of integrated v2 measurements by various experiments (plot
taken from [41]. (Right) ALICE integrated v2 vs. centrality [44].

that v2(pT) does not depend on beam energy [43]. The right plot shows ALICE v2 results

as a function of centrality [44]. One can see that the flow coefficient initially increases with

centrality percentile (more peripheral); this reflects the increasing initial spatial anisotropy

of the collision zone (circular central collisions vs. almond peripheral collisions).

Besides v2, higher-order flow coefficients have recently become a hot topic in the heavy-

ion community. For example, the third-order flow coefficient v3, or triangular flow, was

originally expected to be zero due to the fact that there is no “triangular” shape to the

collision overlap region; in fact, all odd coefficients were expected to be zero by symmetry

considerations. However, fluctuations in the initial-state positions of the partons in the col-

liding nuclei can cause non-elliptic shapes in the collision region and subsequently generate

non-zero higher-order flow coefficients. Since finding the coefficients of an event-averaged

sample will wash out these fluctuations (at least for the odd harmonics), these coefficients

are calculated using an event-by-event analysis, where one calculates the coefficients for

each event separately, recovering the fluctuations, and then averages the single-event re-

sults over many events to increase statistics. The goal of these studies is to provide stronger

constraints on the initial geometry and a more sensitive measure of viscosity [45].
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Femtoscopy

As this is the main topic of this thesis, please see Chapter 4 for a discussion of femtoscopic

results and their relation to the QGP.
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Chapter 3

Experimental Set-up

This chapter will discuss the experimental set-up that was used to create the data upon

which this analysis was performed. The two main sections will be about the Large

Hadron Collider (LHC), the particle accelerator and collider at CERN used to create

the data studied here, and ALICE (A Large Ion Collider Experiment), the specific

experiment/detector/collaboration of which this analysis was a part.

3.1 The Large Hadron Collider at CERN

3.1.1 Motivation and history

The LHC project was approved by CERN in 1994, and was designed to be a 14 TeV center-

of-mass energy proton-proton collider which would also be able to accelerate heavy ions

to higher collision energies than ever before [46]. This new collider was constructed in

the same tunnel used by the CERN LEP experiment, which ran from 1989 to 2000. The

tunnel is 26.7 km in circumference and situated between 45 m and 170 m below the surface

of the countryside along the France-Switzerland border near Geneva, Switzerland. The

physics motivation of the LHC (as of its proposal stages in the early 1990s) focused on

several main points: precise testing of the Standard Model of particle physics; investigating

spontaneous symmetry breaking by looking for the Higgs boson; understanding dark matter

by searching for supersymmetric particles or heavy neutrinos; and searching for the quark-

gluon plasma [47]. The first three of these were to be studied by the CMS and ATLAS

collaborations, while the fourth was to be investigated by the ALICE collaboration; all of
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these groups were approved by the CERN research board in 1997 [48].

After nearly a decade of work, the LHC circulated its first proton beams in September

2008, but was soon forced to shut down for major repairs due to a magnet quenching

accident [49]. The first particle collisions occurred in November 2009, followed shortly by

an increase in the beam energy to 1.18 TeV, which made the LHC the world’s highest-

energy particle accelerator, beating Fermilab’s record of 0.98 TeV per beam [50]. This

record would be continuously broken by the LHC as it ramped up its beam energy until

February 2010 when the beam energy reached 3.5 TeV, resulting in proton-proton collisions

at
√
sNN = 7 TeV.

The first run of proton-proton collisions at
√
sNN = 7 TeV lasted from March 2010 until

November 2010 and was followed by a month-long heavy-ion run of Pb-Pb collisions at

√
sNN = 2.76 TeV. The system created by these ultra-high-energy Pb-Pb collisions exhibited

the hottest temperature ever reached in an experiment [51] and suggested the existence of

the Quark-Gluon Plasma, confirming the findings of the RHIC experiments [7–10]. The

second runs of both pp and Pb-Pb collisions occurred in 2011 at the same energies as 2010,

with an additional small pp run at
√
sNN = 2.76 TeV that was used as a reference sample

for heavy-ion analyses. During the main pp run, the LHC set the world record in beam

intensity at a hadron collider with a luminosity of 4.67 × 1032 cm−2 s−1 [52]. In 2012, the

pp collision energy was bumped up to
√
sNN = 8 TeV, and in July of that year, the ATLAS

and CMS collaborations announced that they discovered a new particle which would later

be identified as the Higgs boson [53,54]. This discovery directly led to the 2013 Nobel Prize

for Physics being awarded to the theorists who discovered the Higgs mechanism [55]. By

the end of the first pp physics program in December 2012, the LHC was operating at a peak

luminosity of 7.7× 1033 cm−2 s−1, and had accumulated nearly 30 fb−1 of pp data in each

of the ATLAS and CMS experiments [56]. To put this in perspective: in roughly 10 years

of running since 2001, the Tevatron collider produced 10 fb−1 of data [57]; by the summer

of 2012, the LHC was delivering a peak integrated luminosity of 1.35 fb−1 each week [58].

Instead of performing another Pb-Pb run, the heavy-ion program at the LHC decided

to study p-Pb collisions at
√
sNN = 5.02 TeV in late 2012 and early 2013. These collisions
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serve mainly as a reference sample for Pb-Pb studies; in particular, they are used to help

disentangle between initial- and final-state effects in high-energy heavy-ion collisions [59].

After this run ended in February 2013, the LHC began its first scheduled “Long Shutdown”

(LS1), which will last ∼ 2 years. The main purpose of the shutdown is to perform work

on the magnet interconnections in order to prepare for the large energy increase up to

√
sNN = 13 TeV for pp collisions6. The individual experiments will also take this time to

perform maintenance and install upgrades to their detectors (see [60–62] for more details).

The end of LS1 and the recommencement of collisions and physics programs are scheduled

for early 2015.

3.1.2 LHC accelerator

The LHC is composed of two counter-rotating beams of protons or Pb ions. Each of the

beam paths is made up of eight arcs and eight straight sections. Four of these straight

sections are used as beam crossing points and are the locations of the LHC’s four main

experiments: ATLAS, CMS, ALICE, and LHCb. Another one of the straight sections

houses the RF system that is used to accelerate the beam. The LHC uses superconducting

magnets to control the beams; dipole magnets are used to bend the particles in a circular

path, while quadrupole magnets are used to keep the circulating particles focused along

the beam line. The magnets are cooled with superfluid helium down to below 2 K and can

produce fields up to 8 T needed for the maximum proton beam energy of 7 TeV.

The LHC is fed by a series of smaller accelerators (see Fig. 3.1). The proton injec-

tion chain [64] begins in Linac2, where they are accelerated up to 50 MeV. The Proton

Synchtrotron Booster increases the energy to 1.4 GeV, followed by an acceleration up to

25 GeV in the Proton Synchrotron (PS). The Super Proton Synchrotron (SPS) boosts the

protons to 450 GeV before feeding into the LHC, where the final acceleration takes place.

The Pb ion injection chain [64] begins with the production of Pb27+ ions in the Electron Cy-

clotron Resonance Ion Source (ECRIS). Linac3 accelerates the Pb ions to 4.2 MeV/n(ucleon)

6A recent decision has been made to only go to 6.5 TeV per beam rather than the planned 7 TeV due to
constraints on time needed to “train” the magnets to handle the larger necessary currents.
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Figure 3.1: LHC layout and injection chain [63].

while stripping electrons to create Pb54+ ions. The heavy ions move to the Low Energy Ion

Ring (LEIR), where they are accelerated to 72.2 MeV/n. Next, the PS boosts the Pb ions

to 5.9 GeV/n and performs further electron stripping to create the desired Pb82+ ions, or

simply Pb20882 nuclei. The SPS then accelerates the Pb nuclei to 176.4 GeV/n, after which

they are sent to the LHC for their final acceleration and subsequent collisions.

The proton and heavy-ion “beams” are actually several bunches of particles spaced out

along the pipe length. The LHC is designed [46] to hold ∼ 2800 proton bunches with a

bunch spacing of 25 ns. Each bunch contains ∼ 1011 protons. For heavy ions, the LHC can

hold ∼ 600 bunches of 7× 107 Pb ions with a bunch spacing of 100 ns. Note: these are the

ultimate design values; the actual number of bunches used to date is generally lower than
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this (but on the same order of magnitude).

3.1.3 LHC experiments

The LHC is home to many experiments which study high-energy collisions. The two

largest collaborations, ATLAS (A Toroidal LHC ApparatuS) [65] and CMS (Compact Muon

Solenoid) [66], are all-purpose collider experiments which study all sorts of high-energy par-

ticle physics, such as high-precision Standard Model (and “beyond”) physics; searches for

the Higgs boson, dark matter, and supersymmetric particles; and some heavy-ion physics.

ALICE (A Large Ion Collider Experiment) [67] is the LHC’s dedicated heavy-ion experi-

ment, which focuses on the search for and subsequent study of the characteristics of the

Quark-Gluon Plasma. The fourth “large” collaboration is LHCb [68], which studies CP -

violation and rare decays of B hadrons. Three smaller experiments that also use the LHC

are TOTEM (TOTal Elastic and diffractive cross-section Measurement) [69], which mea-

sures the total p-p cross section and studies elastic and diffractive scattering; LHCf [70],

which measures neutral particles in the very forward rapidity region of collisions and uses

this information for cosmic ray models; and MoEDAL (Monopole and Exotics Detector

At the LHC) [71], which searches for the magnetic monopole and Stable Massive Particles

(SMPs). The locations of these experiments can be seen in Fig. 3.1.

3.2 ALICE

3.2.1 Motivation and history

ALICE is an international collaboration and (mostly) heavy-ion physics experiment that

includes over 1000 physicists from ∼ 30 countries. The collaboration was formed in the early

1990s after discussions about setting up a dedicated heavy-ion program at the upcoming

LHC accelerator complex at CERN. The collaboration submitted a technical proposal [72]

to CERN in 1995, outlining their proposed detector and research program, and the pro-

posal was accepted by CERN in 1997. The initial motivation for the ALICE heavy-ion

program was to investigate strongly-interacting matter at extremely high energy densi-
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ties [72], specifically to study the QCD-predicted phase transition from hadronic matter to

deconfined quarks and gluons, i.e. the Quark-Gluon Plasma [73,74].

By the time the LHC and ALICE became operational in 2010, it was established by

the heavy-ion community that the QGP had indeed been found by the experiments at

RHIC [7–10], and possibly even earlier at the CERN SPS [75]. Therefore, ALICE’s main

goals [76] during its first physics program were not simply to “find” the QGP, but to study

its characteristics; to explore the phase diagram of strongly-interacting matter; to study

the phase transition between hadronic matter and the QGP; and to investigate the physical

properties of the QGP (see Ch. 2 for more details). Also, besides QGP physics, ALICE

researchers investigate proton-proton and proton-nucleus collisions, which are often used as

reference samples for Pb-Pb collisions while also exhibiting interesting physics of their own;

ultra-peripheral heavy-ion collisions, where electromagnetic interactions can be studied; and

cosmic-ray physics.

3.2.2 The ALICE detector

The ALICE detector [67], which is sometimes referred to as the “smaller” LHC detector

compared to ATLAS and CMS, is a 16×16×26 m3 machine made up of many subdetectors

that each perform different tasks and are used for various analyses. I will first briefly describe

all of the subdetectors and other parts of the ALICE detector and then more thoroughly

discuss several subdetectors that are important for the analysis in this thesis. A schematic

view of the ALICE detector and its subdetectors can be seen in Fig. 3.2.

The central barrel of the ALICE detector covers the pseudorapidity region |η| < 0.9 and

the full azimuthal range and is used mainly for particle tracking and identification. Closest

to the beam line lies the Inner Tracking System (ITS) [77], which consists of layers of silicon

pixel (SPD), drift (SDD), and strip (SSD) detectors. The ITS performs high-resolution

tracking and helps localize the primary vertex of the collision . The Time Projection

Chamber (TPC) [78] is the main tracking detector of the ALICE central barrel and helps

with particle identification (PID). The Transition-Radiation Detector (TRD) [79] is used

for electron identification at high momentum. The Time-Of-Flight (TOF) detector [80] is a
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Figure 3.2: An inside look at the ALICE detector with all of its subdetectors.

Multi-Gap Resistive-Plate Chamber (MRPC) used for PID. The High-Momentum Particle

Identification Detector (HMPID) [81] uses Ring Imaging Cherenkov (RICH) detection to

perform PID at momentum up to several GeV/c. The PHOton Spectrometer (PHOS) [82] is

an electromagnetic spectrometer which provides identification of photons and, by extension,

neutral mesons (through the two-photon decay channel). The ElectroMagnetic Calorimeter

(EMCal) [83] helps measure high-momentum photons and electrons which are important

for the reconstruction of high-momentum jets.

Several smaller detectors are located in the forward (and/or backword) η regions of the

ALICE detector and are used primarily for triggering or measuring global event character-

istics. The Zero Degree Calorimeter (ZDC) [84] measures spectator nucleons (both protons

and neutrons), which help determine the event centrality as well as the event plane (i.e.

direction of the impact parameter). The Photon Multiplicity Detector (PMD) [85] provides

estimates of the event transverse electromagnetic energy and the event plane. The Forward

Multiplicity Detector (FMD) [86] helps with multiplicity and event plane determination.
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The VZERO detector [86](formerly V0), located on either side of the interaction point, is

a series of scintillator counters whose multiplicity measurements are very useful for trigger-

ing and event centrality determination. The T0 detector [86] uses Cherenkov counters to

provide a start time for the TOF detector and early (“L0”) triggering.

Other subdetectors in the ALICE machine include the muon spectrometer [87], which

is located in the backward η region and is used in the reconstruction of heavy-flavor decays,

and the ALICE COsmic Ray Detector (ACORDE) [88]. ALICE has two main magnets:

a room-temperature solenoid around the central detector, used to bend charged particles

for the purpose of particle identification; and a dipole magnet which is part of the forward

muon spectrometer [67].

3.2.3 Main subdetectors used in this analysis

Here, I briefly describe the subdetectors that are important to this analysis. The descrip-

tions will focus mainly on the design and performance of each detector; for a more in-depth

discussion about certain aspects of the experimental analysis associated with the detectors,

such as tracking and particle identification, see Ch. 6.

Inner Tracking System (ITS)

The ITS [77] is the detector closest to the beam, ranging from 4 to 43 cm radially from

the beam line, and is centered around the collision interaction point. It is made up of six

individual cylindrical layers, two layers each of silicon pixel (SPD), drift (SDD), and strip

(SSD) detectors. These silicon layers detect charged particles passing through them, and are

used together to reconstruct the particle paths as they leave the interaction region. Some

of the layer specifications can be found in Table 3.1. The main goal of the ITS is to be

able to track individual particle paths near the interaction point, where the particle density

is very high (∼8000 tracks per unit rapidity). This allows the ITS to locate the primary

vertex of the event with a resolution better than 100 µm. The ITS is used together with the

TPC for overall particle tracking and PID, though it can be used by itself to reconstruct

and identify tracks which travel along dead zones in the TPC (e.g. between TPC sectors)
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Figure 3.3: An inside look at the ALICE ITS [67].

Layer r (cm) z (cm) # of modules
Active area
per module

Resolution (µm)

rφ× z (mm2) rφ z

pixel 3.9 14.1 80 12.8 × 70.1 12 100
pixel 7.6 14.1 160 12.8 × 70.7 12 100

drift 15.0 22.2 84 70.2 × 75.3 35 25
drift 23.9 29.7 176 70.2 × 75.3 35 25

strip 38.0 43.1 748 73.0 × 40.0 20 830
strip 43.0 48.9 950 73.0 × 40.0 20 830

Table 3.1: Specifications of the ITS.

or decay before reaching the TPC.

The two SPD layers are used primarily for primary vertex determination due to their

ability to work in high track-density regions (as high as 50 tracks/cm2). The SDD and SSD

are used together for the ITS PID of low-momentum particles (up to pT ∼ 1 GeV/c), and

the SDD is important for matching tracks between the ITS and the TPC. Figs. 3.4 and

3.5 show the PID capabilities and vertex efficiencies of the ITS, respectively. ITS PID is

performed using specific energy loss dE/dx measurements and can identify pions down to

pT ∼ 100 MeV/c with a dE/dx resolution of 10-15% [89].
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Figure 3.4: dE/dx measurements as a function of momentum measured by ITS standalone
tracks [90].

.

Figure 3.5: Vertex resolution in Pb-Pb collisions as a function of half of the event tracklet
multiplicity, where a tracklet is defined as a pair of aligned SPD hits, one in each layer [90].
The orange box denotes the 0-5% centrality class.
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Figure 3.6: 3D view of the TPC field cage [91].

Time Projection Chamber (TPC)

The TPC [78] is located in the central barrel surrounding the ITS and stretches from 85 cm

out to 250 cm radially and 5 m along the beam direction, allowing full radial track-length

coverage in the pseudorapidity region |η| < 0.9 and an acceptance out to |η| < 1.5 for

reduced track length. The TPC covers the full azimuthal range. Fig. 3.6 shows a simple

view of the TPC cage.

The ALICE TPC is a traditional drift chamber in which charged particles ionize the

constituent gas (here, an 85/10/5% mixture of Ne/CO2/N2), and the freed electrons “drift”

through an electric potential toward cathodes situated at the end plates. The end plates

are segmented into ∼ 560000 “pads”, which register the “hits” of the ionized electrons. The

z-direction of the track is determined by the time taken by the electron drift, while r and φ

are determined by recording which end-plate pad received the “hit”. For the ALICE TPC,

the resolution on the track position is ∼ 1000 µm in both rφ and z [91]. The TPC has

a tracking efficiency of ≈ 80% in the central-η region and momentum resolution of ≈ 5%.

The TPC also uses dE/dx measurements to identify charged particles up to p ∼ 1-2 GeV/c

with a resolution of ≈ 5% for isolated tracks.
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Figure 3.7: A close-up view of the parallel plate setup of the ALICE Time-Of-Flight (TOF)
detector (picture taken from ALICE Bologna Group).

Time-Of-Flight (TOF) detector

The TOF detector [80] has a cylindrical surface covering 141 m2 at a radius of 3.7 m from

the beam line. It has a pseudorapidity acceptance of |η| < 0.9 and full azimuthal acceptance.

It uses Multigap Resistive Plate Chambers (MRPCs), which consist of two stacks of glass

plates (400 µm thick) separated by gas gaps (250 µm width). The TOF detector uses 1593

of these stacks, which can be seen in Fig. 3.7. The TOF matching efficiency, which is defined

as the ratio of the number of TPC tracks that also produced a TOF signal over the total

number of TPC tracks, is about 0.6-0.7 for pT > 0.5 GeV/c [92].

The TOF detector is used to obtain charged-particle velocities by measuring the time

difference between an initial time (usually taken from the T0 detector or calculated using

the TOF detector itself) and the time of detection. The ALICE TOF has a time resolution

of ≈ 80 ps for pions around p ∼ 1 GeV/c [93], which allows for a two-sigma separation up
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Figure 3.8: The positions of the two VZERO arrays within the ALICE detector [94].

to p ≈ 3 GeV/c for π–K and up to p ≈ 5 GeV/c for K–p.

VZERO detectors

The VZERO detector [86] consists of circular arrays of scintillator counters, one located at

each end of the ALICE machine. The two arrays VZERO-A and VZERO-C are located at

329 cm and -86 cm from the ALICE coordinate origin and cover the pseudorapidity ranges

2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. Fig. 3.8 shows a picture of the VZERO

detectors and their positions within the ALICE detector.

The VZERO detector is used as the default collision centrality determinator for ALICE

Pb-Pb collisions. The charged-particle amplitudes measured by the VZERO arrays are

used to define centrality classes (see Ch. 6 for details). The centrality-percentile resolution

for the VZERO is better than 2% for all centralities and reaches as good as 0.5% for very

central collisions [95]. The VZERO also participates in the triggering system for ALICE and,

with its centrality-determination capabilities, was able to deliver three centrality-dependent

triggers (minimum bias, 0-50%, and 0-10%) during the 2011 Pb-Pb run.
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Chapter 4

Femtoscopy

Femtoscopy is an analysis method used by physicists to extract information about the spatial

and temporal characteristics of the kinetic freeze-out of particles escaping from a high-energy

collision. In short, the method involves studying the relative momentum distributions

of detected particles, which are sensitive to various factors affecting the momenta of a

pair of particles, such as quantum statistics (Bose-Einstein or Fermi-Dirac) and final-state

interactions (Coulomb or strong). From these distributions, one can extract the size of the

particle-emitting regions of the collision system as well as gain additional information about

emission duration, the shape of the emission region (via azimuthal femtoscopy), and relative

emission positions (via non-identical femtoscopy). These characteristics can shed light on

the dynamics of the evolving reaction zone of collision systems and are sensitive to several

factors related to the presence of the QGP, such as the system lifetime and collective flow.

4.1 Introduction

The basic idea behind femtoscopy is known as intensity interferometry, which began with

the work of Hanbury Brown and Twiss [96, 97], who developed this form of interferometry

in order to measure the angular size of stars. The original method of measuring the size of

astronomical objects was through the use of Michelson interferometry, where one interferes

the amplitudes of light at two different “detection points” by converging them with a lens

and studying the diffraction pattern. However, the resolution of this method was limited

by the distance of separation between the detection points. Hanbury Brown and Twiss
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Figure 4.1: Schematic diagram [98] of intensity interferometry used in astronomy (left) and
particle physics (right).

realized that if the radiation measured at two different places was mutually coherent, then

one could find a correlation in the fluctuations of the intensities of the signals rather than

their amplitudes. Without the need for explicit amplitude interference, the measurement

method would not be limited by space needed for detection. Even though the interferometry

used in femtoscopic analyses today is different than this original method, the importance

of this work is noted in the fact that femtoscopy has historically been known as “HBT

interferometry”.

Intensity interferometry was independently discovered and first used in particle collisions

by the team of Goldhaber, Goldhaber, Lee, and Pais [99], who lent their names to another

historical name for femtoscopic correlations, the “GGLP effect”. The methods used in par-

ticle physics and astronomy are different in a subtle but important way. Fig. 4.1 shows the

two-particle interference mechanisms used in astronomy (left) and particle physics (right).

In astronomy, the photon wavevector is associated with a definite emission point, and the
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ambiguity in the two-particle coincident measurement comes from the interchange of the

detectors. In particle physics, the particle wavevector is associated with a certain detection

point, and the ambiguity comes from the interchange of the emission points.

More rigorously, the two-particle wavefunction corresponding to the two-photon detec-

tion coincidence in astronomy (left diagram of Fig. 4.1) is

Ψ(k⃗i, k⃗j; x⃗i, x⃗j) ∼ eik⃗i·(a⃗1−x⃗i)eik⃗j·(a⃗2−x⃗j) + eik⃗i·(a⃗2−x⃗i)eik⃗j·(a⃗1−x⃗j) (4.1)

where the second term reflects the path ambiguity in detecting identical bosons. The

probability of coincident detection Pi,j is the square of the wavefunction |Ψ|2, or

Pi,j(∆k⃗, d⃗) ∼ 1 + cos(∆k⃗ · d⃗) (4.2)

where ∆k⃗ = k⃗i− k⃗j and d⃗ = a⃗1− a⃗2. Using the approximations ki ≈ kj ≡ k, ∆k⃗ · d⃗ ≈ |∆k⃗|d,

and |∆k⃗| ≈ θijk = 2πθij/λ, one gets

Pi,j(d) ∼ 1 + cos(2πθijd/λ) (4.3)

Then, one simply varies the separation of the detectors to create the distribution Pi,j(d) and

extract the angular size θij.

In particle physics, the two-particle wavefunction corresponding to the two-boson de-

tection coincidence (right diagram of Fig. 4.1) is

Ψ(k⃗1, k⃗2; x⃗i, x⃗j) ∼ eik⃗1·(a⃗1−x⃗i)eik⃗2·(a⃗2−x⃗j) + eik⃗1·(a⃗1−x⃗j)eik⃗2·(a⃗2−x⃗i) (4.4)

where the wavevector is associated with the detection point, and the emission point is now

exchanged. The probability is then

Pi,j(∆k⃗, d⃗) ∼ 1 + cos(∆k⃗ · r⃗) (4.5)

where r⃗ = x⃗i − x⃗j. Then, one can study a distribution of ∆k⃗ to gain information about the

emission separation r⃗.

These expressions are assuming discrete sources, when in actuality we are dealing with

a continuum of sources. Thus, rather than simply looking at the discrete probability |Ψ|2,
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we want to average over the relative distance distribution ρ(r) and look at
∫
d3rρ(r)|Ψ|2.

The prescription shown above can be amended for use with fermions. Instead of the

wavefunction symmetrization due to the two-boson exchange, the two-fermion exchange will

lead to an anti-symmetrized wavefunction, changing the “+” signs in Eqs. 4.4 and 4.5 to

“–” signs. Since this thesis deals with bosons, we will generally assume a bosonic system.

4.2 Theoretical formalism

The theoretical formalism in this section follows the formalism presented in the excellent re-

views by Heinz [100], Heinz and Jacak [101], and Lisa et al. [102]. After the first observations

of the GGLP group, the early foundations of correlation femtoscopy were mostly developed

in several papers by Kopylov and Podgoretsky in the early 1970s (see [103–105], among

others). Many others later built upon these foundations and are cited in the remaining

sections of this chapter.

4.2.1 Correlation function

The main tool of femtoscopy is the two-particle correlation function, which is defined as the

ratio of the covariant two-particle and single-particle spectra:

C(p⃗1, p⃗2) =

E1E2
dN

d3p1d3p2(
E1

dN

d3p1

)(
E2

dN

d3p2

) . (4.6)

In order to gain information about the particle emission, we can relate this experimentally

measureable expression to the source function S(x, p), which is the single-particle Wigner

function that gives the probability of emitting a particle with momentum p from position

x. The single- and two-particle spectra and the correlation function can be written as

Ep
dN

d3p
=

∫
d4xS(x, p), (4.7)

E1E2
dN

d3p1d3p2
=

∫
d4x1 d

4x2 S(x1, p1;x2, p2)|Ψ(x1, x2, p1, p2)|2, (4.8)

C(p⃗1, p⃗2) =

∫
d4x1 d

4x2 S(x1, p1;x2, p2)|Ψ(x1, x2, p1, p2)|2∫
d4x1 S(x1, p1)

∫
d4x2 S(x2, p2)

. (4.9)
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To relate C(p1, p2) to S(x, p) in a convenient way, we make a few approximations.

First, we assume the bosons are emitted independently, and thus S(x1, p1;x2, p2) =

S(x1, p1)S(x2, p2). Second, we assume that higher-order symmetrization can be neglected

due to small freeze-out phase-space density. Third, we will often talk about the source

function and correlation function in terms of the average pair momentum K = (p1 + p2)/2

and the relative momentum q = p1 − p2, rewriting the source functions in the denominator

of Eq. 4.9 as functions of p1 = K + 1
2q and p2 = K − 1

2q. Then, we make the smoothness

approximation [106], which assumes that the source function has a sufficiently weak

momentum dependence at low q that we can write S(x,K ± 1
2q) ≈ S(x,K).

In the absence of final-state interactions, the two-boson symmetrized wavefunction (sim-

ilarly to Eqs. 4.4 and 4.5) is |Ψ|2 = 1+ cos(q · r), where r = x1 − x2. Then, we can use the

assumptions above to write Eq. 4.9 as

C(q⃗, K⃗) ≈
∫
d4x1d

4x2S(x1,K)S(x2,K) [1 + cos(q · (x1 − x2))]∫
d4x1S(x1,K)

∫
d4x2S(x2,K)

= 1 +

∫
d4x1d

4x2S(x1,K)S(x2,K)
(
1
2e

iq·x1e−iq·x2 + 1
2e

−iq·x1eiq·x2
)∫

d4x1S(x1,K)
∫
d4x2S(x2,K)

= 1 +
1

2

∫
d4x1S(x1,K)eiq·x1

∫
d4x2S(x2,K)e−iq·x2∫

d4x1S(x1,K)
∫
d4x2S(x2,K)

+
1

2

∫
d4x1S(x1,K)e−iq·x1

∫
d4x2S(x2,K)eiq·x2∫

d4x1S(x1,K)
∫
d4x2S(x2,K)

= 1 +

∣∣∣∣∫ d4xS(x,K)eiq·x∫
d4xS(x,K)

∣∣∣∣2

(4.10)

From this, we see that the relative momentum correlation function is essentially a Fourier

transform of the relative position source function.

The source function S(x, p) must be evaluated on-shell (p0 = Ep⃗ =
√
m2 + p⃗2) for

the single-particle spectrum of Eq. 4.8. However, for the on-shell particles we measure in

the detector, the momentum combinations q and K will generally be off-shell. Thus, the

source function S(x,K) in Eq. 4.10 will not be evaluated on-shell, which means we would

need to know its off-shell behavior, i.e. its quantum mechanical structure, in order to fully

evaluate the expression for the correlation function [107]. However, the interesting part of

the correlation function is at low |q⃗|, and expanding K0 around small |q⃗| gives K0 ≈ EK .
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This is known as the on-shell approximation. Using this approximation, we are able to treat

the source function S(x,K) as a classical phase-space distribution for on-shell particle pairs

of momentum K [107].

For identical particles,

qµK
µ =

1

2
(m2

1 −m2
2) = 0

⇐⇒ q0 = β⃗ · q⃗, β⃗ =
K⃗

K0
≈ K⃗

EK⃗

⇐⇒ qµx
µ = −q⃗ ′ · x⃗ ′

(4.11)

We see that q0 is not an independent variable, and thus we cannot use Eq. 4.10 to fully

reconstruct the four-dimensional S(x,K) via Fourier transform. We can use Eqs. 4.11 and

4.10 to rewrite the correlation function in a convenient way using the pair rest frame (PRF)

where K⃗ ′ = 0 (PRF variables are denoted with primes) as

C(q⃗, K⃗)− 1 =

∫
d3r⃗ ′SK⃗(r⃗ ′) cos(q⃗ ′ · r⃗ ′) (4.12)

where

SK⃗(r⃗ ′) =

∫
d4x1 d

4x2 S(x1, p1)S(x2, p2) δ(r⃗
′ − x⃗ ′

1 + x⃗ ′
2)∫

d4x1 d4x2 S(x1, p1)S(x2, p2)
. (4.13)

Here, SK⃗(r⃗ ′) gives the probability density for two particles with pair momentum K⃗ being

emitted at relative distance r⃗ ′ in the PRF when averaged over all emission times.

Eq. 4.12 tells us three important things about the femtoscopic correlation function.

First, it allows to use the pair wavefunction |Ψ|2 (here, |Ψ|2 = 1 + cos(q⃗ ′ · r⃗ ′)) as a kernel

to transform from coordinate space (SK⃗(r⃗ ′)) to momentum space (C(q⃗, K⃗)). Section 4.2.2

will discuss the more general case with final-state interactions, and we will do this explicitly

using the neutral kaon pair wavefunction in Ch. 5. Second, the coordinate space information

that we are studying via the correlation function, i.e. Eq. 4.13, is K⃗-dependent; we can gain

information only about the area of the source emitting particles of a specific pair momentum

and not the entire source. This area is often called the “region of homogeneity”7. For a

static source, these regions of homogeneity can approach the full size of the source; however,

7Originally coined by Sinyukov [108].
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Figure 4.2: View of particle emission in transverse plane. Black arrows represent particle
momentum. (Left) Thermal emission8from a static source. The region of particles with
similar momenta approaches the full source size. (Right) Emission from an expanding
source, with collective flow (represented by gray arrows) added to thermal emission. It is
still possible for pairs with similar momenta at low pair momentum KT to be emitted from
different sides of the source; however, pairs with large KT will only be emitted from the
same side of the source.

for an expanding source as we find in heavy-ion collisions, particles with similar momentum

will only be found close to each other, and the regions of homogeneity will be smaller than

the full size of the source (see Fig. 4.2 for an illustration of this effect).

Lastly, the source function in Eq. 4.13 has been integrated over time, and the correlation

function is explicitly three-dimensional, as we stated earlier. No direct information about

the temporal aspects of the emission system is extractable. However, one can indirectly

study the temporal components by studying the momentum dependence of the extracted

source sizes along with some knowledge about the dynamics of the system; this will be

discussed later.

8Thermal particles will obviously have a distribution of momenta. Here, only one momentum value is
drawn for simplicity.
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4.2.2 Final-state interactions

The formalism so far has assumed no final-state interactions (FSI). To incorporate FSI, we

would replace the factor eiq·x in Eq. 4.10 and, subsequently, the cosine factor in Eq. 4.12

with a distorted wavefunction which describes the scattering interaction. One would then

get the Koonin-Pratt equation [109,110]

C(q⃗, K⃗) =

∫
d3 r⃗ ′ SK⃗(r⃗ ′)|Ψ(q⃗ ′, r⃗ ′)|2 , (4.14)

where Ψ(q⃗ ′, r⃗ ′) is the FSI-distorted scattering wave for the relative motion of the

particle pair with asymptotic relative momentum q⃗ ′, i.e. the solution to the station-

ary Schrödinger equation [111]. For simplicity, the integral in Eq. 4.14 is written in

the pair rest frame. For identical bosons, the wavefunction used in the Koonin-Pratt

equation must be symmetrized to reflect the ambiguity under momentum exchange, i.e.

Ψ(q⃗ ′, r⃗ ′) → 1√
2
[Ψ(q⃗ ′, r⃗ ′) + Ψ(−q⃗ ′, r⃗ ′)].

For Coulomb FSI, the unsymmetrized wavefunction takes the form [112]

ΨCoul(q⃗ ′, r⃗ ′) = Γ(1 + η)e−
1
2
πηe

i
2
q⃗ ′·r⃗ ′

F (−iη; 1; iz) , (4.15)

where η = mαQED/q, z =
1
2(|q⃗

′||r⃗ ′|− q⃗ ′ · r⃗ ′), and F (−iη; 1; iz) is a confluent hypergeometric

function. In the past, this formula was used to correct the correlation functions before fitting

(see the next section for fitting details); today, analyses generally include the Coulomb effects

in the fitting function by using the Bowler-Sinyukov formula [112,113]

C(q⃗, K⃗) = (1− λ) + λKCoul(qinv)CBE(q⃗, K⃗) (4.16)

where KCoul(qinv) is the two-particle Coulomb wavefunction integrated over a static spheri-

cal Gaussian source9, qinv is the invariant relative momentum
√−qµqµ, and CBE(q⃗, K⃗) is the

expression for the correlation function expected from Bose-Einstein correlations without the

FSI (see the next section for details). The λ parameter denotes the fraction of pairs that are

correlated via Bose-Einstein statistics (again, see below for more details), used primarily to

9Other source shapes can be used, but the common prescription is the spherical Gaussian source with a
single characteristic width R.
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account for the infiltration of non-correlated pairs coming from long-lived decay products.

For strong final-state interactions, the non-symmetrized wavefunction describing elastic

transitions is written as a superposition of the plane and spherical waves. For the usual

case of s-wave dominated spherical waves, the wavefunction is [111]

Ψ(q⃗ ′, r⃗ ′) = e−i 1
2
q⃗ ′·r⃗ ′

+ f

(
q⃗ ′

2

)
e

i
2
q′r′

r′
(4.17)

where the s-wave scattering amplitude f( q⃗
′

2 ) =

(
1
f0

+ 1
2d0

(
q⃗ ′

2

)2
− iq⃗ ′

2

)−1

, f0 is the scatter-

ing length, and d0 is the effective range of the interaction. For neutral kaons, the scattering

amplitude is written differently due to the interaction being dominated by the presence of

near-threshold resonances (see Ch. 5).

4.2.3 Gaussian parametrization

In order to extract information about the source function from the measured correlation,

one can insert an ansatz expression for the source function over which we can integrate the

wavefunction kernel. The most common expression used is the Gaussian parametrization,

where we make a Gaussian approximation to the space-time dependence of the source

function S(x,K) [108,114,115]. We write the source function as

S(x,K) ≈ S(x̄(K⃗),K) exp

[
−1

2
x̃µ(K⃗)Bµν(K⃗) x̃ν(K⃗)

]
(4.18)

where

x̄µ(K⃗) = ⟨xµ⟩

x̃µ(K⃗) = xµ − x̄µ(K⃗)

(B−1)µν(K⃗) = ⟨x̃µx̃ν⟩

(4.19)

with the brackets ⟨...⟩ referring to the space-time averaged expectation values according to

⟨f(x)⟩ =
∫
d4x f(x)S(x,K)∫
d4xS(x,K)

. (4.20)

Thus, x̄(K⃗) refers to the spacetime “center” of the source, i.e. the point of maximum

probability of emission with momentum K⃗, and x̃ is the offset from the center.

43



Combining Eqs. 4.18 and 4.10, the correlation function becomes

C(q⃗, K⃗) = 1 + exp
[
−qµqν⟨x̃µx̃ν⟩(K⃗)

]
. (4.21)

Thus, the Gaussian approximation of the source function leads to a Gaussian form of the

correlation function, where the widths of the correlation function are related to the rms

widths of the source function. Then, one can use the mass constaint of Eq. 4.11 to eliminate

one of the q components in the correlator. The common way to do so is by using the

Cartesian parametrization [116,117], where we write the correlation function as

C(q⃗, K⃗) = 1 + exp

−
∑

i,j=o,s,l

R2
ij(K⃗) qiqj

 , (4.22)

R2
ij(K⃗) = ⟨(x̃i − βit̃)(x̃j − βj t̃)⟩, i, j = o, s, l . (4.23)

The Gaussian width parameters Rij , also known as femtoscopic radii or (historically) HBT

radii, are 6 functions of three variables: the pair average longitudinal momentum Kz, the

length of the pair average transverse momentum |K⃗T|, and the angle φ of K⃗T with respect

to the collision impact parameter. As you can see from Eq. 4.23, these radii are a non-trivial

mixture of the spatial and temporal characteristics of the source. The o, s, l in Eq. 4.23 refer

to the commonly used out-side-long coordinate system (see Fig. 4.3), where

ˆout =
ˆ⃗
KT , ˆlong = ẑ (i.e. beam) , ˆside = ˆlong × ˆout . (4.24)

A convenient frame to work in is the Longitudinally Co-Moving System (LCMS), in

which the pair longitudinal momentum Pz = 0. This causes one of the variable dependences

of the radii to drop out, i.e. R2
ij(K⃗) → R2

ij(|K⃗T|, φ). It also imparts a reflection symmetry

around z → −z; thus, for analyses at mid-rapidity, the crossterms R2
ol and R

2
sl vanish. Also,

in azimuthally-symmetric collisions, the xs → −xs symmetry leads to R2
os = R2

sl = 0 as well

as dropping the φ-dependence of the remaining radii. Thus, in many analyses, including the

work presented in this thesis, the quantum statistical correlation function takes the simple

form

C(q⃗, |K⃗T|) = 1 + exp
[
−R2

oq
2
o −R2

sq
2
s −R2

l q
2
l

]
. (4.25)
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Figure 4.3: The out-side-long coordinate system.

This expression shows us the usual theoretical correlation function used in (azimuthally-

integrated) experimental femtoscopic analyses. One can simply fit this expression to the

experimentally-measured correlation function and extract the three radii, which are related

to the Gaussian variances as

R2
o = ⟨x̃2o⟩ − 2βT⟨x̃ot̃⟩+ β2T⟨t̃2⟩

R2
s = ⟨x̃2s⟩

R2
l = ⟨x̃2l ⟩ .

(4.26)

4.2.4 Lambda parameter

An additional parameter often included in femtoscopic correlation functions is the lambda

parameter. It is usually included in the correlation function as

C(q⃗, K⃗) = 1− λ+ λKFSI

(
1 + exp

[
−R2

oq
2
o −R2

sq
2
s −R2

l q
2
l

])
. (4.27)
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λ measures the deviation of the correlation function from its expected theoretical value at

q = 0. The bosonic femtoscopic correlation function (for no FSI10) will reach a maximum

of 2.0 at q = 0 (assuming no higher-order symmetrization); however, several factors can

affect the correlation and make λ < 1. The presence of long-lived resonance decay prod-

ucts will dilute the signal, as their correlation function will have a very large radius and,

thus, only contribute at very small relative momentum, which is generally smaller than

the experimental momentum resolution. Particles that are produced coherently (e.g. pion

condensate [118]) will not have a quantum statistical enhancement and will also dilute the

signal; a recent analysis suggests that the coherent contribution to pion production in cen-

tral heavy-ion collisions may be as large as 20-30% [119]. The experiment-specific issue of

misidentified particles will also lead to a diluted signal.

4.2.5 Experimental correlation function

The expressions for the theoretical correlation function seen above will eventually be com-

pared to the experimental correlation function, which is defined as

CK⃗T
(q⃗) =

AK⃗T
(q⃗)

BK⃗T
(q⃗)

(4.28)

where AK⃗T
(q⃗) is a relative momentum distribution built from pairs taken from the same

event, and BK⃗T
(q⃗) is a similar distribution of pairs from different events. The process of

dividing by mixed-event pairs allows us to remove the combinatoric phase-space background

and retain the desired femtoscopic correlation, since the mixed-event pairs will have no

physical correlation. This also allows us to remove detector-specific effects on the single-

particle distributions. To account for the K⃗T dependence of the radii, the correlation

functions are formed in separate K⃗T bins, and then the K⃗T (or M⃗T) distributions of the

extracted radii can be studied.

10The λ parameter also measures the deviation of the correlation function from its expected theoretical
value at q = 0 with the inclusion of the FSI factor; however, the expected intercept may or may not be 2.0
depending on the effect of the FSI.
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4.3 Extracting source information from radius parameters

In this section, we will look at the different characteristics of the source function that are

extracted via the femtoscopic radii.

4.3.1 Source size and dynamics

We can study the interpretations of the extracted femtoscopic radii and their relation

to the dynamics of the source by using a hydrodynamically-expanding Gaussian source

model11 ( [101] and references within; see footnote below for parameter explanations)

S(x,K) =
MT cosh(η − Y )

8π4∆τ
exp

[
−K · u(x)

T (x)
− (τ − τ0)

2

2(∆τ)2
− r2

2R2(η)
− (η − η0)

2

2(∆η)2

]
. (4.29)

Integrating this source function in Eq. 4.10 at pair mid-rapidity, one can write the radii

from Eqs. 4.26 as

R2
o = R2

∗ + β2T(∆t∗)
2

R2
s = R2

∗

R2
l = L2

∗

(4.30)

where
1

R2
∗
=

1

R2
+

1

R2
flow

(∆t∗)
2 = (∆τ)2 + 2

(√
τ20 + L2

∗ − τ0

)2

1

L2
∗
=

1

(τ0∆η)2
+

1

L2
flow

Rflow(MT) =
R

ηf

√
T

MT
=

1

∂ηT(r)/∂r

Lflow(MT) = τ0

√
T

MT
=

1

∂ · ul

√
T

MT
.

(4.31)

Here, ηf characterizes the transverse flow rapidity profile, ηT = ηf(r/R).

11Here, the space-time coordinates are parametrized by the transverse radius r2 = x2 + y2, the space-
time rapidity η = 1

2
ln[(t + z)/(t − z)], and τ = (t2 − z2)1/2. The pair momentum K⃗ is parametrized by

Y = 1
2
ln[(EK + KL)/(EK − KL)] and MT = (m2 + K2

T)
1/2.

√
2R is the transverse rms radius of the

source. τ0 is the average freeze-out proper time and ∆τ is the mean duration of particle emission. The
Boltzmann factor exp[−K · u(x)/T (x)] describes the momentum-space structure of the source controlled by
a collective component given by the flow velocity field uµ(x) and a thermal component characterized by the
slope parameter, i.e. effective temperature, T (x).
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We see that, in the absence of flow, the sideward radius equals the geometric transverse

size of the source, while the outward radius has an additional component coming from

the emission duration. The ratio Ro/Rs is often studied to extract information about the

emission duration, though the exact relationship is non-trivial. It was originally expected

that the formation of a QGP would lead to an extended emission period and thus an increase

in both the outward radius and the Ro/Rs ratio. In fact, this was one of the main QGP

“signals” expected for femtoscopic analyses. However, experiments at RHIC and ALICE

both see this ratio consistent with unity [120]. Several factors, including the x−t correlations

seen in Eq. 4.26, can have contributions here, and this “HBT puzzle” has yet to be fully

resolved [100,121].

The longitudinal radius is sensitive to the time parameter τ0, the average freeze-out

proper time. For a boost invariant source with weak tranverse expansion, one can calculate

the relation [117,122]

R2
l = τ20

T

MT

K2(MT/T )

K1(MT/T )
, (4.32)

where K1,2 are Bessel functions, and T is a common freeze-out temperature. This has been

used by experimental analyses to extract the average freeze-out proper time for pions in

heavy-ion collisions at various collision energies [120].

From the expressions (4.30) and (4.31), we see two main instances of parameter interplay

that dictate the value of the extracted radii: thermal smearing vs. flow gradients, and

geometric size (R and τ∆η) vs. “dynamical lengths” (Rflow and Lflow). The first interplay

is apparent in the factor
√
T/MT; high temperatures, i.e. broader momentum spectra, tend

to increase the regions of homogeneity, while large flow contributions cause these regions to

shrink (as discussed in Fig. 4.2). The second interplay is a tradeoff between geometric and

dynamical sizes, where the smaller of the two “dominates”; the larger the size, the less it

contributes to the “radii” R∗ and L∗ in Eq. 4.31.

From these equations, both transverse and longitudinal source sizes have an approxi-

mate M
−1/2
T dependence. The exponent in the MT dependence of the radii can be shown

analytically to be −1
2 for a one-dimensional longitudinal hydrodynamic expansion with
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negligible transverse flow and common freeze-out characteristics, regardless of particle

species [122, 123]. This leads to the idea of “universal MT-scaling” for different particle

species, which is often searched for in femtoscopic analyses. However, it is unclear exactly

how this picture changes when one includes significant transverse flow, viscosity corrections,

and hadronic rescatterings, all of which are important in LHC Pb-Pb collisions. A recent

model using 3D+1 hydrodynamics (with statistical hadronization and resonance decays,

but no hadronic rescatterings) [124] finds different values of the MT exponent for the differ-

ent out-side-long radii and for different particle species when each is fit separately; though,

they also find that a common scaling can be found to within 10-20% for pions, kaons, and

protons when fit together, with values of the exponent between −0.40 and −0.70. Another

recent study [125], which includes hadronic rescattering, predicts no common scaling be-

tween pions and kaons at LHC energies. Their results also predict that the inclusion or

exclusion of initial transverse flow does not significantly affect the kaon data, suggesting

that it is the effects of final-state hadronic rescattering that can drive different species to

exhibit different freeze-out characteristics.

4.3.2 Additional femtoscopic considerations

The work in this thesis uses the approximations and the forms of the correlation functions

used above, i.e. Eq. 4.25, as well as the simplified 1D form seen in the next paragraph.

The remaining paragraphs will briefly discuss other aspects of the source function or wave-

function one can study with femtoscopic correlations.

1D femtoscopy

A simplification of the correlation function can be employed by assuming a spherical Gaus-

sian source function with a single width parameter Rinv (read “R invariant”)

SK⃗(r⃗ ′) ∼ exp

(
− r′2

4R2
inv

)
(4.33)

The correlation function is then studied as the function of a single variable qinv ≡ √−qµqµ

(read “q invariant”) and takes the form of a one-dimensional Gaussian,
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C(qinv) = 1 + exp(−q2invR2
inv) . (4.34)

This simplified form is generally used for analyses with low statistics, e.g. heavier particles

or lower collision energies. This thesis will show Rinv and 1D λ in addition to the three-

dimensional results.

Azimuthally-sensitive femtoscopy

If one studies collisions that do not have azimuthal symmetry, e.g. heavy-ion collisions at

peripheral centralities, one no longer has the xs → −xs symmetry, and the out-side cross-

term cannot be ignored. The correlation function then takes the form

C(q⃗, K⃗T) = 1 + exp
[
−R2

oq
2
o −R2

sq
2
s −R2

l q
2
l − 2R2

olqoql
]
. (4.35)

Azimuthally-differential femtoscopy is performed in φ bins measuring the angle of K⃗T with

respect to the impact parameter or, experimentally, the second-order flow plane. The

anisotropic shape of the collision region in the transverse plane gives rise to oscillations

of the extracted transverse radii parameters with respect to the viewing angle φ. These

oscillations can be used to measure the source freeze-out eccentricity, and comparisons to the

centrality-specified initial-state eccentricity can illuminate the dynamics of the transverse

expansion of the collision region [126]. Fig. 4.4 shows azimuthally-sensitive femtoscopy

results from ALICE, showing the oscillations in R2
o, R

2
s, and R

2
os.

Non-identical femtoscopy

Femtoscopic analyses can also be done with pairs of non-identical particles. These pairs

will not have a Bose-Einstein enhancement (or Fermi-Dirac repulsion); however, the final-

state interactions between the particles can still be used to extract information about their

emission processes via Eq. 4.14. Not only can these correlations study the size and shape of

the emission region, but they can also measure the relative emission shifts between different

species, i.e. whether different species freeze-out closer to or farther from the center of the

collision, which is not possible with pairs of identical particles. This shift is related to
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Figure 4.4: ALICE results [127] of azimuthally-sensitive femtoscopy, showing the oscillations
of R2

o, R
2
s, and the cross-term R2

os. The different colors refer to different KT bins (black/low
→ green/high).

51



Figure 4.5: Pion source function projections using the imaging technique from HKM cor-
relations [130] for Pb-Pb collisions at

√
sNN = 2.76 TeV. Solid lines represent Gaussian

fits.

the collective behavior of the matter, i.e. flow, and is a consequence of x-p correlations.

Hydrodynamic calculations predict that lighter particles will, on average, freeze-out closer

to the center of the source [128].

Source imaging

Rather than inserting a model-dependent ansatz for the source function in order to extract

information about the source, one can invert the Fourier transform in Eq. 4.12 as

SK⃗(r⃗) ≈
∫
d3q⃗ cos(q⃗ · r⃗) (CK⃗(q⃗)− 1) . (4.36)

This process is known as source imaging [129]. Using this method, one can build the

shape of the source function without any a priori assumptions. Fig. 4.5 shows the results

of imaging predictions from the HKM model [130]. An interesting thing to note is the

distinct non-Gaussian tails of the source function, especially considering that the majority

of non-imaging femtoscopic analyses assume a Gaussian source.

Extracting interaction parameters

In the same way that one assumes knowledge of the pair interaction (i.e. wavefunction) and

extracts the unknown source function parameters, one can instead assume knowledge of
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the source function and extract information about the interaction parameters. For certain

systems, such as pΛ or ΛΛ (and similar pairs using anti-particles), where the strong inter-

action parameters are not well known, it is possible to use better understood correlations

such as pp and pp̄ to predict source sizes and make some assumptions about the interaction

parameters, which can then be used in the correlation functions of the poorly understood

systems. Ref. [131] studies baryonic systems and attempts to gain information about their

strong interaction potentials using STAR data. ALICE currently has an ongoing ΛΛ /ΛΛ̄

analysis that will look to other femtoscopic analyses in this manner.

Multi-particle correlations: Coherence

The above formalism for femtoscopic correlations generally assumes that the particles are

emitted chaotically with no contribution from partially coherent sources, such as a pion

condensate [118], whose presence would suppress the correlation. Three-particle and higher-

order femtoscopic correlations are increasingly sensitive to the suppression from coherence

and can be used to access the fraction of coherent pairs in the sample [132]. ALICE has

performed a three-pion analysis and has measured correlations consistent with a coherent

fraction of ≈ 20-30% [119].
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Chapter 5

Neutral kaon femtoscopy

Neutral kaon femtoscopy acts as a wonderful complement to other femtoscopic analyses.

Pion and charged kaon analyses are more common because of the increased statistics; how-

ever, these analyses have some problematic issues which the neutral kaons can avoid. Pion

femtoscopy is affected significantly by resonance decays. The pions coming from long-lived

resonances will essentially not contribute to the correlation (or contribute only a very nar-

row enhancement) and dilute the signal, while pions coming from semi-long-lived decays can

extend the source size and introduce a non-Gaussian distortion to the correlation. Kaons

suffer less from resonance decays, simply due to their heavier masses, and present a clearer

signal. Charged-particle analyses also must deal with the Coulomb interaction, which is sig-

nificant at low q, precisely the region where femtoscopic correlations are important; neutral

kaons, of course, do not interact via Coulomb. Charged kaon tracks can only be confi-

dently identified for pT < 0.5 without TOF and for pT < 1.5 with TOF. Neutral kaon

identification, which utilizes topological features of the decay geometry, is excellent even at

high momentum, allowing us to extend femtoscopic studies to higher momentum than other

species. Lastly, charged and neutral kaon analyses act as a convenient consistency check for

each other because they are expected to have the same results while using significantly dif-

ferent analysis methods, e.g. charged-particle tracking vs. secondary vertex reconstruction

and Coulomb vs. strong FSI.

In this chapter, we will discuss the theoretical aspects of the neutral kaon system. We

will look at the interesting two-particle wavefunction, which includes contributions from
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quantum statistics and strong final-state interactions, and build the theoretical correlation

function that is necessary to fit the experimental data.

Much of this chapter follows the work of Lednický and Lyuboshitz regarding final-state

interactions [133] and the more recent work of Lednický and Bekele regarding the K0
SK

0
S

system [134].

5.1 The neutral kaon

The neutral kaon states K0 and K̄0 carry definite strangeness +1 and −1, respectively, and

thus are strong interaction eigenstates. In the quark model,

|K0⟩ = |ds̄⟩ and |K̄0⟩ = |sd̄⟩ . (5.1)

The neutral kaon mass is mK0 = 497.6 MeV/c2, which is slightly bigger than the charged

kaon mass due to the u-d quark mass difference. They are related under CP transformation

as 12

CP |K0⟩ = |K̄0⟩ , CP |K̄0⟩ = |K0⟩ . (5.2)

Since these are the strong interaction eigenstates, these are the particles that are produced

in heavy-ion collisions.

Due to weak charged current interactions, K0 − K̄0 mixing [135] occurs (see Fig. 5.1),

and the physical mass eigenstates and CP eigenstates are given by

|K0
1 ⟩ =

K0 + K̄0

√
2

and |K0
2 ⟩ =

K0 − K̄0

√
2

, (5.3)

with CP eigenvalues of +1 and −1, respectively. Assuming CP is conserved in weak

interactions, K0
1 can only decay into a state with CP = +1, e.g. π+π− or π0π0, and K0

2

must go to π+π−π0 or π0π0π0.13 Since the decay phase space is much larger for 2π than for

3π,K0
1 has a much shorter lifetime thanK0

2 ; hence,K
0
1 andK0

2 are usually calledK0
S (Short)

12The CP transformation is actually, in the |K0⟩, |K̄0⟩ basis,
( 0 η
η∗ 0

)
, where η is a phase. We express the

freedom to choose η = 1.
13K0

1 → π+π−π0 is only forbidden due to CP conservation for certain isospin values, but the allowed
isospin value decays are greatly suppressed due to orbital angular momentum considerations.
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Figure 5.1: Second-order weak interaction Feynman diagrams showing K0 − K̄0 mixing.

and K0
L (Long). The idea of different lifetimes for neutral kaons was first predicted by Gell-

Mann and Pais [135]. The experimentally measured proper lifetimes of the K0
S and K0

L

are 0.90 × 10−10 s and 5.12 × 10−8 s, which correspond to decay lengths of 2.7 cm and

15.3 m. This is one of the reasons why K0
S is the preferred neutral kaon for high-energy

experiments, as the K0
L will often escape the detector before decaying.14 An interesting

note about the role of neutral kaons in particle physics history is that the observation of

K0
L → 2π decays established the first observation of CP violation [136]. Table 5.1 shows

the principal branching ratios for neutral kaon decays.

5.2 Two-particle state

5.2.1 Bose-Einstein enhancement

For neutral kaon femtoscopic correlations, we are interested in the two-particle K0
SK

0
S wave-

function. From Eq. 5.3, we get

|K0
SK

0
S⟩ =

1

2

(
|K0K0⟩+ |K0K̄0⟩+ |K̄0K0⟩+ |K̄0K̄0⟩

)
. (5.4)

The two-K0
S state is made up of a combination of K0K0 (K̄0K̄0) and K0K̄0 states. Since

the K0K0 and K̄0K̄0 states are pairs of identical bosons, they will produce a Bose-Einstein

enhancement due to a symmetrized wavefunction. For the mixed K0K̄0 terms, one can

show that even though they are not identical bosons, they will produce a Bose-Einstein-like

14Also, π0 is harder to detect than charged pions; hence, the K0
S are only reconstructed via their charged

pion decay channel.
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K0
S → π+π− 69.2%

→ π0π0 30.7%

→ π±e∓νe 7.0× 10−4

→ π±µ∓νµ 4.7× 10−4

→ π+π−π0 3.5× 10−7 non-CP -violating

→ π+π−π0 not given CP -violating

→ 3π0 < 1.2× 10−7 (90% C.L.) CP -violating

K0
L → π±e∓νe 40.5%

→ π±µ∓νµ 27.0%

→ 3π0 19.6%

→ π+π−π0 12.6%

→ π+π− 2.0× 10−3 CP -violating

→ π0π0 8.7× 10−4 CP -violating

Table 5.1: Principal branching ratios for neutral kaon decays [137].

enhancement at low q⃗. In general, a boson–anti-boson pair (BB̄) is an eigenstate of the

charge conjugation operator. We can write the probability amplitude for a given charge

conjugation eigenvalue Cn as [138]

|BB̄⟩Cn=±1 =
1√
2

(
|B(p⃗ ′)B̄(−p⃗ ′)⟩ ± |B(−p⃗ ′)B̄(p⃗ ′)⟩

)
, (5.5)

where p⃗ ′ is the momentum in the PRF. As q⃗ → 0, i.e. p⃗ ′ → 0,

|BB̄⟩Cn=±1 →
1√
2

(
|B(0)B̄(0)⟩ ± |B(0)B̄(0)⟩

)
(5.6)

which is maximally enhanced for Cn = +1 and suppressed for Cn = −1. By looking at

K0
SK

0
S pairs, we are explicitly choosing the Cn = +1 state. Thus, the whole K0

SK
0
S system

will produce a Bose-Einstein-like enhancement at low q⃗. It is interesting to note that any

spinless boson–anti-boson pair, e.g. K+K−, π+π−, etc., has this property; however, if one

does not select a specific charge eigenvalue, the enhanced and suppressed contributions will

cancel each other, and the correlation (excluding FSI) will be flat. The neutral kaon system

is special in that it presents an easy way to explicitly select a state with a definite charge

eigenvalue.
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5.2.2 Strong FSI

(Throughout the rest of this chapter, we will use the variables k⃗ ∗ and r⃗ ∗ instead of

p⃗ ′ and r⃗ ′ to represent the momentum of a particle and the emission separation of the

pair in the pair rest frame, as they are more commonly used in the literature. Also,

k∗ = |⃗k ∗| = 1
2qPRF = 1

2qinv.)

Strong final-state interactions have an important effect on K0
SK

0
S correlations. Particu-

larly, the K0K̄0 channel is affected by the near-threshold resonances f0(980) and a0(980).

Using an equal emission-time approximation in the pair rest frame15, the elastic K0K̄0 tran-

sition is written as a stationary solution Ψ
(+)

−k⃗ ∗(r⃗
∗) of the scattering problem in the PRF

(the −k⃗ ∗ subscript refers to a reversal of time from the emission process), which at large

distances has the asymptotic form of the superposition of a plane wave and an outgoing

spherical wave,

Ψ
(+)

−k⃗ ∗(r⃗
∗) = e−ik⃗ ∗·r⃗ ∗

+ f(k∗)
eik

∗r∗

r∗
, (5.7)

where f(k∗) is the s-wave scattering amplitude for a given system. For K0K̄0, f(k∗) is

dominated by the f0 and a0 resonances and written in terms of the resonance masses and

decay couplings [134,140]:

f(k∗) =
1

2
[f0(k

∗) + f1(k
∗)] , (5.8)

fI(k
∗) =

γr
m2

r − s− iγrk∗ − iγ′rk
′
r

. (5.9)

Here, s = 4(m2
K + k∗2); γr(γ

′
r) refers to the couplings of the resonances to the f0 →

K0K̄0(f0 → ππ) and a0 → K0K̄0(a0 → πη) channels; mr is the resonance mass; and

k′r refers to the momentum in the PRF for the second decay channel (f0 → ππ or a0 → πη)

with the corresponding partial width Γ′
r = γ′rk

′
r/mr . The amplitudes fI of isospin I = 0 and

I = 1 refer to the f0 and a0, respectively. The parameters associated with the resonances

and their decays are taken from several experiments, and the values are listed in Table 5.2.

In general, Eq. 5.7 can be used for any two-particle FSI interaction. For K0K0 or

15The approximation is justified for heavy-mass particles such as the kaon and will only lead to a slight
overestimation of the FSI effect for pions [139].
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Ref mf0 γf0KK̄ γf0ππ ma0 γa0KK̄ γa0πη
[141] 0.973 2.763 0.5283 0.985 0.4038 0.3711

[142] 0.996 1.305 0.2684 0.992 0.5555 0.4401

[143] 0.996 1.305 0.2684 1.003 0.8365 0.4580

[140] 0.978 0.792 0.1990 0.974 0.3330 0.2220

Table 5.2: The f0(980) and a0(980) masses and coupling parameters from various experi-
ments, all in GeV.

K̄0K̄0, the s-wave scattering amplitude f(k∗) is small, i.e. ∼ 0.1 fm, and can be neglected;

this is the same for the non-resonant s-wave contributions for K0K̄0 [144]. However, the

FSI contributions to K0K̄0 due to the f0 and a0 have non-negligible scattering amplitudes

∼ 1.0 fm and must be accounted for.

5.3 K0
SK

0
S correlation function

To build the full K0
SK

0
S correlation function, we combine the average squares of the sym-

metrized K0K0 and K̄0K̄0 wavefunctions and the non-symmetrized K0K̄0 wavefunction

and integrate over the source function. Here, we will use the Lednický and Lyuboshitz

analytical model to perform the integration [133]. The model assumes a one-dimensional

Gaussian source function of the PRF relative distance |r⃗ ∗| with a Gaussian width R of the

form

S(|r⃗ ∗|) ∼ e−|r⃗ ∗|2/(4R2) . (5.10)

For K0K0 and K̄0K̄0, neglecting the small FSI contribution, the wave function reduces

to the symmetrized plane wave

ΨK0K0(r⃗ ∗) =
1√
2

[
e−ik⃗ ∗·r⃗ ∗

+ e+ik⃗ ∗·r⃗ ∗
]
. (5.11)

This simple integration gives the expected Gaussian form for the correlation function from

Eq. 4.34. Combining the K0K0, K̄0K̄0, and K0K̄0 contributions with the proper K0
SK

0
S

weight fractions16 and using the Lednický and Lyuboshitz model to perform the averaging

16To be rigorous, one should replace the 1/2 factor in front of the FSI contributions in Eq. 5.12 with
α = (1 − ϵ2)/2, where ϵ is the K0 − K̄0 abundance asymmetry. However, in heavy-ion collisions at high
energies, this asymmetry is basically zero [23](see Fig. 5.2), and α ≈ 0.5, meaning 1/2 of the pairs will
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Figure 5.2: K−/K+ asymmetry results from ALICE [23], suggesting the lack of K0/K̄0

asymmetry.

over r⃗ ∗, we get

C(q) = 1 + e−q2R2
+

1

2

[∣∣∣∣f(k∗)R

∣∣∣∣2 + 4Rf(k∗)√
πR

F1(qR)−
2If(k∗)

R
F2(qR)

]
, (5.12)

where

F1(z) =

∫ z

0
dx
ex

2−z2

z
and F2(z) =

1− e−z2

z
. (5.13)

Here, q = qPRF = qinv from Eq. 4.34 and R is Rinv from Eq. 4.33.

Figures 5.3 to 5.5 show examples of the different contributions to the K0
SK

0
S correlation

function for various source sizes Rinv. Fig. 5.3 shows the Bose-Einstein contribution, i.e. the

Gaussian found in Eq. 4.34. Note that the enhancement gets wider for smaller source sizes,

as expected from a Fourier transform. Fig. 5.4 shows the contribution from the final-state

interactions (including the corrections of Sec. 5.3.1 and Appendix A). We see that the effect

of the K0K̄0 interaction is repulsive in character, similar to an annihilation process. Again,

the structure gets wider for smaller source sizes; the depression also gets deeper for smaller

R.

Fig. 5.5 shows the complete K0
SK

0
S correlation function including Bose-Einstein effects

undergo significant FSI.
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Figure 5.3: Bose-Einstein contribution to the K0
SK

0
S correlation function for various radii.
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Figure 5.4: Final-state interaction contribution to theK0
SK

0
S correlation function for various

radii.
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Figure 5.5: 1D K0
SK

0
S correlation function for various radii, including contributions from

quantum statistics and final-state interactions. The FSI include the corrections discussed
in Appendix A.

and final-state interactions according to Eq. 5.12, including the corrections below. One can

see that while the Bose-Einstein enhancement is the most significant contribution, the FSI

are certainly non-negligible, causing a ≈ 10% depression in the mid-q range. This depression

moves out to larger q for smaller radii.

Fig. 5.6 shows the correlation functions for the different sets of resonance parameters

seen in Table 5.2, which are used in the FSI scattering amplitudes. Although the parameter

values can vary by a significant amount, the dominant part of the scattering amplitude

is determined by the ratios of the decay channel couplings, which remain fairly consistent

between experiments. Still, there are some non-negligible variations in the correlation func-

tions due to these values, which can lead to systematic differences up to 5% in the radii

extracted from fits to the data.
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Figure 5.6: 1D K0
SK

0
S correlation function using different FSI parameters extracted from

various experiments: (a) [140], (b) [141], (c) [142], (d) [143].

5.3.1 Corrections to the K0
SK

0
S correlation function

Included in the plots above are two corrections to the K0
SK

0
S correlation function. The first

correction involves the inclusion of the inelastic transition K+K− → K0K̄0. The second

deals with the deviation of the spherical waves from the true scattered waves in the inner

region of the short range potential. Both of these corrections are small for the source sizes

probed in high-energy heavy-ion collisions (R & 2 fm), but can become significant at lower

radii. See Appendix A for more details on these corrections.

5.4 Three-dimensional correlation function

The analytical derivation of the K0
SK

0
S correlation in Eq. 5.12 incorporating FSI done via

the Lednický and Lyuboshitz model [133] is specific to the one-dimensional case. For the 3D

case, the integration of Eq. 4.14 including the FSI contributions to the wavefunction cannot

be performed analytically. In order to form the 3D correlation function, we combine a Monte

Carlo emission simulation with a calculation of the two-particle wavefunction, thus perform-
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ing a numerical integration of Eq. 4.14. The Monte Carlo emission simulation consists of

generating the pair positions sampled from a three-dimensional Gaussian (out-side-long) in

the PRF, with three input radii as the width parameters, and generating the particle mo-

menta sampled from a distribution taken from data. Using the MC-sampled positions and

momenta, we calculate the equal-time-approximated two-particle PRF wavefunction using

Eqs. 5.7 and 5.11. We then build a correlation function using the wavefunction weights to

form the signal distribution, and an unweighted distribution acts as a phase-space back-

ground:

C(q⃗) =
⟨|Ψ(q⃗, r⃗ ′)|2⟩S(r⃗ ′)

⟨1⟩S(r⃗ ′)
, (5.14)

where ⟨...⟩S(r⃗ ′) refers to the process of sampling many times over the Gaussian source

function and momentum distribution. This theoretical correlation function is then used to

fit the data. More details on the 3D fitting process can be found in Ch. 6.

5.5 Past K0
SK

0
S analyses

Neutral kaon femtoscopy has been studied in the past, but only a few times. Early analyses

were performed in pp̄ and e+e− collisions at CERN [145,146]. Also, the WA97 experiment

at the CERN SPS presented [147] aK0
SK

0
S correlation function from central Pb-Pb collisions

at 158 GeV/c per nucleon (see Fig. 5.7). The statistics (only 2000 pairs) were too small to

extract any conclusive information about the source.

The STAR experiment at RHIC was the first to extract radii from K0
SK

0
S correlations

in heavy-ion collisions. They presented [148] a KT-integrated 1D analysis for 0-10% central

collisions of Au+Au collisions at
√
sNN = 200 GeV. Using the Lednický-Lyuboshitz analyt-

ical model discussed above, they extracted a source size of R = 4.09 ± 0.46 ± 0.31 fm at

⟨MT⟩ = 1.07 GeV. Fig. 5.8 shows their correlation function with fit.

ALICE has presented [149] K0
SK

0
S correlations from pp collisions at

√
s = 7 TeV. This

was the first differential K0
SK

0
S analysis in both event multiplicity and MT (2 bins each).

This analysis also used the Lednický-Lyuboshitz analytical model. Fig. 5.9 shows the

correlation functions and Fig. 5.10 shows the extracted radii.
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Figure 5.7: K0
SK

0
S correlation function from the WA97 experiment [147]. The line shows a

Gaussian line of width R = 6 fm and is not a fit to the data.

Figure 5.8: K0
SK

0
S correlation function from the STAR experiment [148]. The different fits

refer to different sets of FSI parameters, similar to Fig. 5.6 of this thesis.
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Figure 5.9: K0
SK

0
S correlation functions from ALICE [149] in pp collisions at

√
s = 7 TeV.

Two multiplicity and two KT bins are shown. The experimental correlation functions are
divided by PYTHIA correlation functions to account for a non-femtoscopic background and
fit with the Lednický-Lyuboshitz parametrization.

Figure 5.10: Extracted radius parameters from ALICE [149] in pp collisions at
√
s = 7 TeV.
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The analysis presented in this thesis is the first centrality- and KT-differential K
0
SK

0
S

femtoscopic analysis for heavy-ion collisions. It is also the first analysis to present three-

dimensional K0
SK

0
S correlations, as well as the first to perform the method of Sec. 5.4 to

include the strong FSI for three-dimensional correlations.
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Chapter 6

Experimental Details

This chapter will document the details of the experimental aspects of this thesis.

6.1 Data selection and software

The data used in this thesis were taken from the 2010 and 2011 runs of Pb-Pb collisions at

√
sNN = 2.76 TeV from the LHC at CERN and were measured by the ALICE detector. The

analysis was mostly done with the ROOT [150] data analysis software using the ALICE

Off-line framework known as AliRoot [151].

Monte Carlo simulation “runs” were performed by the ALICE collaboration using the

HIJING model [152]. Particle transport through the simulated detector was done using

GEANT3 [153].

6.2 Event selection

6.2.1 Triggering

The main on-line trigger for ALICE physics events is generally a coincidence measurement

of signals in the VZERO, SPD, and ZDC detectors (or some combination of these). An off-

line event selection then discards unwanted events, such as: an “event” triggered by noise

in the SPD; beam-gas events, which generally occur outside of the nominal interaction

region and can be discarded using VZERO timing asymmetry; parasitic collisions involving

ions outside of the main bunches, which are generally cut using a vertex z-position cut; and
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electromagnetic interactions, which generally only involve ultra-peripheral collisions outside

of the centrality region looked at by most analyses.

The 2010 data was collected using the minimum-bias triggers “MBand” (signals in

VZERO-A and VZERO-B) and “MBor” (signals in VZERO and SPD). The 2011 data

was collected using three triggers, two of which correspond to a specific centrality class:

minimum bias, semi-central (0-50%), and central (0-10%). The 2011 minimum-bias trigger

required signals in both ZDC detectors in addition to the VZERO measurements. The

central and semi-central triggers required a certain threshold on the sum of the amplitudes

measured in VZERO-A and VZERO-B [93].

6.2.2 Event centrality

The event centrality in ALICE is primarily determined by fitting the VZERO detectors’

measured amplitudes with the Glauber model. Fig. 6.1 shows the distribution of the sum

of amplitudes measured in the two VZERO detectors. The fit of the Glauber model to the

measured data distribution determines the anchor point, which is the VZERO amplitude

equivalent to 90% of the hadronic cross section.

The relationship between a VZERO amplitude and a centrality percentile is determined

by integrating over the VZERO distribution and normalizing by the 90% region determined

by the anchor point. For example, the 0-10% centrality class is bounded by the amplitude

V010 which satisfies ∫ inf
V010

(dNevt/dV )dV∫ inf
V090

(dNevt/dV )dV
=

1

9
, (6.1)

where V is the VZERO amplitude and V090 is the VZERO anchor point. Fig. 6.1 shows

several centrality classes determined by this method. Similar Glauber fits were performed

on the distribution of hits in the outer layer of the SPD and the reconstructed track in the

TPC; these measurements were used for determining the systematic errors of the centrality

determination. The resolution of the centrality determination ranges from 0.5% for central

collisions to 2% in peripheral collisions [94].

Fig. 6.2 shows the measured centrality distributions for the 2010 and 2011 runs used
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Figure 6.1: VZERO amplitude distribution used for centrality determination in ALICE [94].
The distribution was fit with an MC-Glauber calculation to detemine the centrality anchor
point. Various centrality classes are shown.

in this thesis. For the 2011 data, there is a noticeable non-uniformity in the 0-10% class.

To check the effect of this, a flattening procedure was performed in order to make the

distribution uniform. However, the mean centrality before the flattening procedure was

4.9%, and the results of the analysis did not change after flattening, so the procedure was

discarded in order to preserve statistics. A similar asymmetry exists in the 10-20% region

but does not affect the results.

The plots in Fig. 6.2 each show two distributions: the events that passed the triggers

and were analyzed, and the events that actually were used in the final results. Events

were required to have a primary vertex z-position less than 10 cm away from the nominal

interaction point of the ALICE detector and also needed to have two good K0
S particles.

These two requirements cause the difference between the two distributions, and the latter

requirement is the cause of the gradual dropoff at large centrality percentile.

70



centrality %
0 10 20 30 40 50

n
o
. 
o
f 
e
v
e
n
ts

0

10

20

30

40

50

60

70

80
3

10×

Events passing trigger

Events used

2010 data

from this thesis

centrality %
0 10 20 30 40 50

n
o
. 
o
f 
e
v
e
n
ts

0

200

400

600

800

1000

1200

3
10×

Events passing trigger

Events used

2011 data

from this thesis

Figure 6.2: The centrality distributions measured from ALICE data from 2010 (left) and
2011 (right). The blue line refers to the events that passed the trigger and off-line physics
selection, and the red line shows the events that were used in the analysis (passing z-vertex
cut and possessing two K0

S particles).

6.2.3 Primary vertex

The primary vertex position refers to the location of the nucleus-nucleus collision, which

generally happens in an area parametrized by a Gaussian of width σz ≈ 5 cm along the z-

axis and a transverse width equal to the width of the beam, σT ≈ 15−75µm. The position

of the vertex is initially determined by tracklets (pairs of hits) measured by the SPD. This

is done on-line and is needed for further on-line particle tracking. The vertex position

is improved after track reconstruction is completed by using the full set of reconstructed

tracks to determine the primary vertex position with the optimal resolution. The resolution

of the vertex determination is ≈ 10 µm along the beam line and ≈ 25 µm in the transverse

plane [154].

In this analysis and many others, the primary vertex position must be within 10 cm of

the center of ALICE detector. This allows the events to use the full range of the ALICE

detector and avoid edge-of-acceptance effects, as well as prevents infiltration from unwanted

event types, such as parasitic or beam-gas collisions.
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6.3 General particle selection

6.3.1 Track reconstruction

Track reconstruction [67] is done using the Kalman filter method. Hit points near the

outermost layers of the TPC are used as seed values, and the tracking moves inward pad row

by pad row through the TPC, updating the track information as it goes. Then, the tracks

are propagated into the ITS, all the way to the innermost layer. Ambiguities in the track

prolongation (such as more than one acceptable hit in an existing track’s search window into

the next layer) are allowed to propagate all the way through, and a χ2 fit is performed to

select the best track candidate. The track is then propagated back outward through the ITS

and TPC (and onward to the TRD and TOF), and the track parameters are recalculated.

This process is done twice: once with the track constrained to the primary vertex and

once without this constraint, since some tracks are not expected to go through the primary

vertex, e.g. secondary decay products. Several sets of track parameters are usually stored

in the data files. For example, one can choose TPC-only tracks rather than TPS+ITS

tracks, or tracks reconstructed with or without the primary vertex constraint. Different

analyses prefer different types of tracks or track parameters. For example, femtoscopic

analyses often use TPC-only momentum determination, as shared clusters in the ITS cause

a momentum bias that leads to false correlations. Particle tracks are often selected at the

individual analysis level by cutting on certain figures-of-merit associated with the tracking

procedure. Several of these figures-of-merit include the number of TPC clusters (i.e. pad

rows) or ITS layers that were used in the reconstruction of the track and the χ2 value of

the track minimization fit. One may also look at the unconstrained tracks and cut on the

distance of closest approach (DCA) of the track to the primary vertex. This can help cut

out secondary particles coming from decays; or, if you are looking for secondary particles,

this can cut out primary tracks.
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6.3.2 Charged-particle identification

Ionization energy loss dE/dx

Charged-particle identification in the ITS and TPC is based on the specific ionization energy

loss dE/dx which describes the energy lost by the particle as it ionizes the constituent atoms

of the medium through which it is passing. This parameter depends on the particle’s mass,

electric charge, and momentum, and is calculated using the Bethe-Bloch equation [137]

−dE
dx

= Kz2
Z

A

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2

]
. (6.2)

Here, z2 is the electric charge of the particle, β and γ are the relativistic kinematic variables,

and Tmax is the maximum energy transfer in a particle-electron collision; the rest of the

variables relate to the electron or the medium. At low momentum, the dE/dx curve falls

as β−2, and then begins to rise (“relativistic rise”). dE/dx curves for different particles

are separated by their masses at low momentum and eventually join at higher momentum,

making dE/dx PID only usable for low-momentum particles. Fig. 6.3 shows the dE/dx

curves measured by ALICE in the TPC. The ITS also can be used to measure dE/dx (see

Fig. 3.4).

dE/dx PID is employed in the analysis by fitting the energy-loss signal with a Bethe-

Bloch parametrization [155]

f(βγ) =
P1

βP4

(
P2 − βP4 − ln

[
P3 +

1

(βγ)P5

])
, (6.3)

where the Pi are open fit parameters; these fits are shown in Fig. 6.3. The bands are each

fit with a Gaussian around the mean value determined by the above parametrization, and

a width σ is extracted. Then, each track is assigned a number Nσ signifying its distance

from the mean of each band based on its measured dE/dx signal and momentum. One can

then choose the desired Nσ to determine the strength of the PID cut.
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Figure 6.3: dE/dx signal from the ALICE TPC as a function of momentum in Pb-Pb
events [93]. The black lines refer to a Bethe-Bloch parametrization fit to each particle
species (see Eq. 6.3).

Time-of-Flight

Particles can also be identified by measuring their velocities using the TOF detector. The

start time for this calculation is measured by the T0 Cherenkov detectors with a resolution

of 20-25 ps [93]. The end time is then measured by the TOF detector located ≈ 4 m from

the beam line. The entire TOF measurement provides a overall time resolution of about

80 ps for intermediate-momentum pions [93]. Looking at the β vs. momentum distribution,

the particles separate into bands, as seen in Fig. 6.4.

Similar to the dE/dx case, one can fit a ∆t distribution for a specific momentum with

multiple Gaussians to determine the yields of each species. Fig. 6.5 shows an example of

this procedure. Then, each track is assigned an Nσi signifying the number of Gaussian

widths away from the mean value of the distribution for particle species i.
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Figure 6.4: Particle identification using the ALICE TOF, showing particle velocity (β) vs
momentum [93].

Figure 6.5: The measured TOF time signal relative to the expected time for kaons, divided
by the expected kaon resolution [93]. The distribution is fit with multiple Gaussians to find
the yields of several particle species for a specific momentum, which is used to calculate Nσ

for TOF PID.
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6.3.3 V0 finder

Some neutral particles (including the K0
S) are reconstructed via their decay into charged

particles. The detector directly measures the charged daughter tracks, and then reconstructs

the decay vertex based on several topological parameters. ALICE has in place a secondary

vertex reconstruction algorithm, known as the V0 finder, that searches for decay vertex

candidates (called “V0s”) during the particle reconstruction process. The V0 finder looks

for two oppositely charged tracks that meet several topological requirements that would

correspond to an actual decay vertex; see Fig. 6.6 for a schematic of these parameters. V0

candidates need to have

• daughter tracks with a large DCA to the primary vertex, to ensure daughter tracks

are not primary

• a small DCA between the daughter tracks, to ensure daughters came from same decay

• a small parent DCA to the primary vertex, to ensure the parent is primary

• a small pointing angle (angle between the parent’s momentum and position vectors)

• a decay length within some specified fiducial volume

These cuts are used in addition to any single-particle cuts performed on the daughters to

ensure well-reconstructed tracks. Candidates that pass these first-order cuts can then be

further trimmed in individual analyses by tightening the cuts, in order to achieve lower back-

grounds and higher purity samples, and employing species-specific cuts, such as daughter

track PID and parent invariant mass cuts.

The ALICE V0 finder has two reconstruction modes: online or on-the-fly and off-

line. The on-the-fly reconstruction happens during the initial track reconstruction. The

algorithm can make the assumption that a track is a secondary particle and recalculate the

track parameters using the actual hits (clusters) in the TPC and ITS without the assumption

that it must pass through the primary vertex. This improves the position and momentum

resolution of the secondary vertex. Since this method uses the cluster information, which
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Figure 6.6: Schematic view of topological parameters used for V0 decay vertex reconstruc-
tion (plot taken from [156]).

is not stored after tracking, it must be performed during the tracking procedure. The off-

line V0 finder is performed after the tracking procedure is complete, simply by combining

opposite sign tracks with the parameters discussed above. While this method can be tweaked

and re-performed without having to reprocess the full cluster information, it generally has

poorer performance than the on-the-fly method.

The parameters of the parent V0 are calculated from the parameters of the daughter

tracks using conservation of momentum and relativistic kinematics. The parent momentum

is simply the sum of the daughter momenta, p⃗V0 = p⃗1+ p⃗2. The position of the decay vertex

is located on the line connecting the daughter tracks at their DCA to each other, and the

distance from each daughter track is proportional to the precision of the track parameter

values. The invariant mass of the parent is determined from the mass and momentum of

the daughters using conservation of total four-momentum, where

M2
V 0 = (p1 + p2)

2

= (E1 + E2)
2 − |p⃗1 + p⃗2|2

= m2
1 +m2

2 + 2(E1E2 − p⃗1 · p⃗2) .

(6.4)
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Of course, one needs to assume masses for the daughter particles in order to perform this

calcution. One can then cut on the calculated invariant mass to select a specific species of

V0.

6.4 Neutral kaon selection

In this section, I will discuss the specific procedure for selecting K0
S particles used in this

thesis. The process of selecting a pure sample is very important for femtoscopic analyses.

In analyses that simply deal with integrated particle yields, such as spectra, one can usually

fit some function to the invariant mass distribution and subtract the background to obtain

the yield of the true signal. In femtoscopy, we must use all the particles in our signal

region; there is no way to subtract out the bad particles that infiltrate the signal. On top

of that, the background particles in our signal will either dilute the signal (if the particles

have no correlation of their own) or disrupt the signal by imparting their own correlation,

which is often unknown. Thus, a high purity sample is very important for this analysis.

In this chapter, the K0
S signal purity is determined from the π+π− invariant mass plot by

calculating

P =
Signal

Signal + Background
. (6.5)

The background is determined by fitting a straight line to the regions outside of the accepted

signal region, while the signal+background value is just taken from the distribution.

6.4.1 Daughter tracks

As stated earlier, the K0
S particle is reconstructed via its pion daughter tracks. The cut

values used for the pion tracks are shown in Table 6.1. The tracks are forced to be “TPC-

refit” tracks, which means that, during the tracking procedure, the track parameters were

refit using the TPC information on the outward propagation from the primary vertex after

the initial inward propagation. No similar refit status using the ITS was required. There

are no cuts on the number of TPC hits, the number of ITS hits, or the χ2 value of the track

fit. The tracks are required to be in the pseudorapidity range |η| < 0.8 in order to avoid

78



TPC refit Yes

|η| < 0.8

daughter-daughter DCA3D < 0.3 cm

daughter-primary vertex DCA3D > 0.4 cm

pT > 0.15 GeV/c

Nσ,TPC < 3

Nσ,TOF (for p > 0.8 GeV/c) < 3

Table 6.1: Daughter track selection criteria.

edge effects related to the TPC acceptance window. The tracks have a minimal allowed

transverse momentum to avoid low tracking efficiencies at low pT. Daughters must have

a (three-dimensional) DCA to each other smaller than 3 mm and a primary vertex DCA

larger than 4 mm.

The cut values can be loosened to increase statistics or tightened to increase the purity

of the sample. The topological cut values used here were determined by studying ALICE

MC simulations, forming parameter distributions from real and fake particles, and looking

for the values which would optimize signal purity and statistics. The cut values were later

varied to study the systematic errors associated with the chosen values (see Sec. 6.8).

For pions, particle PID is not significantly important, since the vast majority of parti-

cles are indeed pions; however, we have used it here to ensure a pure sample. Daughters

are required to be within 3σ of the expected value for the pion band of the TPC dE/dx

distribution. TOF is used when available for particles with momentum over 0.8 GeV/c; this

lower bound is used to ensure efficient TOF results. When available, daughter tracks must

have a TOF time difference less than 3σ away from the expected pion value. The TOF PID

supercedes the TPC PID when both are available.

6.4.2 K0
S V0 selection

The cut values for the V0 selection are shown in Table 6.2. The V0s are reconstructed

using the “on-the-fly” V0 finder. This reconstuction method was chosen mainly because it

was seen to give more effective results, both in statistics and purity. For example, looking

at 0-10% centrality, the off-line finder passes (after all my cuts) 9.1 V0s per event with a
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Single V0 cuts

V0 reconstruction “on-the-fly”

|η| < 0.8

decay length (3D, lab frame) < 30 cm

decay length (2D, lab frame) > 0.2 cm (default V0 cut)

cosine of pointing angle > 0.99

DCA3D to primary vertex < 0.3 cm

invariant mass 0.480 < m < 0.515 GeV/c2

Pair cuts

Unique daughters “Merit” cut (see text)

Average separation > 5 cm

Table 6.2: V0 selection criteria.

95% purity value, while the on-the-fly finder passes 11.4/event at 97% purity. The V0s are

required to be in the range |η| < 0.8. This cut is usually used to avoid detector acceptance

effects, which is why the daughter tracks must obey this cut; the cut is used for the parents

primarily to be consistent with other analyses, such as charged kaons, which will also use this

cut for efficiency purposes. The V0 decay must happen in the lab frame fiducial volume

denoted by an outer radius of 30 cm (in 3D) and an inner radius of 2 mm (2D, in the

transverse plane). The former cut was chosen due to purity/statistics reasons, while the

latter cut is a default cut in the V0 finder. The DCA of the V0’s extrapolated path to

the primary vertex must be less than 3 mm and the cosine of the r⃗, p⃗ pointing angle must

be greater than 0.99; both of these cuts ensure the V0s are primary particles. Lastly, to

select K0
S rather than some other V0 decay, we only choose V0s in the invariant mass range

0.480 < m < 0.515 GeV/c2.

6.4.3 Unique daughters

One issue that arises in K0
S analyses is the use of the same daughter track to reconstruct

more than one K0
S. A pair of K0

S candidates that share a daughter (determined by the track

ID in the data file) will be falsely correlated; thus, we can simply assert that each pair of K0
S

particles used in the correlation must have unique daughters. However, a related problem

remains, namely if three candidates are related via their products as seen in Fig. 6.7.
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Figure 6.7: Schematic view of the “split K0
S” problem. Here, candidates V01 and V02 share

daughter A, and will not be paired; also, V01 and V03 share daughter B, and will not be
paired. But, V02 and V03 would normally be allowed to pair up, even though they will
likely be falsely correlated.

This scenario can happen if, for example, V01 is a real K0
S and V02 and V03 are false

combinations of real and/or fake daughters. This phenomenon has been given the name

“split K0
S”. Candidates V01 and V02 share daughter A and thus will not be allowed to pair

up. Also, V01 and V03 share daughter B, and will not be paired. V02 and V03, which do

not share a daughter, would normally be allowed to pair up. However, they will likely be

falsely correlated; in order for these V0s to pass the kinematic cuts in the analysis, it is

very likely that daughters B and C are close in phase-space (since they both paired with

A to make a K0
S mass), and similarly with A and D. Then, V02 and V03 will likely also

be close in phase-space, i.e. have low relative momentum and cause a false correlation in

our signal region. Fig. 6.8 shows the q distribution of pairs of particles that come from the

“side” regions of the mass distribution, i.e V0 candidates that have invariant masses just

above or below the accepted K0
S region (see Tab. 6.2). The distribution including all side

pairs have a normal combinatoric shape, while the “split” side pairs that come strictly from

the scenario above, i.e. V02 and V03, are focused at low q. The peak is not at q = 0 but is

shifted to the right, reflecting the approximate similarity of the candidates in Fig. 6.7.
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Figure 6.8: q distribution of pairs of fake V0s that have invariant masses just outside the
accepted K0

S mass range. The black points are pairs that come from a “split V0” (see
Fig. 6.7)

.

To remedy this problem, we have enforced that if any two candidates share a daughter,

one of them gets thrown completely out of the analysis. In order to enforce this, we have

developed a “merit” cut, where we judge the candidates based on their topological para-

meters and keep the “better” one. Using MC simulations, several choices for the judgment

parameter were tested. The invariant mass, daughter-daughter DCA, and V0 DCA were

all considered, and their success at keeping the true particle and throwing away the fake

candidate was 78%, 83%, and 90%, respectively. The combination of all three, where the

particle which passed two of the three tests was kept, was seen to be successful at keeping

the true particle in 95% of the trials. After employing this cut, it is estimated that the

presence of “split K0s” in the final sample is lowered by 80%.
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6.4.4 Two-track effects

Another experimental issue that affects femtoscopic analyses are the two-track effects known

as splitting and merging. Splitting occurs when two tracks are reconstructed from the hit

points of one real particle; this pair will give a false contribution at low q. Merging is the

opposite problem, when the hit points from two real particles are reconstructed into only

one track; this essentially removes a pair from the low-q region. Splitting and merging are

“second-order” effects for K0
S femtoscopy, since we are pairing V0s rather than the pion

tracks; however, it is still worth accounting for and can be easily done. To combat this

problem, we measured the average separation of same-sign daughter tracks for each K0
S pair

as it passed through the TPC. We measured the distance between the daughter tracks at

up to nine points along the track path, corresponding to 20 cm radial steps from R = 85 cm

to R = 245 cm, which are the approximate limits of the TPC. Fig. 6.9 shows the average

separation of same-sign daughter tracks from pairs in the same event divided by a similar

distribution from mixed events; this will divide out the combinatoric shape and show us

the true two-particle effect. One can see the significant splitting peak below 1 cm, and the

wider merging depletion out to ≈ 4-5 cm. From this, we decided to enforce that each K0
S

pair’s same-sign daughters must have an average separation of more than 5 cm. It can be

noted that cutting out closely separated pairs may cut out some of our signal, as K0
S pairs

with similar momentum will likely have daughters with similar momentum and thus similar

trajectories. However, there is no expectation for the K0
S decay plane to be correlated

between pairs, and the signal lost by the enforcement of the cut is not significant.

6.4.5 Purity of sample

Using the cuts discussed in this section, we are left with a sample of K0
S pairs that exhibits

very high purity. Fig. 6.10 shows an invariant mass plot for a minimum-bias sample of K0
S

particles used in this analysis. This sample is taken from collisions with centrality 0-50%.

The purity for these particles, calculated from Eq. 6.5, is ≈ 95%. This suggests that the

analysis will have a very small and likely negligible contamination from feed-up correlations
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Figure 6.9: Correlation distribution of average separation of same-sign ππ daughters of K0
S

pairs. The average separation is calculated from up to nine points along the track path
within the TPC. The correlation is built from the same-event distribution divided by the
mixed-event distribution. Mixed-events are normalized to have the same primary vertex
position. The distribution shows the splitting peak at low average separation followed by
the merging depletion.
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Figure 6.10: Invariant mass plot for π+π− from K0
S decays after implementing daughter

and V0 cuts.

(e.g. ππ or πK0
S), correlations of misidentified particles (e.g. π → K), or non-correlated

particles (e.g non-K0
S pions or fake tracks).

Fig. 6.11 shows the purity values for different pT bins. We see that the purity remains

above 90% for pT > 0.2 GeV/c, dropping to ≈ 70% at pT = 0.1 GeV/c, and peaking around

pT ≈ 1 GeV/c. The mean pT for the K0
S particles used in this analysis is ⟨pT⟩ ≈ 1.1 − 1.2

GeV/c, which is where the purity plot peaks; this generally leads to overall purity values of

≈ 95% for most subsets of the sample. For example, Fig. 6.12 shows the purity values for

different KT bins. We see that the purity remains constant for all KT at a value of ≈ 95%.

6.5 Correlation functions

This section will discuss various aspects of the experimental correlation function, including

forming, correcting, and fitting, as well as the associated systematic errors involved with

these processes.
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6.5.1 Formation of the correlation function

As we stated earlier, the experimental function C(q) = A(q)/B(q) is formed by building

a relative momentum distribution A(q) of pairs from the same event divided by a similar

distribution B(q) from mixed events. These distributions have 10 MeV wide q bins; this

number was chosen to accommodate the available statistics and give enough bins to properly

resolve the enhancement at low q. For this analysis, the correlation functions are presented

in three centrality bins (0-10%, 10-30%, and 30-50%) and four KT bins (0.2-0.6, 0.6-0.8, 0.8-

1.0, 1.0-1.5 GeV/c). The bin sizes were chosen based on the available statistics. This is the

first K0
S femtoscopic analysis in AA collisions that is performed differentially in centrality

or pair momentum.

This thesis presents one-dimensional (1D) and three-dimensional (3D) correlation

functions. The 1D distributions were binned in the invariant relative momentum

qinv =
√−qµqµ = |q⃗PRF|. The 3D distributions were binned in the PRF out-side-long

relative momentum discussed in Ch. 4. The PRF out-side-long variables are obtained from

the lab frame by the following relations:

qo =
Minv

MT

(Kxqx +Kyqy)

KT
− KT

MTMinv
Kµqµ (6.6)

qs =
Kxqy −Kyqx

KT
(6.7)

ql =
K0qz −Kzq0

MT
(6.8)

where M2
inv = KµKµ.

Each correlation function is normalized to unity in the region where no correlation

is expected, i.e. large q. The 1D correlation functions are normalized by dividing the

numerator and denominators each by the number of pairs in the region 0.8 < qinv < 1.0.

The 3D correlation functions are normalized to the region 0.3 < qi < 0.5 in each q direction.

For the 3D analysis, an additional tweak was made when binning the q⃗ distributions.

The ALICE data files store the particles in an array whose order is somehow correlated to

the momentum of the particle. When looking at the 3D correlation functions, there is a

q → −q asymmetry in the out direction. To combat this ordering, the order of the particles

87



in a pair was randomly flipped. Regardless of this order flip, this “problem” would be

avoided during the fitting procedure because the correlation functions are folded into the

“+++” octant, i.e. qi → |qi|, but inclusion of this solution allows us to present plots of

correlation functions correctly.

3D → 1D projections

The 3D correlation function is obviously very difficult to visualize in its original form. So,

we transform it into a plottable form by projecting it along one of the three q components

at a time, summing over a small region of bins in the other two directions. Usually in this

analysis, the projection along qi will be summed over |qj,k| < 0.03 GeV/c.

6.5.2 Event mixing

As stated earlier, to form the denominator of our correlation function, we use pairs coming

from mixed events. This allows us to divide out the combinatoric phase space populated by

random K0
S pairs without getting rid of the desired correlation, since pairs from different

events cannot be correlated via quantum statistics or final-state interactions. In this anal-

ysis, we mix each event with five other events in its same mixing class, which is 5% wide in

centrality and 2 cm wide in the z-position of the primary vertex. This is to ensure that the

pair phase space sampled by the mixed-event distribution has the same structure as that

from the same-event distribution.

6.5.3 Weighted combination of the correlation functions

Ideally, each correlation function would only consist of pairs that occupy the exact same

phase space, which is sensitive to not only physical characteristics such as KT and central-

ity, but also detector effects such as detector acceptance or functional status changes (e.g.

detector dead zones or set-up characteristics, which often change over time). One could

then create correlation functions for each of these “bins”, fit and extract radii from each

separately, and average the final results. Due to finite statistics, this is impossible. How-

ever, an effort has been made to account for these issues. In the 1D analysis, correlation
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Figure 6.13: K0
S correlation functions from different years of data taking (2010 and 2011)

and different ALICE detector magnetic field orientations (“++” and “– –”).

functions are formed separately for each 5% centrality class (2 or 4 bins), each year of data

taking (2 bins), and each magnetic field orientation (“positive” and “negative”, i.e. 2 bins).

These correlation functions are then averaged, weighted by the number of pairs in their de-

nominators. Thus, the 0-10% (10-30% and 30-50%) centrality correlation functions are the

weighted average of 8 (16) separate correlation functions. For the 3D analysis, this was not

performed, as the fitting procedure uses the numerator and denominator separately, and a

good method to perform the averaging was not found. However, this averaging procedure is

not expected to make a large difference for this analysis; checks were performed to look at

the difference between results from the 2010 and 2011 data and the separate magnetic field

orientations, and no significant differences were found. Fig. 6.13 shows a set of example

correlation functions from different “analysis bins”, which are seen to be very consistent.
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“detected” using the simulated detector configuration.

6.5.4 Momentum resolution

The finite track momentum resolution of the detectors will smear the momentum distribu-

tion of reconstructed tracks. This will also affect the relative momentum distributions. This

effect can be studied using HIJING MC simulations that have been run through the detector

configuration using GEANT3, allowing us access to both the actual particle momentum and

the momentum measured in the detector. Fig. 6.14 shows the effect of momentum smearing

on the relative momentum variables; the distributions are smeared by ≈ 5-10 MeV/c.

To see how this affects the correlation function, we perform the following procedure.

Two correlation functions were built from HIJING+GEANT3 simulated data, one using

true relative momenta qtrue and one using the “detected” qdet. Because HIJING does not

incorporate quantum statistics or final-state interactions, the “signal” distributions were

filled using weights calculated from Eq. 5.12. The weights were calculated using qtrue and

assuming some input radius R for the 1D analysis or set of radii for the 3D analysis and
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Figure 6.15: Momentum-resolution correction factor for several values of the input radius.
The experimental correlation function is multiplied by this factor (using the approximately
correct radius) before the fitting procedure. An iterative process can be employed to find
the correct radius.

λ; the process was done for several choices of these parameters. The denominator of each

correlation function was simply filled with unit weights. Then, the correction factor was

found by diving the “true” correlation function by the “detected” one. Fig. 6.15 shows the

correction factor for several radii.

Finally, the experimental correlation functions were multipied by this correction factor

before the fitting procedure. Figures 6.16 and 6.17 show the effects of the momentum-

resolution correction on the 1D and 3D correlation functions. The effect on the fit para-

meters is quite small, increasing the radii by a few percent at most and λ by 5-10%. An

iterative process can be employed to find the correct radius; one can assume a radius, cal-

culate the correction factor and correct the correlation function, fit it, extract a radius, and

repeat the process. Because of the small effect here, this process was not necessary, and the

systematic error associated with choosing the wrong radius was seen to be quite small (see

Sec. 6.8).
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6.5.5 Non-flat background

The analysis assumes a flat background at high q for the correlation functions,

i.e. C(q → ∞) = 1. However, a sloping, non-femtoscopic background is seen in some

of the correlations; this effect grows with increasing KT and with decreasing (more

peripheral) centrality. The cause of this background is not fully understood. Mini-

jets cause a similar background in pp collisions, but are unlikely to be significant in

high-multiplicity systems. Other possible explanations that have been discussed include

momentum-conservation effects or a residual effect of v2. In the most significant example,

the background differs from 1 by < 5% for the most peripheral centrality bin and highest

KT bin.

To account for this background, the correlation function was fit with an extra polynomial

factor as

Cfit(q) = [λCtheory(q) + (1− λ)]Fbkg(q) (6.9)

where Fbkg(q) is a first- or second-order polynomial. The effect of this additional factor is

an increase of the extracted radius and λ. Most bins saw a small increase of ≈ 1-2% for the

radius and < 10% for λ; the most affected bin saw an increase of ≈ 10% for the radius and

≈ 20% for λ. Fig. 6.18 shows a close-up view of the high-q region of the correlation function;

one can easily see the sloping background for the peripheral, high-KT bin compared to the

flat background for the central, low-KT bin.

This procedure was only done in the 1D analysis. The presence of a non-femtoscopic

background was not obvious in the 3D correlation functions. Also, the fit to the 3D correla-

tion functions does not go out as far in q as does the 1D analysis, i.e. it would miss the area

where it would able to access the pure background shape.
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Figure 6.18: Plot showing the non-femtoscopic sloping background at high q. It is clearly
visible at high KT in peripheral collisions, but is absent for low KT and central collisions.
The slope is accounted for by including a polynomial factor in the fit function.

6.6 Fitting

6.6.1 Fitting 1D correlation functions

For the 1D analysis, we fit the momentum-resolution-corrected correlation functions with

the theoretical correlation function of Eq. 5.12 with five or six open parameters: R, λ,

an overall normalization factor N , and the two or three parameters of the background

polynomial. We use a χ2 fit procedure, where we minimize the value

χ2 =

q bins∑
i

(Cexp(qi)− Ctheory(qi))
2

σ2i
(6.10)

where σi is the statistical error of the ith bin of Cexp. A common figure-of-merit for this

type of fit is the summed χ2 divided by the “number of degrees of freedom” of the fit, i.e.

the number of fit points minus the number of open parameters. A χ2/NDF value near 1 is

desired, where higher numbers will indicate a worse fit or underestimated statistical errors,
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and lower numbers can reflect overfitting or overestimated errors. The fit is perfomed by the

MINUIT program [157]. The statistical error on the extracted fit parameters is determined

(by MINUIT) by finding the region in multi-dimensional parameter space around the χ2
MIN

value within which χ2 < χ2
MIN + 1; this “width” in parameter space is the 1σ standard

deviation associated with the fit parameters.

The range in q over which one should perform the fit is not obvious, and in most

femtoscopic analyses, including this one, variation of the fit range leads to a systematic

error. Generally speaking, we are fitting a Gaussian fit function to a distribution that often

has non-Gaussian features; thus, changing the fit range will generally change the extracted

Gaussian width. In this analysis, we have chosen to fit out to qinv = 0.4 GeV/c, which

corresponds to 40 q bins. A systematic error associated with varying this choice will be

discussed later.

As stated earlier, the FSI parameters in the fit function are taken from experiment,

which has presented four different sets of values (see Table 5.2). Each correlation function

was fit with each set of values, and the average of the extracted parameters from the four

fit attempts was used as the final value.

6.6.2 Fitting 3D correlation functions

The method for fitting the 3D correlation functions is different in many ways to the 1D

analysis. As mentioned in Ch. 5, an analytic expression for the 3D theoretical correlation

function is not available. Instead, we perform a MC simulation of the freeze-out positions

(using a 3D Gaussian with input width parameters) and momenta of each pair and calculate

their two-particle wavefunction, building up the correlation function over many iterations of

the simulation. It was found that a simulation consisting of one billion pairs was necessary

to form a correlation function with statistical error bars small enough that we would be

confident in neglecting them. This billion-pair simulation only takes ∼ 15 min to perform.

However, each iteration of the fitter needs to perform a full simulation for the new set of
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input parameters17, and since the minimization of the fit function often needs ∼ 200-300

iterations, the process is unreasonably time-consuming.

In order to work around this problem, we use a grid-interpolation method to perform the

fit. First, we build a 4×4×4 grid of simulated correlation functions (of one billion pairs each)

for the following sets of input radii: Ro = [6, 7, 8, 9] (fm) and Rs, Rl = [2, 3, 4, 5] (fm). The

correlation function for each combination of (Ro, Rs, Rl) acts as a node of the grid. Then,

one calculates the desired correlation function for a specific, non-nodal set of input radii

by interpolating between the grid nodes using a three-dimensional polynomial-interpolation

method. The interpolated value C(qn;Ro, Rs, Rl) is determined by the expression

C(qn;Ro, Rs, Rl) =

4∑
i=1

4∑
j=1

4∑
k=1

 4∏
m=1
m̸=i

Ro −Ro,m

Ro,i −Ro,m


 4∏

m=1
m ̸=j

Rs −Rs,m

Rs,j −Rs,m


 4∏

m=1
m ̸=k

Rl −Rl,m

Rl,k −Rl,m


× C(qn;Ro,i, Rs,j , Rl,k) . (6.11)

This allows us to quickly perform the fit operation while using large-statistics simulations.

This method has been used in and was taken from other ongoing ALICE femtoscopic anal-

yses.

Separate grids must be constructed using each of the four sets of FSI parameters. Also,

since there are still some statistical fluctuations present in the simulations, three separate

grids were constructed for each set of parameters. Thus, each correlation function was fit

using twelve (4 × 3) different grids. The average of these twelve fits was used as the final

result.

The χ2 fit method discussed in the last section assumes Gaussian-distributed statistics.

However, in the 3D case, the bin populations can approach small numbers, necessitating the

use of Poisson statistical analysis. For the 3D analysis, we use a log-likelihood fit function,

where the parameter (calculated for each q bin and summed over all bins) to be minimized

17Actually, since the fitter adjusts the parameters one at a time, new simulations are only needed for the
iterations that change a radius parameter. Changes in λ or the normalization factor can be enacted via an
overall scaling of the fully-built correlation function and do not require a new simulation.
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is [158]

χ2
LL = −2

[
A ln

(
C(A+B)

A(C + 1)

)
+B ln

(
A+B

B(C + 1)

)]
, (6.12)

where A and B are the number of same-event and mixed-event pairs from experiment and

C is the value of the theoretical correlation function calculated by Eq. 6.11. This expression

approaches the usual “least-squares” χ2 distribution in the limit of large A and B. To test,

the correlation functions were fit with both expressions, and the results were seen to be

consistent.

The fits were performed out to qi = 0.25 GeV/c. Again, there is no obvious choice for fit

range, and the variation in the results of fits using other fit ranges was used as a systematic

error. Since the correlation functions are symmetric around qi → −qi, they were “folded”

into the “+++” octant by binning in the absolute values of qi. Thus, all projection plots

will only be shown for positive qi.

The 3D correlation functions were also corrected for the effects of momentum resolution,

similar to the 1D analysis case except that the correction factors had to be calculated for

various combinations of the three radii. Because of the time consumption of the simulations,

this was only performed for the 64 combinations used in the fitting grids, and the correction

factor from the nearest combination was used, where there would be at most a 0.5 fm

difference between the radius of the correction factor used and the actual radius. It will

be shown in the systematic errors discussion that errors in the assumed radius have a very

small effect on the results.

6.7 PRF → LCMS boosting for the 3D analysis

The simulation used to build the theoretical 3D correlation function is performed in the

PRF. For one, the two-particle FSI amplitude is simpified by performing the calculation in

the PRF using an equal emission-time approximation. Also, moving to a different frame

would force us to account for the time component when simulating the freeze-out positions.

For example, in the LCMS frame, R2
o = ⟨(r̃o−βt̃)2⟩, so one would also need to simulate the

time separation of the particles. Even if the ro and t distributions are both Gaussians, a
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KT (GeV/c) ⟨γ⟩ σγ
[0.2,0.6] 1.39 0.11

[0.6,0.8] 1.71 0.09

[0.8,1.0] 2.02 0.10

[1.0,1.5] 2.53 0.24

Table 6.3: Lorentz γ values and their standard deviations for the different 3D analysis KT

bins.

non-fixed pair velocity β will prevent the qo aspect of the correlation function from having

a Gaussian shape. In simpler words, the simulation of the space-time distributions would

be complicated in a non-trivial way when performed in the LCMS frame.

Most 3D femtoscopic analyses, however, present their results in the LCMS frame. In

order to compare with these analyses, we have used the relation qo,LCMS = γqo,PRF, where γ

refers to the Lorentz boost factor between the PRF and LCMS frames, to perform a similar

boost on the radii, namely Ro,PRF = γRo,LCMS; Rs and Rl are equivalent in both frames.

This scaling of the outward radius is exact for a fixed γ, or since

γ =
1√

1− β2
, where β =

p1,o + p2,o
E1 + E2

∣∣∣∣
LCMS

, (6.13)

it is exact for a fixed β. However, due to statistics, we cannot perform the analysis for fixed

β; the finite size of the KT bins leads to a spread of β and γ values for each analysis bin.

We used the average γ value for each KT bin to perform the scaling, and an error involved

with this boosting factor is included in the systematic errors (see Sec. 6.8). Fig. 6.19 shows

the γ distributions for each of the KT bins used in this analysis, and Tab. 6.3 shows the

average γ values and their standard deviations.

6.8 Systematic errors

The sources of systematic errors are mostly the same for the 1D and 3D analyses. Two

exceptions are the background parametrization, which is only in the 1D analysis, and the

γ-boosting, which is only in the 3D analysis. Some of the details about the estimations of

the errors and the values of the errors will vary between analyses.
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Figure 6.19: Lorentz γ distributions for differentKT bins. γ describes the boost between the
LCMS frame and the PRF. The mean values and standard deviations of the distributions
can be found in Tab. 6.3.

The calculation of the errors for the 1D analysis was rather straightforward. However,

for the 3D analysis, due to the statistical fluctuations in the theoretical correlation functions

used to fit the data, the systematic studies were also subject to statistical fluctuations, and

it was often difficult to find a systematic error that was consistent (or at least smoothly

changing) across centrality and KT bins. Several of the errors (especially those associated

with varying fit ranges and FSI parameters) were ultimately determined by taking various

averages and fitting trend lines to the error estimations. To be safe, most of these errors

are conservatively estimated. Also, these errors act together as an implicit error associated

with the fluctuations of the fit method, and no explicit error was calculated. Some of the

errors were allowed to have asymmetric values; however, most of them were found to be

quite symmetric.
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Cut parameter tight normal loose

mass range (GeV/c2) [0.485,0.510] [0.480,0.515] [0.480,0.515]

max DCA K0
S to PV (cm) 0.25 0.30 0.35

min DCA π to PV (cm) 0.45 0.40 0.35

max DCA π+ to π− (cm) 0.25 0.30 0.35

K0
S 3D decay length (cm) 0.5-30 0.2-30 0.2-40

min avg. sep. (cm) 6 5 4

Table 6.4: Values used to determine systematic error of varying particle cuts for the 1D
analysis.

Cut parameter tight normal loose

mass range (GeV/c2) [0.490,0.505] [0.480,0.515] [0.450,0.550]

max DCA K0
S to PV (cm) 0.1 0.3 1.0

min DCA π to PV (cm) 1.0 0.4 0.1

max DCA π+ to π− (cm) 0.1 0.3 1.0

min avg. sep. (cm) 10 5 0

Table 6.5: Values used to determine systematic error of varying particle cuts for the 3D
analysis.

6.8.1 V0 cut values

The choice of cut values for the V0 selection can lead to changes in the results, mostly by

affecting the purity of the sample. For both analyses, this study was performed for different

centrality bins, but was KT-integrated. For the 1D case, the values of several cuts were

varied by up to ±30%. Table 6.4 shows the values of the varied cuts in the 1D analysis.

The effect on the fit parameters was 1-4% for Rinv and 2-10% for λ.

For the 3D analysis, the cuts were varied by larger differences; these values can be seen

in Tab. 6.5. The correlation functions were refit using six of the twelve simulation grids

(the different grids gave consistent results). The average of the six fits for each set of varied

values were calculated, and the difference of these averages was used as the error. The effect

on the fit parameters was 0-3% for the radii and 3-6% for λ.
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6.8.2 Background parametrization

The error associated with the extra factor included in the 1D fits to account for the non-flat

background was calculated by varying the form from linear to quadratic. The effect was

very small for many bins but for some bins went up to 5% for Rinv and 4% for λ. This

background factor was not included in the 3D fits.

6.8.3 Fit range

In the 1D case, the maximum qinv used in the fit was varied from 0.4 GeV/c by ±0.1 GeV/c.

The errors calculated from these variations were up to 4% for Rinv and up to 3% for λ.

To study the fit range sensitivity of the 3D analysis, each correlation function was fit

out to 0.15, 0.25, and 0.35 GeV/c in each qi. This was done for all twelve of the simulation

grids in order to minimize the statistical fluctuations. The differences between the extreme

fit ranges and the normal fit range were calculated for each grid, and then averaged. This

led to errors of 3-6% for the radii and 3-8% for λ.

6.8.4 FSI model parameters

For the 1D analysis, the fit parameters presented as the final results are the average of the

fits using the four different sets of FSI model parameters. The maximum difference of the

individual fits from the average was used as the error, which was 1-2% for Rinv and 5-10%

for λ.

In the 3D analysis, the error associated with the FSI parameters was calculated by

fitting each correlation function with the twelve simulation grids (three grids for each set of

parameters) and taking the standard deviation of these fits. This led to errors of 3-8% for

the radii and 7% for λ.

6.8.5 Momentum resolution

To find the errors associated with the momentum-resolution correction, the correction factor

was adjusted by ±20%. The overall effect of the momentum-resolution correction was small,
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Centrality ⟨KT⟩ (GeV/c) Bkg. Range Model Cuts Avg. Sep. Total

0-10%

0.48 < 1 < 1 1 2 < 1 2
0.70 1 < 1 1 2 < 1 3
0.90 1 < 1 1 2 < 1 2
1.19 1 < 1 1 3 < 1 3

10-30%

0.48 1 2 1 1 1 3
0.70 1 < 1 1 2 1 2
0.90 < 1 < 1 1 2 1 3
1.19 5 2 1 2 < 1 6

30-50%

0.48 5 4 1 3 2 7
0.70 2 1 1 2 < 1 3
0.90 4 4 1 4 2 7
1.19 4 3 2 1 2 6

Table 6.6: Approximate systematic errors for Rinv. All values are given as %. The individual
errors are added in quadrature to get the total.

and so its error is similarly small. For the 1D analysis, the errors were less than 1% and

neglected. In the 3D analysis, the errors were mostly negligible and went up to 1% for the

radii and 1-2% for λ.

6.8.6 γ boost

For the 3D analysis, the γ value used to boost the radii from the PRF to the LCMS frame

had a finite spread for each KT bin. The standard deviation of each distribution from the

mean value (see Tab. 6.3) was used as an additional systematic error for Rout.

6.8.7 Total systematic errors

The total systematic errors were calculated by adding the individual contributions in

quadrature. The values for the individual and combined errors for all centrality and KT

bins in the 1D and 3D analyses are shown in Tables 6.6 to 6.10.

6.8.8 Systematics for the correlation functions

Systematic errors were also included in some plots of the correlation functions that will

be shown in Ch. 7. These errors are essentially cosmetic, showing the uncertainty in the
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Centrality ⟨KT⟩ (GeV/c) Bkg. Range Model Cuts Avg. Sep. Total

0-10%

0.48 < 1 < 1 5 9 3 11
0.70 1 1 6 8 < 1 10
0.90 1 < 1 6 7 < 1 9
1.19 1 1 7 8 < 1 11

10-30%

0.48 1 2 6 3 4 8
0.70 1 < 1 6 7 2 10
0.90 < 1 1 7 2 < 1 7
1.19 4 3 7 7 < 1 11

30-50%

0.48 3 3 7 2 3 9
0.70 1 1 8 2 1 8
0.90 2 3 9 10 5 15
1.19 2 3 10 5 2 12

Table 6.7: Approximate systematic errors for λ in the 1D analysis. All values are given as
%. The individual errors are added in quadrature to get the total.

Cent. ⟨KT⟩ (GeV/c) Param. Fit FSI Mom. Res. Cuts γ Total

0-10%

0.49

λ +4,–3 ±7 +2,–2 +3,–6 - +9,–10
Rout +4,–4 ±5 +0,–0 +0,–0 ±8 +11,–10
Rside +4,–4 ±3 +2,–0 +3,–3 - +6,–6
Rlong +4,–4 ±6 +0,–0 +3,–3 - +8,–8

0.71

λ +4,–3 ±7 +2,–2 +3,–6 - +9,–10
Rout +4,–4 ±5 +0,–0 +0,–0 ±5 +8,–8
Rside +4,–4 ±3 +1,–1 +3,–3 - +6,–6
Rlong +4,–4 ±6 +0,–0 +3,–3 - +8,–8

0.90

λ +6,–5 ±7 +2,–2 +3,–6 - +10,–11
Rout +3,–3 ±5 +0,–0 +0,–0 ±5 +8,–8
Rside +5,–5 ±3 +0,–0 +3,–3 - +7,–7
Rlong +6,–6 ±6 +1,–0 +3,–3 - +9,–9

1.19

λ +6,–5 ±7 +2,–2 +3,–6 - +10,–11
Rout +3,–3 ±5 +0,–0 +0,–0 ±10 +11,–10
Rside +4,–4 ±3 +0,–0 +3,–3 - +6,–6
Rlong +4,–4 ±6 +0,–0 +3,–3 - +8,–8

Table 6.8: Approximate systematic errors for the radii and λ in the 3D analysis for 0-10%
centrality. All values are given as %. These errors are allowed to be asymmetric (except
for γ and FSI), and the “+” and “–” are signified. The individual errors are added in
quadrature to get the total.
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Cent. ⟨KT⟩ (GeV/c) Param. Fit FSI Mom. Res. Cuts γ Total

10-30%

0.49

λ +4,–3 ±7 +2,–2 +5,–5 - +10,–9
Rout +5,–5 ±5 +0,–0 +0,–0 ±8 +11,–11
Rside +5,–5 ±8 +0,–1 +3,–3 - +10,–10
Rlong +5,–5 ±8 +0,–0 +3,–3 - +10,–10

0.70

λ +5,–5 ±7 +1,–1 +5,–5 - +10,–10
Rout +5,–5 ±5 +0,–0 +0,–0 ±5 +9,–9
Rside +5,–5 ±8 +0,–0 +3,–3 - +10,–10
Rlong +5,–5 ±8 +0,–0 +3,–3 - +10,–10

0.90

λ +5,–5 ±7 +1,–2 +5,–5 - +10,–10
Rout +4,–4 ±5 +0,–0 +0,–0 ±5 +8,–8
Rside +4,–4 ±8 +0,–0 +3,–3 - +9,–9
Rlong +4,–4 ±8 +0,–0 +3,–3 - +9,–9

1.18

λ +8,–8 ±7 +1,–1 +5,–5 - +12,–12
Rout +4,–4 ±5 +0,–0 +0,–0 ±10 +12,–12
Rside +4,–4 ±8 +0,–0 +3,–3 - +9,–9
Rlong +4,–4 ±8 +0,–0 +3,–3 - +9,–9

Table 6.9: Approximate systematic errors for the radii and λ in the 3D analysis for 10-30%
centrality. All values are given as %. These errors are allowed to be asymmetric (except
for γ and FSI), and the “+” and “–” are signified. The individual errors are added in
quadrature to get the total.

Cent. ⟨KT⟩ (GeV/c) Param. Fit FSI Mom. Res. Cuts γ Total

30-50%

0.48

λ +5,–5 ±7 +1,–1 +3,–3 - +9,–9
Rout +7,–7 ±5 +0,–0 +0,–1 ±8 +12,–12
Rside +7,–7 ±8 +0,–0 +3,–3 - +11,–11
Rlong +7,–7 ±8 +0,–0 +3,–3 - +11,–11

0.70

λ +6,–6 ±7 +1,–1 +3,–3 - +10,–10
Rout +6,–6 ±3 +0,–0 +0,–1 ±5 +9,–9
Rside +6,–6 ±7 +0,–0 +3,–3 - +10,–10
Rlong +6,–6 ±8 +0,–0 +3,–3 - +10,–10

0.89

λ +6,–6 ±7 +1,–1 +3,–3 - +10,–10
Rout +4,–4 ±3 +0,–0 +0,–1 ±5 +7,–7
Rside +4,–4 ±7 +0,–0 +3,–3 - +9,–9
Rlong +4,–4 ±8 +0,–0 +3,–3 - +9,–9

1.18

λ +6,–6 ±7 +1,–1 +3,–3 - +10,–10
Rout +4,–4 ±3 +0,–0 +0,–1 ±10 +11,–11
Rside +4,–4 ±7 +0,–0 +3,–3 - +9,–9
Rlong +5,–5 ±8 +0,–0 +3,–3 - +10,–10

Table 6.10: Approximate systematic errors for the radii and λ in the 3D analysis for 30-50%
centrality. All values are given as %. These errors are allowed to be asymmetric (except
for γ and FSI), and the “+” and “–” are signified. The individual errors are added in
quadrature to get the total.
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positions of the plot points, and are not used directly in any fitting. The sources of error

used in these plots come from cut variations and momentum-resolution correction variations,

with the error from the cut variations being the dominant contribution. In order to make

the errors smooth, the error for each q bin was calculated as the average of the errors in

nearby bins. Then, a trend line was fit to the errors to further smooth them out.
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Chapter 7

Results

This chapter will show the results of the K0
SK

0
S femtoscopic correlations measured

with ALICE. Unless otherwise stated, all results come from LHC Pb-Pb collisions at

√
sNN = 2.76 TeV. Throughout this chapter, capital and lowercase KT(MT) and kT(mT)

will be used interchangeably for pair transverse momentum (mass); this should not be

confusing with regards to the literature, where they are also used interchangeably and

generally are not used to stand for other parameters.

7.1 1D analysis

7.1.1 Correlation functions

Figures 7.1, 7.2, and 7.3 show the momentum-resolution-corrected 1D correlation functions

for three centrality bins and four KT bins. Included in the plots are fit lines using Eqs. 5.12

and 6.9; the lines use the FSI parameters from [141], though fit lines using the other sets of

parameters look extremely similar. Several important features of the correlation functions

and their fits are visible in these plots. One can see the large enhancement at low qinv from

the Bose-Einstein correlations. As qinv increases, the data points drop below 1 due to the

strong FSI. At high qinv, the correlation is flat at 1 as expected. One can also see that the

fit function fits the data well and is able to capture the three main features (enhancement,

dip, flat background) of the data; though, for some of the correlation functions, the fit line

lies under the data at low qinv.
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Figure 7.1: 1D correlation functions for centrality 0-10%. Also included is the fit incorpo-
rating quantum statistics and final-state interactions, using the parameter set from [141].
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Figure 7.2: 1D correlation functions for centrality 10-30%. Also included is the fit incorpo-
rating quantum statistics and final-state interactions, using the parameter set from [141].
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Figure 7.3: 1D correlation functions for centrality 30-50%. Also included is the fit incorpo-
rating quantum statistics and final-state interactions, using the parameter set from [141].
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Figure 7.4: 1D K0
SK

0
S Rinv vs. KT for different centrality bins.

7.1.2 Rinv

Fig. 7.4 shows the extracted 1D Rinv as a function of KT for different centrality bins. The

radii are the average of the fits from the four sets of FSI parameters. The radii decrease

as one goes to more peripheral collisions; this reflects the change in the overall system size.

The radii also decrease with increasing KT; this is the expected behavior for a system that

is expanding via radial flow, as was discussed in Ch. 4. This reinforces the interpretation

presented in the flow analyses that collective flow is exhibited by neutral kaons in these

collisions [159]. The values of the radii and their errors are listed in Tab. 7.1.

7.1.3 1D λ parameter

Fig. 7.5 shows the extracted 1D λ parameters as a function of KT for different centrality

bins. The values of λ and their errors are listed in Tab. 7.1. The values are in the range

0.5-0.75, and there are no obvious trends with centrality or KT. There may be a moder-

ate decreasing trend with increasing KT, which is seen in hydrodynamic simulations (see
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Cent. ⟨KT⟩ (GeV/c) Rinv (fm) stat.(fm) syst.(fm) λ stat. syst.

0-10%

0.48 6.07 0.20 0.14 0.62 0.04 0.07
0.70 5.39 0.12 0.14 0.61 0.03 0.06
0.90 5.07 0.10 0.12 0.61 0.03 0.05
1.19 4.41 0.08 0.14 0.51 0.02 0.05

10-30%

0.48 5.17 0.21 0.15 0.73 0.07 0.06
0.70 4.69 0.15 0.12 0.67 0.05 0.07
0.90 4.12 0.14 0.11 0.56 0.04 0.04
1.19 3.79 0.11 0.21 0.58 0.04 0.06

10-30%

0.48 3.93 0.21 0.29 0.70 0.08 0.06
0.70 3.67 0.16 0.12 0.67 0.07 0.05
0.90 3.19 0.15 0.23 0.61 0.07 0.09
1.19 2.75 0.14 0.15 0.52 0.06 0.06

Table 7.1: Fit result values for 1D Rinv and λ for all centrality and kT bins with statistical
and systematic errors.
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Figure 7.5: 1D K0
SK

0
S λ vs. KT for different centrality bins.
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Sec. 7.1.5 and [125]). It can be argued that this falling λ trend may be due to increasingly

non-Gaussian features of the correlation function, which may grow with KT. For the 1D

analysis, we model the shape of the source as a spherical Gaussian with one characteristic

width. If the source is not actually spherical, then this model starts to fail. We will see

in the 3D results section that Rout in the PRF is significantly larger than Rside and Rlong,

making the PRF source significantly non-Gaussian (in 1D). Also, while Rside and Rlong

drop with KT, Rout in the PRF actually increases with KT, making the source increasingly

non-Gaussian with KT. This may be the cause for the decreasing 1D λ.

Several other factors may lead to the overall low λ values (compared to unity). If we

take a single-particle purity value of 95%, then the pair parity would be 90%, bringing

λ similarly down to 0.9. Also, the presence of decay products may lower λ. Using the

THERMINATOR event generator [160], we studied the percentage of K0 particles coming

from various sources:

• 60% direct

• 25% from K∗ (semi long-lived, cτ ∼ 4 fm)

• 5% from φ meson (long-lived, cτ ∼ 50 fm)

• 10% from higher-mass resonances.

If we assume that only the direct kaons contribute to the correlation, then we could estimate

the correlated pair “purity” of the sample as (0.6∗0.95)2 = 0.32. If we include all of the K∗

products in the correlation, which is reasonable since the mean decay length is on the order

of the extracted correlation radius, the estimated pair “purity” would be (0.85∗0.95) = 0.65.

Thus, the extracted λ parameters are consistent with estimations from experimental pair

purity and resonance considerations.

7.1.4 Comparison with other analyses

Fig. 7.6 shows the comparison of 1D Rinv for pions, charged kaons, neutral kaons, protons

and anti-protons from ALICE Pb-Pb collisions. The radii are shown as a function of pair
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Figure 7.6: 1D Rinv vs. MT from pions, charged kaons, neutral kaons, protons and an-
tiprotons from ALICE Pb-Pb collisions at

√
sNN = 2.76 TeV. Statistical (thin lines) and

systematic (filled rectangles) are shown. These results will be featured in an upcoming
ALICE paper.

transverse mass MT. We see that the radii from the other analyses exhibit the same ex-

pected trends of decreasing radii with increasing MT and for more peripheral collisions.

We also see that the radii for the different species are consistent at overlapping MT values

within systematic errors, which can be quite large. A common expectation often stated in

femtoscopic analyses is that source sizes in a flowing system are expected to exhibit approx-

imately common MT-scaling, where the radii fall along the same MT trend line. However,

as discussed earlier, this common scaling is predicted for simpler expansion scenarios that

are not completely justified at LHC energies [122, 123]. A recent study [124] showed that

while one may expect common scaling for the 3D radii in the LCMS frame, one should not

expect such scaling for the 1D Rinv measured in the PRF. This is due to that fact that

the Lorentz γ factor that modifies Rout when switching between LCMS and PRF will be

different for different particle masses. If one scales Rinv by a kinematic factor incorporating

γ, which is similar to calculating Rinv in the LCMS frame, one can somewhat recover the

common scaling. Fig. 7.7 shows the data points from Fig. 7.6 divided by the kinematic
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√
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Statistical (thin lines) and systematic (filled rectangles) are shown.

factor

√
(γ

1/2
T + 2)/3. Here, the points exhibit a clearer common scaling than the unscaled

points, matching the expectations from [124].

One can see in Fig. 7.6 that the neutral kaon radii lie systematically above the charged

kaon radii (though still within systematic uncertainties). This difference is larger for central

collisions. While some factors could cause differences between the two analyses, one gener-

ally expects similar femtoscopic results for charged and neutral kaons (e.g. [125]). At this

time, the reason for this difference is unknown. It should be noted that the flow analysis

at ALICE [159] also sees an unexpected difference in results between charged and neutral

kaons which becomes more significant for more central collisions. One idea is that this is

due to an inefficiency in the V0 finder in regions of high local track density, which could

be sensitive to the azimuthal angle of the tracks with respect to the event plane. However,

attempts to account for this issue were unsuccessful.

Fig. 7.8 shows the 1D λ parameters from the various ALICE Pb-Pb analyses. The results

are somewhat scattered, but the heavier particles are generally consistent with each other
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Figure 7.8: 1D λ vs. MT from pions, charged kaons, neutral kaons, protons and antiprotons
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√
sNN = 2.76 TeV. Statistical (thin lines) and systematic

(filled rectangles) are shown. These results will be featured in an upcoming ALICE paper.

in the 0.4-0.8 range, while the pions are in the 0.2-0.4 range. The pions and the heavier

particles both have general decreasing trends with increasingMT, which are likely due to the

kinematic explanation given above. The pion values are lower than the other particles due

primarily to resonance decay products; [161] shows how the inclusion of resonance decays

can dramatically drop the λ value for pions.

7.1.5 Comparison with model

Fig. 7.9 shows the comparison of the ALICE charged and neutral kaon radii for 0-5%

centrality along with the predictions from the HydroKinetic Model (HKM) [125]. This

model combines a hydrodynamic expansion with a final-state hadronic-rescattering phase.

The model predictions shown here are for K±K±; the model also presents neutral kaon

radii, which are very consistent with the charged kaons. One can see that the predictions

match the charged kaon values very well quantitatively and qualitatively. The neutral kaon

results match the trend of the model predictions, but lie systematically above them in value.
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(thin lines) and systematic errors (rectangles) are shown.

Fig. 7.10 shows the comparison of the HKM λ predictions with the ALICE kaon results.

The prediction matches the general decreasing trend of the data. However, the model

overpredicts the data by 10-20%. A small overestimation is expected due to the fact that the

model has no issues with pair purity or misidentified particles, but these factors likely cannot

explain the whole difference between model and data. It is also unlikely that resonance

considerations would add to the overprediction, as the model presents results with and

without the inclusion of K∗ and φ decay products, and the results are consistent. This

could suggest that these decay products do not participate in the Bose-Einstein correlation,

which is expected for products of φ but unknown for K∗.

7.2 3D analysis

7.2.1 Correlation functions

Figures 7.11 to 7.13 show the 1D projections of the momentum-resolution-corrected 3D

correlation functions for three centrality bins and four KT bins. These correlations are
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Cent. KT (GeV/c) Param. Value stat. syst.

0-10%

0.49

λ 0.54 0.03 +0.05,–0.05
Rout 5.35 0.18 +0.57,–0.54
Rside 4.83 0.14 +0.30,–0.28
Rlong 4.91 0.13 +0.38,–0.38

0.71

λ 0.69 0.03 +0.06,–0.07
Rout 4.58 0.08 +0.38,–0.38
Rside 4.73 0.12 +0.28,–0.28
Rlong 4.44 0.15 +0.35,–0.35

0.90

λ 0.70 0.03 +0.07,–0.07
Rout 4.39 0.04 +0.33,–0.33
Rside 3.92 0.13 +0.26,–0.26
Rlong 3.68 0.12 +0.33,–0.33

1.19

λ 0.71 0.02 +0.07,–0.07
Rout 3.54 0.03 +0.40,–0.40
Rside 3.48 0.09 +0.20,–0.20
Rlong 2.98 0.10 +0.23,–0.23

Table 7.2: Fit values for the 3D LCMS radii and λ for 0-10% centrality. All values for the
radii are in fm. The statistical errors are symmetric; the systematic errors are asymmetric,
and the directions are denoted.
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Cent. KT (GeV/c) Param. Value stat. syst.

10-30%

0.49

λ 0.66 0.06 +0.06,–0.06
Rout 4.51 0.14 +0.48,–0.48
Rside 4.37 0.26 +0.43,–0.43
Rlong 4.93 0.15 +0.49,–0.49

0.70

λ 0.78 0.05 +0.08,–0.08
Rout 4.26 0.17 +0.38,–0.38
Rside 4.13 0.23 +0.41,–0.41
Rlong 4.00 0.20 +0.40,–0.40

0.90

λ 0.69 0.04 +0.07,–0.07
Rout 3.78 0.14 +0.31,–0.31
Rside 3.45 0.17 +0.33,–0.33
Rlong 3.10 0.19 +0.29,–0.29

1.18

λ 0.71 0.04 +0.08,–0.08
Rout 2.92 0.09 +0.34,–0.34
Rside 2.75 0.13 +0.26,–0.26
Rlong 2.58 0.13 +0.24,–0.24

Table 7.3: Fit values for the 3D LCMS radii and λ for 10-30% centrality. All values for the
radii are in fm. The statistical errors are symmetric; the systematic errors are asymmetric,
and the directions are denoted.

Cent. KT (GeV/c) Param. Value stat. syst.

30-50%

0.48

λ 0.77 0.09 +0.07,–0.07
Rout 4.35 0.23 +0.51,–0.51
Rside 3.58 0.34 +0.40,–0.40
Rlong 3.52 0.39 +0.39,–0.39

0.70

λ 0.72 0.07 +0.07,–0.07
Rout 3.49 0.12 +0.30,–0.30
Rside 3.24 0.25 +0.31,–0.31
Rlong 3.00 0.26 +0.31,–0.31

0.89

λ 0.73 0.07 +0.07,–0.07
Rout 2.89 0.08 +0.20,–0.20
Rside 2.96 0.24 +0.25,–0.25
Rlong 2.19 0.15 +0.21,–0.21

1.18

λ 0.67 0.05 +0.07,–0.07
Rout 2.40 0.06 +0.26,–0.26
Rside 2.23 0.13 +0.19,–0.19
Rlong 1.70 0.11 +0.17,–0.17

Table 7.4: Fit values for the 3D LCMS radii and λ for 30-50% centrality. All values for the
radii are in fm. The statistical errors are symmetric; the systematic errors are asymmetric,
and the directions are denoted.
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Figure 7.11: 3D correlation function projections for centrality 0-10%. Also included is the
projection of the fit incorporating quantum statistics and final-state interactions, using the
parameter set from [141].
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Figure 7.12: 3D correlation function projections for centrality 10-30%. Also included is the
projection of the fit incorporating quantum statistics and final-state interactions, using the
parameter set from [141].

120



)c (GeV/
out

q
0 0.1 0.2

)
q(

C

1.0

1.5

2.0

S

0
KS

0
K
syst. errors

Fit

Centrality 30­50%

c < 0.6 GeV/Tk0.2 < 

)c (GeV/
side

q
0 0.1 0.2

ALICE data

 = 2.76 TeV
NN

sPb­Pb 

c| < 0.03 GeV/
j,k

q|

 projection over
i

q

)c (GeV/
long

q
0 0.1 0.2

from this thesis

)c (GeV/
out

q
0 0.1 0.2

)
q(

C

1.0

1.5

2.0

S

0
KS

0
K
syst. errors

Fit

Centrality 30­50%

c < 0.8 GeV/Tk0.6 < 

)c (GeV/
side

q
0 0.1 0.2

ALICE data

 = 2.76 TeV
NN

sPb­Pb 

c| < 0.03 GeV/
j,k

q|

 projection over
i

q

)c (GeV/
long

q
0 0.1 0.2

from this thesis

)c (GeV/
out

q
0 0.1 0.2

)
q(

C

1.0

1.5

2.0

S

0
KS

0
K
syst. errors

Fit

Centrality 30­50%

c < 1.0 GeV/Tk0.8 < 

)c (GeV/
side

q
0 0.1 0.2

ALICE data

 = 2.76 TeV
NN

sPb­Pb 

c| < 0.03 GeV/
j,k

q|

 projection over
i

q

)c (GeV/
long

q
0 0.1 0.2

from this thesis

)c (GeV/
out

q
0 0.1 0.2

)
q(

C

1.0

1.5

2.0

S

0
KS

0
K
syst. errors

Fit

Centrality 30­50%

c < 1.5 GeV/Tk1.0 < 

)c (GeV/
side

q
0 0.1 0.2

ALICE data

 = 2.76 TeV
NN

sPb­Pb 

c| < 0.03 GeV/
j,k

q|

 projection over
i

q

)c (GeV/
long

q
0 0.1 0.2

from this thesis

Figure 7.13: 3D correlation function projections for centrality 30-50%. Also included is the
projection of the fit incorporating quantum statistics and final-state interactions, using the
parameter set from [141].
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measured in the PRF. The 1D plots are formed by projecting the 3D correlation function

onto the qi axis while summing over |qj,k| < 0.3 GeV/c (which refers to three 10 MeV/c

q bins). Included in the plots are the projections of the fit function using the FSI parameters

from [141]. One can see the same important features as pointed out in the 1D correlation

functions, namely the clear Bose-Einstein enhancement at low q, the dip below 1 at mid

q, and a flat background at high q. It should be noted that the extracted λ value from

these fits is significantly higher than the y-intercept of the plotted projections. This is due

to the finite size of the region summed over in qj,k while projecting qi; if one only used 1

bin instead of summing over several bins, the y-intercept would match the extracted λ as

it does in the 1D analysis. One can also see from these projections that the width of the

qout correlation is narrower than the qside and qlong correlations. Thus, the assumption of a

spherically Gaussian source in the PRF employed by the 1D analysis is not well justified.

7.2.2 3D radii

Fig. 7.14 shows the 3D LCMS radii vs. MT in three centrality bins for K0
SK

0
S and ππ from

ALICE. The values for the K0
SK

0
S radii and their errors are listed in Tables 7.2 to 7.4. As

mentioned before, the K0
S radii were measured and fit in the PRF, and the extracted Rout

was scaled by the γ boost factor. The pion results were measured and fit directly in the

LCMS frame. The radii for all three directions show the expected trends: decreasing with

increasing MT and for more peripheral collisions.

We can compare the pion and kaon results to look for common MT-scaling. For Rside

and Rlong, the kaon and pion results are consistent within errors for overlappingMT values,

though the kaon points are systematically slightly higher than the pion results. One could

claim approximate common MT-scaling, more so at large MT; kinematics and statistics do

not allow us to extend the kaon results to lower MT, where it looks like the deviation might

be largest. However, for Rout, there is a significant difference between the kaon and pion

results, and no common MT-scaling can be claimed here.

As stated earlier, while approximate common MT-scaling is a qualitative expectation

of hydrodynamics, it is unclear how quantitatively exact this scaling should be. Ref. [124]
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predicts common scaling for pions, kaons, and protons to within 10-20%; however, that

model does not take final-state hadronic rescattering into account. The HKM model [125],

which includes hadronic rescattering, predicts no common scaling between pions and kaons

at LHC energies and suggests that it is the effects of final-state hadronic rescattering that

can drive the species to different freeze-out characteristics. Thus, the fact that we see no

conclusive common MT-scaling should not be entirely surprising.

7.2.3 Rout/Rside ratio

The Rout/Rside ratio can be connected to the emission duration, i.e. the difference in proper

time of the freeze-out of different particles. From Eqs. 4.30 and 4.31,

R2
out

R2
side

= 1 +
β2T(∆t∗)

2

R2
∗

(7.1)

where R∗ and ∆t∗ are combinations of geometric and dynamic (flow) considerations. One

of the expectated characteristics of the QGP was a longer-lived system which would exhibit

a longer freeze-out duration, and femtoscopists expected to find increased Rout/Rside ratios

significantly above unity. However, the data showed that the ratio remains near unity even

at LHC energies [120]. Fig. 7.15 presents the K0
S ratio from ALICE, showing consistency

with unity for all centralities and MT values. However, this does not necessarily suggest

that the emission duration is indeed small. The true relationship between the extracted

radii and the emission duration has significant dependences on flow terms and is certainly

non-trivial, especially at large MT; in fact, Heinz and Jacak say that “the extraction of the

emission duration must thus be considered the most model-dependent aspect of the HBT

analysis [101]”. Further discussion goes beyond the scope of this thesis.

7.2.4 R2
long vs. MT: freeze-out time

Using Eq. 4.32, we can extract a proper kinetic freeze-out time τf from the MT dependence

of R2
long. This τf represents the average kinetic freeze-out proper time for particles emitted

thermally, assuming a boost invariant source with weak transverse expansion. Fig. 7.16

shows the ALICE results of R2
long vs. MT for pions [120] and K0

S in 0-5% central collisions.
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0
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and systematic (boxes) errors are shown. TheMT values for 10-30% and 30-50% are shifted
slightly for clarity.

The points were fit three times: just pions, just kaons, and the combination of pions and

kaons. All three fits were consistent with a freeze-out time of τf ≈ 10 fm/c. The fit assumed

a thermal emission temperature of 120 MeV; this was varied by ±20 MeV to estimate a

systematic error of ≈ 10%. While this is a simplified model that is likely only partially

justified here, it still suggests that there is no obvious significant differences in the average

freeze-out times of kaons and pions in LHC collisions.

7.2.5 3D λ parameter

Fig. 7.17 shows the 3D λ parameters extracted from the ALICE K0
SK

0
S correlations. The λ

values and their errors are listed in Tables 7.2 to 7.4. The values are in the range 0.5-0.8,

and there are no significant trends with centrality or MT. These values are similar to the

1D results and, like those results, are mostly consistent with the predictions made from

resonance decay and experimental purity considerations. Because of the error bars, we

cannot say for certain whether or not we see the downward trend visible in the 1D analysis,
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Figure 7.16: R2
long vs. MT for K0

S and pions [120] from ALICE. Statistical (thin line) and
systematic (boxes) errors are shown. The lines are fits to the data using Eq. 4.32 assuming
a temperature of 120 MeV. The freeze-out proper times τ were extracted from the fits, and
the systematic errors on τ come from varying the temperature by ±20 MeV.

which arose because of the non-Gaussian and specifically non-spherical shape of the PRF

source; however, we would not expect to see such a trend here. Generally speaking, we may

in fact expect to see the opposite trend, with λ rising with MT due to increased purity and

decreased resonance contributions; however, in this analysis, purity and resonance effects

are minimal and not expected to change much with MT.

7.2.6 Comparison with model

Fig. 7.18 shows the three 3D LCMS radii and the Rout/Rside ratio vs. MT for 0-5% central

collisions from ALICE ππ [120] and K0
SK

0
S along with the HKM predictions [125]. The

comparison between pions and kaons was discussed above and is the same for this centrality

bin. The HKM predictions do not predict a common MT-scaling for pions and kaons, and

the most significant difference is predicted for Rlong. The experimental K0
S results are very

consistent with the HKM predictions except possibly for Rlong at low MT. The HKM
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Figure 7.17: 3D K0
SK

0
S λ vs. MT for different centrality bins. Statisical (thin lines) and

systematic (boxes) errors are shown. The MT values for 10-30% and 30-50% are shifted
slightly for clarity.

predictions match the experimental pion results for Rout at all MT and for Rside and Rlong

at low MT; however, they underpredict the latter two radii at higher MT. Thus, both the

model predictions and the experimental data see different MT-scalings for Rout, whereas

the data exhibit a common MT-scaling for the sideward and longitudinal radii which the

model fails to recover due to the underprediction of the pions.

For the outward-sideward ratio, the pion and kaon values are mostly consistent with

unity. The HKM predictions show a flat distribution at 1.1 for both species, overpredicting

the pion values, which is often the case with hydrodynamical models for this variable, but

remaining partially consistent with the kaon values.

Fig. 7.19 shows the 3D λ values vs. MT for 0-5% central collisions from ALICE ππ [120]

and K0
SK

0
S along with the HKM predictions [125]. The pion “values” are presented as a

range, as this was the only information given in [120], which also states that the values

increase slightly with MT. The HKM overpredicts the kaon λ significantly, similar to the

1D analysis. As stated earlier, since the model predictions have no purity issues, one would
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Figure 7.18: 3D LCMS radii vs. MT for K0
SK

0
S and ππ from ALICE [120] and HKM [125].

Statisical (thin lines) and systematic (boxes) errors are shown for the ALICE points.

expect the experimental values to indeed be lower; though, with the high purity values from

experiment, we would expect only a ∼ 10% drop due to this effect. Also, the inclusion or

exclusion of K∗ and φ meson resonance decay products in the model effects their λ very

little, suggesting that resonance contributions do not lead to the differences seen here. We

also see that the kaon and pion λ values are similar. However, we do not make any physics

messages regarding this as we would not necessarily expect any connection here, especially

considering the various contributions that affect λ.
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Chapter 8

Summary

This thesis presented the results of neutral kaon femtoscopy from Pb-Pb collisions at center-

of-mass energies
√
sNN = 2.76 TeV at the LHC measured by the ALICE collaboration.

This analysis is the first presentation of K0
SK

0
S femtoscopy in heavy-ion collisions that is

differential in centrality and transverse pair momentum KT. It is also the first presentation

of three-dimensional K0
SK

0
S femtoscopy and the first analysis (that we know of) to include

strong final-state interactions in a three-dimensional fitting procedure.

We discussed the single- and two-particle neutral kaon systems, showing that strong

final-state interactions have a significant effect on the K0K̄0 correlation due to the near-

threshold f0(980) and a0(980) resonances and must be included in the fit function in ad-

dition to the usual quantum-statistical Bose-Einstein correlations. The theoretical K0
SK

0
S

correlation function incorporating quantum statistics and strong FSI is calculated using the

Lednický-Lyuboshitz analytical model in the 1D analysis and using a Monte Carlo emission

simulation combined with a two-particle wavefunction weight calculation in the 3D analysis.

In the 1D analysis, we presented the femtoscopic radius Rinv for three centrality bins

and four KT bins. The radii decrease with increasing KT, which is expected for expanding

sources, and for more peripheral collisions, which reflects the change in size of the collision

region. The λ parameter is in the range 0.50-0.75 and agrees with expectations which take

into account resonance decay and experimental pair parity considerations. The λ parameter

also falls slightly for increasing KT, which we attribute to the fact that the source size in

the pair rest frame becomes increasingly less spherical and less able to be characterized
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by a one-dimensional Gaussian. The K0
S radii are consistent with the charged kaon radii

within uncertainties, though the neutral kaon values lie systematically above the charged

kaon values, and this difference becomes larger for more central collisions. The comparison

of Rinv for pion, kaons, and protons as a function of pair transverse massMT does not show

a common MT-scaling, especially at low MT. However, we discussed the expectation that

one should not expect such a common scaling in the PRF Rinv due to kinematic effects.

Comparisons with the HKM model in central collisions show that the predictions match the

qualitative trend of the K0
S radii (λ parameter) while underpredicting (overpredicting) the

radius (λ) values.

In the 3D analysis, we also presented the LCMS out-side-long radii, the outward-

sideward ratio, and the λ parameter for three centrality bins and four KT bins. The radii

decrease with increasing KT and for more peripheral collisions as expected. Comparisons

with ALICE pion results show approximately common MT-scaling in the sideward and lon-

gitudinal radii but significantly different scalings for the outward radius. The K0
S radii are

consistent with HKM predictions for central collisions. The HKM model predicts different

MT-scalings for pions and kaons in all three radii but underpredicts the pions in the side-

ward and longitudinal directions. The Rout/Rside ratio for K0
S is consistent with unity for

all centralities and MT and also with pions and HKM predictions for central collisions. The

MT dependence of R2
long was used to extract an average emission proper time of ∼ 10 fm/c

for K0
S in central collisions, which is consistent with pion results. The 3D λ parameter

is in the range 0.5-0.8 and shows no strong dependence on centrality or MT, and HKM

predictions significantly overpredict the λ values in central collisions.
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[133] Lednický, R. and Lyuboshitz, V. “Effect of the final-state interaction on pairing
correlations of particles with small relative momenta”. Sov. J. Nucl. Phys. 35, 770
(1982). Cited on pages 55, 59, and 63.

[134] Bekele, S. and Lednicky, R. “Neutral kaon correlations in
√
sNN = 200 GeV Au+Au

collisions at RHIC”. Braz. J. Phys. 37(3A), 994 (2007). Cited on pages 55, 58,
and 146.

[135] Gell-Mann, M. and Pais, A. “Behavior of Neutral Particles under Charge Conjuga-
tion”. Phys. Rev. 97, 1387 (1955). Cited on pages 55 and 56.

[136] Christenson, J. et al.. “Evidence for the 2π Decay of the K0
2 Meson”. Phys. Rev. Lett.

13, 138 (1964). Cited on page 56.

[137] Yao, W. et al. (Particle Data Group). “Review of Particle Physics”. J. Phys. G: Nucl.
Part. Phys. 33, 1 (2006). Cited on pages 57 and 73.

[138] Alexander, G. “Bose-Einstein and Fermi-Dirac interferometry in particle physics”.
Rep. Prog. Phys. 66, 481 (2003). Cited on page 57.

[139] Lednicky, R. “Finite-size effects on two-particle production in continuous and discrete
spectrum”. Phys. Part. Nucl. 40, 307–352 (2009), arXiv:nucl-th/0501065. Cited on
pages 58 and 146.

[140] Martin, A., Ozmutlu, E., and Squires, E. “The ππ and KK̄ amplitudes, the S∗ and
the quark structure of 0++ resonances”. Nucl. Phys. B 121, 514–530 (1977). Cited
on pages 58, 59, and 63.

[141] Antonelli, A. [KLOE Collaboration]. “Radiative phi decays”. eConf C020620,
THAT06 (2002), arXiv:hep-ex/029069. Cited on pages 59, 63, 106, 107, 108, 109,
119, 120, 121, and 122.

[142] Achasov, N. and Gubin, V. “Analysis of the nature of the ϕ⃗γπη and ϕ⃗γπ0π0 decays”.
Phys. Rev. D 63, 094007 (2001). Cited on pages 59 and 63.

[143] Achasov, N. and Kiselev, A. “New analysis of the KLOE data on the ϕ⃗ηπ0γ decay”.
Phys. Rev. D 68, 014006 (2003). Cited on pages 59 and 63.

[144] Ananthanarayan, B., Colangelo, G., Gasser, J., and Leutwyler, H. “Roy equation
analysis of pi pi scattering”. Phys. Rept. 353, 207–279 (2001), arXiv:hep-ph/0005297.
Cited on page 59.

141
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Appendix A

Corrections to the 1D K0
SK

0
S

correlation function

A.1 Effect of the inelastic K+K− → K0K̄0 transition

For the FSI effect on particle correlations to be significant, the particles must be moving

with slow relative motion, which means the sums of the masses in the entrance and exit

channels of the interaction must be similar. Therefore, the K0K̄0 correlation should include

the effect of both the elastic transition K0K̄0 → K0K̄0 as well as the inelastic transition

K+K− → K0K̄0. Due to isospin considerations, we assume that the particles in both

channels are produced with the same probability, so the correlation function will be a

sum of the r⃗ ∗-averaged squares of the wave functions Ψ11
−k⃗ ∗(r⃗

∗) and Ψ21
−k⃗ ∗(r⃗

∗) describing

the elastic and inelastic transitions, respectively. Note also that since the solution of the

scattering problem (Eq. 5.7) flips the time direction (hence, the −k⃗ ∗ subscript), we treat

K0K̄0 (≡ 1) as the entrance channel and K+K− (≡ 2) as the exit channel.

The s-wave dominated inelastic transition wavefunction is given by [162]

Ψ21
−k⃗ ∗(r⃗

∗) = f21c (k∗)

√
mK+

mK0

G̃(ρ2, η2)

r∗
, (A.1)

where

• ρ2 = k∗2r
∗, where k∗2 =

√
mK+

mK0

k∗2 + 2mK+(mK+ −mK0) is the K+ momentum in

the PRF

• η2 =
1

k∗2a2
, where a2 =

1

2mK+e2
= −109.6 fm is the K+K− Bohr radius
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• f21c (k∗) is the s-wave transition amplitude renormalized by the Coulomb interaction

in the K+K− channel

• G̃(ρ, η) =
√
Ac(η)[G0(ρ, η) + iF0(ρ, η)] is the combination of the singular and regular

s-wave Coulomb functions G0 and F0

• Ac(η) =
2πη

exp(2πη)− 1
is the Coulomb penetration factor, i.e. Gamow factor.

The scattering amplitudes are now given by the 2× 2 matrix

f̂c =
(
K̂−1 − ik̂c

)−1
. (A.2)

K̂ is a symmetric matrix in the channel representation, represented through the inverse

diagonal elements K−1
I of the K̂-matrix in the representation of total isospin I

(K̂−1)11 = (K̂−1)22 =
1

2
[K−1

0 +K−1
1 ] , (A.3)

(K̂−1)21 = (K̂−1)12 =
1

2
[K−1

0 −K−1
1 ] . (A.4)

K−1
I are assumed to be dominated by the f0 and a0 resonances for I = 0 and 1, giving

K−1
I = (m2

r − s− ik′rγ
′
r)/γr; . (A.5)

k̂c is a diagonal matrix in the channel representation:

k11c = k∗ , (A.6)

k22c = Ac(η2)k
∗
2 −

2ih(η2)

a2
, (A.7)

where h(η) = 1
2 [ψ(iη)−ψ(−iη)−ln η2] using the di-gamma function ψ(z) = Γ′(z)/Γ(z). The

scattering amplitude for the elastic 1 → 1 transition in Eqs. 5.7 and 5.12 is then replaced

by f11c .

Fig. A.1 shows the effect of the inclusion of the 2nd (inelastic) channel on the K0
SK

0
S

correlation function. One can see that the effect is quite small for the larger radii of high-

energy heavy-ion collisions and grows with decreasing radii. While the correction to the FSI

contribution can become significant, the presence of the large Bose-Einstein enhancement
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Figure A.1: Correction factor from the inclusion of the inelastic 2nd-channel FSI transition.
C2ch is the K0

SK
0
S correlation function with both FSI channels, and C1ch is with only the

elastic transition (both are without the deviation correction of Eq. A.8).

makes the correction to the full correlation function even less significant.

A.2 Deviation of FSI wavefunction in inner region

One should also correct for the deviation of the spherical waves from the true scattered

waves in the inner region of the short-range potential. In other words, Eq. A.1 only holds

outside of the range of the strong interaction potential. This correction can be written

as [134,139,162]

∆CKK̄ = − 1

2
√
πR3

[
|f11c |2d110 + |f21c |2d220 + 2R(f11c f21∗c )d210

]
, (A.8)

where dij0 = 2R[d(K̂−1)ij/dk∗2]. Fig. A.2 shows this correction effect for various radii. It

is comparable to the 2nd-channel correction and has only a very small effect on the full

correlation function.
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Figure A.2: Correction factor from the inclusion of the small-r∗ wavefunction deviation,
shown in Eq. A.8. Ccor is the full two-channel correlation function including the deviation
correction; Cno cor is without the correction.
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