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In Ref. [, two of us derived a relation between the scattering amplitude of three identical bosons,
M3, and a real function referred to as the divergence-free K matrix and denoted Kqf,3. The result
arose in the context of a relation between finite-volume energies and Kq¢,3, derived to all orders in
the perturbative expansion of a generic low-energy effective field theory. In this work we set aside
the role of the finite volume and focus on the infinite-volume relation between Ka¢ 3 and Ms. We
show that, for any real choice of Kg¢3, M3 satisfies the three-particle unitarity constraint to all
orders. Given that ICqgs 3 is also free of a class of kinematic divergences, the function may provide a
useful tool for parametrizing three-body scattering data. Applications include the phenomenological
analysis of experimental data (where the connection to the finite volume is irrelevant) as well as
calculations in lattice quantum chromodynamics (where the volume plays a key role).

I. INTRODUCTION

Three-body systems lie at the forefront of modern-day theoretical hadronic physics. Whether in the context of
understanding the resonance spectrum of quantum chromodynamics (QCD) or the binding of nucleons in nuclei,
three-body dynamics play a crucial role. In recent years there has been significant progress in developing rigorous
theoretical frameworks for studying such systems.

The majority of QCD states are unstable resonances that decay via the strong force into multihadron configurations.
A quantitative description of these is given by identifying complex-valued energy poles in the scattering amplitudes
of the resonance decay products. Given that one can only access real-valued energies experimentally, it is necessary
to construct amplitude parametrizations that can be analytically continued into the complex energy plane, in order
to determine the pole positions. Since resonance widths originate from the presence of open decay channels, unitarity
plays a key role in the analytic continuation. It is straightforward to impose unitarity on two-body amplitudes, but
it far more challenging in the three-body case, with efforts dating back to the 1960s [2-4].

The availability of high-precision data on various three-body production and resonance decay channels, together
with the emergence of lattice QCD (LQCD) calculations of hadron scattering, has reignited interest in the three-body
problem [5H8]. Although unitarity gives a powerful restriction on the structure of scattering amplitudes, it does not
fully determine them. The unconstrained real part, often referred to as the K matrix, is determined by the underlying
microscopic theory, and in practice is obtained by fitting to experimental data or LQCD finite-volume spectra. By
comparing results obtained with different K-matrix parametrizations it is possible to determine the existence of
amplitude singularities and learn about their microscopic origin. This approach has proven remarkably powerful, not
only for the determination of simple QCD observables, but also in multiparticle quantities including scattering and
transition amplitudes.

In LQCD, using the standard approach, one can directly access only the eigenstates and energies of the finite-
volume Hamiltonian, which are not in direct correspondence to multiparticle asymptotic states. This prevents a
direct determination of S-matrix elements. Nevertheless, it turns out that one can extract scattering information via
model-independent relations between finite- and infinite-volume quantities. For two-particle systems there has been
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a great deal of progress in developing such formalism, culminating in a general relation between the finite-volume
spectrum of any coupled two-particle system and its corresponding scattering matrix [9HI9]. In addition, relations
have been derived between finite-volume matrix elements and the corresponding transition amplitudes mediated by an
external current [20H29]. These relations, along with algorithmic advances, have made possible the study of resonant
and non-resonant scattering amplitudes of various two-body channels [30-35] including energies where more than one
channel is open [36H39]. We point the reader to Ref. [40] for a recent review of the formalism and its implementation.

Presently, the extension of these studies to energies above three-particle thresholds is limited as the required three-
body finite-volume formalism is still under development, although finite-volume energy levels coupling to three-particle
states are already being extracted using lattice QCD [39], [41H44]. The need for this extension has motivated several
efforts [I, 45H57], which were recently reviewed in Ref. [58]. At this stage, the formal approach is complete for systems
of three identical scalar particles, including systems with two-to-three transitions as well as those with a resonant
two-particle subprocess.

In this article we restrict attention to the formalism introduced by two of us in Refs. [I}, 47]. This approach, derived
via an all-orders perturbative expansion of a generic scalar field theory, relates finite-volume energy levels to an
intermediate infinite-volume quantity referred to as the three-body divergence-free K matrix, and denoted Kgs3. In a
second step this real-valued intermediate quantity is related, using a set of known integral equations, to the complex
valued three-to-three scattering amplitude, M3. Qualitatively, one can understand Kq¢3 as the part of the scattering
amplitude that describes all of the microscopic interactions between the three particles that remain after the explicit
effects of particle exchanges are subtracted. This is somewhat analogous to the relation between the real-valued K
matrix and the complex scattering amplitude in the two-particle sector, reviewed in Sec. [[T] below.

In this work we set aside the role of the finite-volume and consider the implications of the relation between Kgs 3
and Mj3. We demonstrate, to all orders in a Kg4r3 expansion, that any scattering amplitude expressed in terms of
this real-valued quantity exactly satisfies three body unitarity. We stress here that the formulation is fully relativistic
and incorporates all partial waves in the three-particle system as well as its two-particle subsystems. We do, however,
restrict attention to the relations of Ref. [I], meaning that the expressions describe a single channel of three identical
scalars.

We stress that our result is expected, since the derivation of the expression for M3 in terms of Kyt 3 is based on an
all-orders analysis in quantum field theory. Nevertheless, since the derivation is complicated and lengthy, our result
provides an important cross check of the final expression. In addition, we hope that our result stimulates comparison
of the unitary expression for M3 in terms of KCqr 3 with other unitary parametrizations, such as that of Refs. [6] [§].

The remainder of this work is organized as follows. In Sec. [[] in addition to introducing some basic notation, we
review the definition of the scattering amplitude in terms of the K matrix in both the two- and three-particle sectors.
Next, in Sec. [T} we review the unitarity relation, with some details relegated to the appendix, and demonstrate
that M3[Kqs3] exactly satisfies the constraining equation. The derivation proceeds in two steps, first showing that
the relation holds for 4¢3 = 0 and then incorporating the all-orders effects of the local three-body interaction. We
conclude briefly in Sec. [[V}

II. TWO- AND THREE-BODY SCATTERING

In this section we set up some of the notation and key relations used in this work to describe both two- and three-
particle scattering. First, in the following subsection, we introduce the two-particle scattering amplitude and recall
how its relation to the K matrix automatically satisfies unitarity. Then, in Sec.[[TB] we give the relation between the
fully-connected three-particle scattering amplitude, M3, and Kq¢ 3. In this case both the unitarity constraint and the
relation between K matrix and scattering amplitude are more complicated. However, as we show in Sec. [[TI} any form
of M3 defined in terms of a real-valued Kg4¢ 3 will satisfy the unitarity constraint.

A. Two-body scattering amplitude

The three-body T matrix, illustrated in Fig.[I] is defined in terms of the S matrix as i7" = S—1. It has a disconnected
contribution, depicted as the first term on the right hand side of the figure, in which two particles scatter without
interacting with the third, spectator, particle. As one would expect, this contribution is fully determined by the two-
particle scattering amplitude, denoted Ms. To give a useful expression for this, we first define k as the momentum
of the spectator particle in some arbitrarily chosen frame. The 4-momentum of this particle is then (wg, k) where
wr = vk? +m?2 and m is the physical mass. We further define the total three-particle energy and momentum in this
frame to be (E,P) = P*. Thus, if we take one of the incoming scattering particles to carry four-momentum (w,,a),
then the second incoming scatterer will have (F — wp — w,, P — k — a).
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FIG. 1: The two types of contribution to the three-particle T matrix. Mgj is the fully-connected amplitude.

Note that, by enforcing a specific value of total 4-mometum, (E,P), we have given the second scattering particle
an energy and momentum that do not necessarily satisfy the on-shell condition. To add this constraint, we need to
introduce some new notation. Define

E5p=V(E—w)?— (P -k, (1)

as the energy of the two scattering particles in their center-of-mass frame. In other words, the 4-vector (E —wy, P —k)
boosts to (E3 ;,0). Denoted by (wj,aj) is the result of applying this same boost to (ws,a). It then directly follows
that (£ — wg — wa, P — k —a) is boosted to (E3; —w;, —aj). We thus place the third particle on shell by requiring
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Having enforced this condition we are left with the following (redundant) degrees of freedom for Mo, viewed as the
disconnected contribution to the three-particle T matrix: total 4-momentum [P* = (E,P)], spectator momentum
(k), and incoming and outgoing directional freedom (aj and @;). This leads us to write the two-particle scattering
amplitude as
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where Yy, are the standard spherical harmonics and the sum over repeated angular-momentum indices is implicit.
We stress that aj and aj* are the spherical angles of the relative momenta between the two particles when the system
recoils against the same spectator.

In what follows, we will be interested in determining the imaginary contributions to the two- and three-body
scattering amplitudes. In doing so, one might have thought that it would be necessary to keep track of the imaginary
parts of the spherical harmonics. Fortunately, it is easy to convince oneself that these contributions exactly vanish.
In the case of Mj this follows from the fact that, as a result of Wigner-Eckart theorem, the two-body scattering
scattering amplitude is diagonal, and independent of the azimuthal indices m’ amd m

MQ;E’m';Em(k) = My) (k) 5€’€5m/m . (4)

This implies that the product of the two harmonics in Eq. reduces to the real Wigner-d function, or equivalently
the Legendre polynomial,
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for each £. An alternative argument is to note that it is legitimate to use real spherical harmonics, which form a
complete set and satisfy the same orthonormality properties as the usual complex harmonics. Since the harmonics do
not appear in the final expressions, we can use either basis in intermediate steps. For the real harmonics, the issue
with the imaginary part does not arise. Since all other steps in the derivation have the same form in either basis, we
will get the correct answer if we proceed as if the harmonics are real, even if we use the complex basis. This argument
holds also in the analysis of the connected three-particle amplitude.

Given that May.p/py.em, is diagonal, keeping both pairs of indices may seem superfluous. However, as we will see
below, it is convenient to think of this as a matrix in angular-momentum space, especially when combining it with
other non-diagonal objects. To simplify the notation, in what follows we will largely leave the angular-momentum
indices implicit.



We now define the real-valued two-particle K matrix, Ko, via the standard relation
Mo (k)™ =Ko (k)™ + p(k), (6)
where p is imaginary above threshold
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Here we are using Eqs. (A6) and (A7) from Ref. [I], with ©(z) the usual Heaviside step function.
From these relations follows

Ka(k)~ + (k)" 1

Ka(k)~ + p(k)* Ko (k)= + p(k)

where we stress that the overall sign is positive. This result is equivalent to the standard unitarity relation, given in

Eq. (A18]) in the Appendix. In order to compare to the literature on three-particle amplitudes, and in particular to
Ref. [8], we note that the exact relation of our p to the corresponding quantity in that work is

ampye ™ =2 % p(k). (9)

The factor of 47 arises because, in Ref. [8], the angular integral is left explicit [as shown in Eq. below]. The
factor of 2 arises because of the symmetry factor which reduces the two-body phase space for identical particles.

We close this subsection by giving an alternative derivation of Eq. that more closely matches the three-particle
derivation of the following section. To do so we first expand the relation between My and Ko in powers of the latter

Im Mz(k) = Im = M;(k) ©(q;?) p(k) Ma(k), (8)

Ms(k) =D Ka(k)[ = p(k)Ka(K)]". (10)
n=0
To evaluate the imaginary part in this form we introduce a general identity for a product of n complex matrices
Im(A1As -+ Ay) =Im (A1)As -+ A, + AT Im (Ag)As - Ap + -+ AT - AY 1 Im (A,,). (11)
This follows from simply substituting 2iIm A; = A; — A% and noting that terms cancel in pairs. The complex

conjugation could occur also to the right of the Im(A;) factors, as can be trivially seen by conjugating both sides and
using that Im(x) is real.
Applying this identity to the nth term of Eq. then gives

n—1
I [ (k) = p(R)2(K)]" | = D7 (Ko (k) = (k) Ka(k)]™) ©(622) p(K) (Ka(k)[ = p)K2R)]" ), (12)
m=0
where the right-hand side is understood to vanish for n = 0 since then the sum contains no terms. Summing this
result over all n immediately gives Eq. . The intuition here is as follows: For a given series of real K matrices and
complex valued p cuts, the identity gives a prescription for moving through the chain, summing over all cuts with
the conjugated object appearing to the left. Summing over all resulting terms then directly leads to the unitarity
relation.

B. Three-body scattering amplitude

We now turn to the relevant expressions for the fully-connected three-particle scattering amplitude, M3z, which is
depicted in Fig. [1} The three-body scattering amplitude is naturally more complicated than My. In Ref. [I], it was
shown in a bottom-up approach based on all-orders perturbation theory, that the scattering-amplitude is completely
determined by a real function, denoted Kg¢ 3. This describes microscopic interactions between the three-particles,
i.e. the part of the scattering amplitude that is not constrained by s-channel unitarity. For example, in the context
of an effective field theory, it is given by a sum of contact interactions and virtual particle exchanges below the three-
body threshold [59, [60]. In the alternative, top-down approaches of Refs. [3| [6] 8, [61H63], one uses S-matrix unitarity
to identify the analytic properties and isolate the analog of Kgs 3.

At this stage, it remains to be shown if the two approaches result in scattering amplitudes with equivalent analytic
properties that can be quantitatively matched with a proper choice of the remaining functional freedom. As a first
step toward this goal, in this work we demonstrate the real-axis unitarity of the thee-body scattering amplitude, M3,
as defined in Ref. [I]. In this section we review the result of that work, first by taking the KCqr 3 = 0 limit and then
by including the all-orders corrections in this short-distance function. With this in hand, in the following section we
review the three-body unitarity constraint and show that it is satisfied, order-by-order, by any M3 expressed in terms
of de’g.



1. Three-body scattering amplitude for Kas3 =0

When Kg¢ 3 = 0, the three-body scattering amplitude is completely determined by pairwise scattering. In this case,
we have, from Egs. (85), (86) and (93) of Ref. [II,

My(p, a5 k,81) = Dlp,a k,a1),  Dlp,ay;k.ap) = S{D0 (p.k) ), (13)
where D(*%) is the solution to the integral equation
iD") (p,k) = iMy(p)iG™ (p, k)iMa(k) + / iMa(p)iG™(p,s) iD"") (s, k). (14)

Note that, since this is a genuine three-particle amplitude, the initial and final momenta, k and p, respectively, differ
in general, unlike for M5 in Eq. . The objects appearing in Eq. are matrices in angular-momentum space,
with adjacent indices contracted in the usual way. The symmetrization operator S is defined in Eq. (37) of Ref. [I]
and also explained below, in the paragraph containing Eq. . We use a different shorthand for the integral than
in Ref. [1], namely [, = [ d®s/[2w,(27)%], with the factor of ws = v/s? + m? included. This follows the convention of
Ref. [8].

The kinematic function, G*°, is the pole contribution of the exchange propagator, defined as
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where u = (P—p—k)?. This is the relativistic form of G*, first discussed in Ref. [52]. It differs from the nonrelativistic
form used in Ref. [1I] away from the pole, but all expressions involving G*° remain valid as long as the relativistic
form is used throughout. The function H(p, k) provides a cutoff on p and k and only depends on Lorentz invariant
combinations of these momenta with the total momentum P. All we need to know here is that H is real, and that
it equals unity when p and k are chosen so that u = m?. We re-emphasize that the magnitudes, ky and py, entering
the angular-momentum barrier factors (as well as ¢ and q, ), are evaluated in the two-particle rest frames, with the
subscript giving the spectator momentum. They are generalizations of aj defined in Eq. . When Kyt 3 = 0, the
amplitude D% is simply the partial-wave projected, unsymmetrized version of M.

In Eq. , (ky/qy) and (pf/qy) both equal 1 at the pole and thus could be omitted from the definition of G
without affecting the properties relevant to unitarity. However, doing so would amount to a redefinition of Kg4¢ 3 and,
since these factors cannot be discarded in the finite-volume relation, we prefer to keep them here as well.

We close this subsection by giving more detailed explanations of the possibly unfamiliar notation used above, so
as to make this paper self contained. First we relate quantities written in the ¢m basis to functions of aj, all for
given spectator-momentum k. This is achieved simply by contracting with spherical harmonics, as in Eq. (35) of
Ref. [I]. We abuse notation by denoting the corresponding quantities using the same symbol, distinguished only by
their arguments. For example,

D) (p, a0k, Bf) = An Yo (&5)DY0, (p,K) Yo, (BF) - (16)
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In order to lighten the notation, we also sometimes replace the continuous variables k and p with matrix-like indices,
e.g.

G;})/m’;kém = G;/Om’;Zm(pa k) ’ (17)

although this does not imply that the spectator momenta are discrete.
Next we recall the definition of symmetrization from Ref. [I]:

Ma(p &k a)) = S{MUGE i f = D0 MEV(p.E kA (18)
T,y=u,s,s

Here the superscripts u, s and § differ by the choice of spectator momenta. For example, Mg“’s) is related to Mé“’"’

via

Mgu,s) (p’a;*,k,az) = Mgu#) (Pva;*;a’ KZ) (19)
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FIG. 2: Schematic representation of the definition of symmetrization given in Eq. , using the example of the leading term
in D%, (a) Basis transformation from the k, £, m to the on in terms of three momenta; (b) Summing over permutations of

assignments of external momenta. Open circles represent My, which is itself symmetric under particle interchange. The third
momentum on the left-hand side is given by by, = P —k —a, with b,/ defined similarly. See main text for further explanation.
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Note that, in order to symmetrize, we must first change from the k¢m to the k,aj basis. The two steps needed to
obtain a symmetrized amplitude starting from the k, £, m basis are summarized in Fig. [2] for the first term contributing
to D(p,a,;k,a;). Figure (a) represents the basis transformation, Eq. , while Fig. (b) shows the nine terms
that must be summed, each corresponding to the different choices of the initial and final spectators.
We will also need a version of the symmetrization operator, S, that acts on objects in the k,a* basis:
S{MIYmarkan = Y MEVp K E)). (20)

T,y=u,s,5

Third, we note that, depending on the specific context, either the k¢m or the k,a* form of the amplitudes may be
more convenient. For example, the first choice is useful in making contact with the finite-volume system, whereas the
second choice allows one to better use the exchange symmetry of the underlying amplitudes. As an example of the
latter point, consider two functions of incoming and outgoing three-particle phase space, A and B, assumed to have
exchange symmetry. The integrated “matrix” product of the two functions can be expressed in the following different

ways
[ w5550
s L1myslama
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where fA = [da/(4x). In the ﬁrst two lines the exchange symmetry is obscured, whereas in the third it can be directly
used via identities such as A(p,a};s,a;) = A(a’,p;;a,5;).

Finally, we note that the expressions given above can be recast in terms of the Lorentz invariants often used in
discussions of three-particle scattering. There are eight independent invariants, usually defined in the center-of-mass
frame, P = (1/s,0). A pair of particles is selected in each of the initial and final states and the momentum of the
spectator particle corresponds the k and p, respectively. The y axis defines the so-called production plane and is
given by ¥y = k x p. The spherical angles, a* and a’* that specify direction of motion of one of the two particles in
each pair are deﬁnegl in the respective center-of-mass frame of each pair, with the z and Z’ axes defined to be opposite
to the direction of k and p in the two frames, respectively. Note that the y axis is invariant under boosts from the



P = (y/5,0) frame to the rest frames of the two particles subsystems. As for the remaining four variables (besides
the two sets of spherical angles a* and a*) one can choose the squares of invariant masses of the two pairs, o and
o’ respectively for the/\initial and final state, the total center of mass energy squared s = E2, and the cosine of the
scattering angle z, = k - p in the center-of-mass frame. As an example of using these invariants, we give the explicit
expression for G,

o' u, m? /2 0,0 o, u,m?) \ 2
G5 mkem =V F DT Dialadalen) (5] s (s ) e

A(o’,m2, m? u—m? +ie \ Mo, m?,m?

where A(a, b, ¢) = a® +b? + ¢® — 2ab — 2ac — 2bc is the triangle function, and the arguments, zx and z, of the Wigner-d
functions are cosines of the vectors kj and P}, respectively. The momentum transfer variable u is given by
(s+m?—0')(s+0o—m?)  A/2(s,m2,0)\/?(s,m? o)

2 5
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2. All-orders corrections in Kas, 3

We now turn to a general expression for the fully-connected three-to-three scattering amplitude. To do so it is
convenient to introduce Mgn)(p,ﬁg‘, k,a}) as the contribution with n powers of the divergence-free K matrix

Ms(p,al; k,ap) = MY (p,al; k,a7) + MY (p,al; k,ap) (26)
= ML (p,ay;k,a5) + M (p,al i k,ap) + Ok 5) (27)

al*

where /\/lg (p,a, ;k,ay) is the contribution considered above
M (p,al; k,a;) = D(p,al: k.a}) (28)

alx

and ./\/l:(), (p,ay; k,ay) includes all Kq4t3 dependence with the linear contribution given by Mél (p,a,;k,ay). As
with the Kg¢ 3-independent piece, the linear piece is conveniently expressed in terms of its unsymmetrized counterpart

M (p, &gk, a%) = S {MET (29)

Heuristically this quantity is understood as a single Kg¢ 3 insertion dressed with any number of pairwise scatterings
on the incoming and outgoing three-particle states. The precise definition is

Mél,u,u) //E(u u) p s deg(s r)Ruu)(r k) (30)
L0 (p,s) = 53(p — ) = Ma(p)p(p)d(p —8) = D" (p,5)p(s), (31)
R (r,k) = 56(r — k) — p(k) M2 (K)3(r — k) — p(r) D) (r, k), (32)

where, following Ref. [§], we define
5(p — k) = (27)%2wp 6% (p — k). (33)

The delta function in the first terms of £ and R accounts for diagrams with no two-body subprocesses. It is accom-
panied by a factor of 1/3, which arises because Ky 3 is itself a fully symmetric object, meaning S {de,g} = 9Kqt,3
and the factors of 1/3 cancel this overcounting.

The all-orders expression for Mé}c’“’u) can be given by introducing a new quantity, 7, which coincides with gt 3
at leading order and incorporates all higher orders in which all possible pairwise scatterings occur between adjacent

short-distance factors. This is encoded in one final integral equation

T(p,k) = Kars(p. k / / Kat5(p.5)p(s) L (5, 1) (r, k). (34)

The all-orders Kg¢ 3-dependent part of Ms is then given by

MY (pud) = 37 MY pk) = [ [ 20 (p. 8T (51 RO 1K), (35)
n=1 S T



III. UNITARITY OF THE K43 TO M3 RELATION

Having reviewed the results of Ref. [I], we now turn to the main result of this work. Specifically, in this section we
show that any M3 satisfying Egs. and for real Kqr 3 will automatically satisfy the constraints imposed by
unitarity. We break the demonstration into three subsections. First we present the constraint (reviewing some details
of its derivation in the appendix), then we show that the Kq¢ s-independent piece satisfies unitarity, and finally we
demonstrate that this generalizes to the full scattering amplitude, M.

A. Unitarity constraint for three-body scattering

To avoid confusion, we label the scattering amplitude that emerges from the top-down unitarity approach by As.
This is logically distinct from the quantity Mg that emerges in all-orders perturbation theory through the relation
to Kaqr3. We take Az here as the fully-connected scattering amplitude to make the connection to M3 as close as
possible. As we review in Appendix [A] the disconnected piece separately satisfies unitarity.

Unitarity imposes the following constraint on any three-body amplitude for identical particles:

2X3,/ // (2m)*6% (P — pi — p — p5)A5(P;P") As(p"; P)

dal),
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Im A3(p'; p)
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#3200~ 4m)p(py [ A0 sy 0 )
+ Z T (ujn — m*)A3 1 (P ") A2 (P75 ).

We review the derivation of this result in Appendix [A] The notation here is potentially confusing, so we explain it in
detail. We use a collective notation for the momenta of the three particles, e.g. p = {py, P2, P3}. The indices n and
j each run over the three choices of spectator, or equivalently over the possible two-particle subsystems. As ., ;(p’; P)
is a two-body scattering amplitude in which p; and p), are respectively the spectators in the initial and final states:

Az.j(P';p) = Ma(py,, 8y 59, 8,)) - (37)

This index-heavy notation is needed to accurately specify the last term in Eq. , as discussed further below. We
recall that our notation for My, already introduced in Eq. , requires p;, = p;. We do not include a delta function
in the definition but simply adopt the convention that the amplitude is only written when the vectors are equal and
is otherwise ill-defined. Finally, we have introduced the Lorentz invariants s, = (P — p},)?, s; = (P — p;)? and
Ujn = (P —p; — )%

We emphasize that Eq. is closely related to the unitarity condition given by Eq. (8) of Ref. [8], the only
differences being those associated with the fact that here we are considering identical particles. The first difference is
the need for additional symmetry factors in the first three terms [with those in the second and third terms absorbed
into the definition of p(k)]. Next, the sum over j and n in the last term is not constrained. This is in contrast to the
result of Ref. [8] where the sum runs over j # n. Thus there are nine contributions here rather than six. The two-index
notation for As is needed here to encode the fact that two adjacent factors of the two-to-two scattering amplitude
cannot arise on the same particle pair. In other words, the spectator of one pairwise scattering must participate in
the next. Another difference, is that here that p; simply labels the momentum, and not the particle type as it does in
Ref. [§]. Finally, some kinematic factors have been replaced with m?, due to the simplification of considering identical
particles.

B. Unitarity of M3 when K43 =0

We begin by showing that M3 satisfies unitarity when KCq¢ 3 = 0. This amounts to evaluating the imaginary part of
D% and showing that, after symmetrization, it satisfies Eq. . To do so it is convenient to introduce a shorthand
in which momentum arguments are written as indices, while angular momentum indices remain implicit. Then for



example, Eq. can be rewritten as
D) = —May G Mo — [ Ma, G D (35)

We begin by expanding D(**) in Eq. in powers of Ms. Iteratively substituting the expression for D(*%) then
gives

where

(40)

D,(;Z’"’“) =( sz{H/ } H 5757“/\425_7-“)

The notation is cumbersome due to the need to keep track of (and give labels for) the integrated intermediate
coordinates. For example, the first three terms are given by

81=p,Sn+1=k

D = — Moy G5 Mo, (41)
pe / MapGaS, Moy G5 Mo, (42)
S2
i) / / MopG2e, Moy G2 Moy G M, (43)
S2 83

Our strategy in the following is to build up intuition by showing first how the unitarity condition is satisfied at
quadratic order in My (i.e. for D%%) then repeating this analysis at cubic order (i.e. including D*™), and finally
carrying out the all-orders analysis by working directly with the integral equation, Eq. .

To evaluate the imaginary parts of the various quantities we require a compact notation also for the imaginary part
of G

Im G?’o /i 8m (p ) = _AZ/ '3 Z’m(pa k) ’ (44)
Dot (P, k) = 4o (K5) [70(02, — m)] Vi, (B1). (15)

where bZk = (F —wp —wg, P — p — k). Note that the H function in Eq. is set to unity by the delta function,
since this sets all three partlcles on shell. The shorthand version of this result reads Im G;}; = —A,;. We also use an

abbreviated form of Eq. (§), Im M3, = M3, [0p], Moy

1. Unitarity constraint on D3

Taking our identity for the imaginary part of a product of matrices, Eq. ( ., it is now straightforward to evaluate
Im D(™%%)  For example, the leading term gives

ImD;};W M, 07, D 1““)+D$€’“’“)* [0p]) Moy + M3, A Moy, (46)

Before turning to the all orders extension of this, we think it instructive to explain how D% satisfies Eq. ,
up to terms that contribute at higher orders. To do so we first apply S to both sides, to reach

I D (p, &% k, &%) — [/ M (p, &% p,3%) ©(¢2%)p(p) D) (p, &% K, &)

+ [ DU (p, &)k, ay) O(q;%)p(k) Ms(k, &) k, &7) (47)
a”

+ M; (p?/\g*vpak*) 7T5( pk 2)M2(k7ﬁ2,k732)
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We see that the last term here exactly corresponds to the last term in Eq. and the counting is reproduced.
The 9 terms in the symmetrization lead to the 9 terms in the sum over j and n. Thus this term in Eq. is fully
accounted for and there must be no contributions from higher orders. The first term in Eq. leads to a contribution
to the second term in Eq. , in which As — D). The counting here is more tricky: The second term in Eq.
has 3 x 9 = 27 contributions of the form My D1%®): 3 arise from the sum over n and 9 from the symmetrization of
D wu)  However, of these, only one third, i.e. 9, have the Myp attached to D) such that the spectators match.
Thus only 9 contributions are of the form of the first term in Eq. . This matches the 9 terms that are obtained
when symmetrizing Eq. . This leaves 18 remaining MyD(1%%) type contributions within Eq. in which the
spectators do not match. These arise within Im D(2>%%)  and will be identified shortly. The same analysis holds for
the second term in Eq. , which contributes to the third term in Eq. .

2. Unitarity constraint on D%
We next consider D% From Eq. 7 it is easy to see that imaginary part is

Im Dy = M3, (0], D™ + D [©p] Mo

[ M5y 3D+ [ D A M [ D 0l 2L (a9

The analysis of the first two terms follows that of Im D™ and these contribute to the second and third terms of
Eq. , respectively, now with the replacement As — D). The third and fourth terms in Eq. exactly generate
the missing 18 contributions discussed in the preceding paragraph. In other words, one can show that

S{MSP 7], DS +/M§p Aps Dii’"’“)} = ZG(q;f)ﬁ(pj)[ M;(p;,a) ip;, a5 )PV (p;,ay 1k,ay),  (49)
s j a,

50
e 6O

1=

=Y 6(s; — 4m*)p(p;) / A3 (psp”)DD (07 )
j ay;

where on the right-hand side of Eq. we have used the notation of Ref. [I], while the second form, Eq. , uses
the notation of Ref. [§] and Eq. (36]). The additional result needed to show Eq. is given by first noting

VIR (&) / Aprmrsom (0, K) AL () = (4m)/2 / Y (B Yo (R2) [0 (82, — m2)] Vi B AL (), (51)
—4r / 2@ — k%) (w8 (0%, — m*)] A (k, B) (52)
k

Substituting A™ (k, p5) = A" (p, E;) and evaluating the integral then gives

VARY (80 /k Apronssim (P, k) Afi) (k) = O(E52 — 4m?)p(p)2A) (p, &), (53)
= O(F32, — 4m?)p(p) [AC) (p, &) + AP (p,&)7)] - (54)

This holds for any smooth test function that can be decomposed in spherical harmonics A™ (k,a*) = Y;;, (ﬁ*).Agl:n) (k),
and for which only even values of £ contribute. The evenness of ¢ follows here from the identical nature of the two
particles in the nonspectator pair. It is needed to obtain the final form, for it allows one to freely replace the
superscript (s) with an (5). We stress that A(S)(p,ﬂ;‘,) is not required to be smooth, as no harmonic decomposition
of this quantity is required in the derivation of the result above. Thus one can use the result to show that

U U _ 1,s,u R
[ 20D = (e, [l + D] (55)

o » and the presence of a similar singularity in D154 - Given
Eq. , one indeed obtains the 18 missing components of the symmetrized D)s needed to complete the right-hand
sides of Egs. and .

despite the fact that D154 (p, a;"; k,ay) is singular in a;f
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FIG. 3: Counting of the p contributions in Eq. (56). (a) The nine contributions from the first term on the left-hand side of
Eq. . The notation is as in Fig. [2| except that we do not display the external momenta, which are implicitly held fixed for
all diagrams at the same values as in Fig.[2] Dashed lines depict the p cut, and the free ends in the middle of the diagram carry
the momentum s. (b) The p-type contributions from the right-hand side of Eq. . Here the dashed line running through
all three particles represents the integral on the right-hand side of Eq. . We do not show all 27 contributions; those not
displayed are obtained by further permutations of the external lines, following the pattern shown in Fig.

Finally, the last term in Eq. gives the first contribution to the first term in Eq. . Specifically, we find

S {/D}gls)u’u)*[@ﬁ]s ,DSc,u,u) + //tDI()ls,um)*AstDt(i,u,u)} _
11
i3 [ [ ot = - ) DO i) DYBp). (50)
Py Y Py Y P3

Here the situation is similar to that in Eq. : The first term on the left-hand side is the symmetrization of the
last term in Eq. , while the second term on the left-hand side comes from the next order term, i.e. ImD®). Thus
one needs only to show that the kinematic and counting factors from the first term on the left-hand side of Eq.
match those on the right-hand side coming from the contributions where the My factors in the two D()s match. This
correspondence follows directly from

* — ok 11
Jows —amtipe) [ Fan=g; [ [ [ 0wt -dreee. 60
s a; S

where F is a test function. Thus we obtain an overall factor of 1/2 instead of the required 1/6. This is fixed by
the relative counting factors. On the left-hand side there are 9 p terms, whereas on the right-hand side there are
(1/3) x 9 x 9 = 27, as shown in Fig. |3l The 1/3 comes from the fact that when joining two D™M)s only one third of the
terms have the p topology—the others matching with the A term on the left-hand side. In summary, the counting
factors are 9 from the left-hand side and 27 from the right. These differ by exactly the left over 1/3 remaining from
the 1/6.

3. Unitarity constraint on D™

We are now ready to argue that M) = D satisfies the unitarity relation to all orders. Starting directly from the

integral equation, Eq. , and applying the key identity, Eq. , one finds

Isz(:lgu) = —M3, [Op]p, Map Gy Moy — M5, GJi™ M3y, [©p]k Moy, + M3, Apy Moy,

- / M, (0], Moy, G2 DU + / M, N DU — / M, G TmD™ . (58)
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FIG. 4: Diagrammatic representation of the right-hand side of Eq. , which gives the imaginary part of D). Squares

u,u)

with rounded corners depict D™, and for simplicity we do not distinguish between D' and its conjugate. The two types

of cut, defined in the text, are distinguished by the shapes of the adjacent lines.

Introducing shorthand for the delta function, Spk =4 (p — k), this can be rewritten as

[ (ot M3, G 1D = A, (051, D — M3, G35 Mo (O] M

. 2p~ps
+ M, Ay Moy, + / M, Aps pi}gu) . (59)

At this stage it is helpful to return to the result that we aim to prove, Eq. . Following the intuition developed
in the analysis of D(1*%) and D(2%%) we note that D will satisfy the unitarity constraint if D(**) satisfies

m D) = M, ([GP]pDﬂ’u) + /APS'DEZ’H)> + (Dé’;’“)*[gp}k + /D;(fé’u)*ﬁsk> Moy,
S s

et [of0, 87+ [ o, me) o

This can be checked by applying S to both sides and taking advantage of the internal symmetrizations arising through
A,i. We illustrate the right hand side of this equation in Fig.

Thus our aim is to show that Eq. implies Eq. . What we can easily show, instead, is the opposite
implication, namely that Eq. implies Eq. . To conclude that the results are in fact equivalent we require the
additional assumption that the integral operator on the left-hand side of Eq. (59) is invertible. This is plausible since
the operator is a deformation of the identity.! Applying this operator to Eq. , one finds

[ (3o 15,63 ) D = [ (5,04 03,6557 ) M, (100057 + [ 2.2
[ (Fps + M3, G ) (DG 05+ [ DS A ) M
s ps 2p~ps sk k ’ st tk 2k
b [ (B + M3, G27) M3 A Mo

[ (v ats,6) ([l 0 + [ [25° 800} o1

One can simplify this substantially using the integral equation defining D%, Eq. , which, after complex

1 In particular, if we discretize the matrix equation, the integral operator becomes the matrix L36;£<5m““ker + ﬁ ;pG;@. This will only
»

have vanishing eigenvalues for specific, fine-tuned choices of discretization, encoded here via L. Thus we conclude the operator is in
general invertible.



13

conjugation and rearrangement, leads to

/ (5o + M3, G327 ) D" = M3, G M (62)

After some straightforward algebra, one finds that the right hand side of Eq. (61) equals that of Eq. . Assuming
the invertibility of the integral operator, as discussed above, it follows that the imaginary part of D™ satisfies
Eq. , and consequently that D satisfies unitarity to all orders.

C. Unitarity of M3

Having shown in the previous section that the Kg4f 3-independent part of M3 satisfies Eq. , in this section we
show that this holds for the full three-body scattering amplitude. Following the approach of the previous section, we

begin with the contribution that is linear in Kg¢ 3, denoted /\/lgl) and then generalize to the full amplitude.

As was the case with D(*®) it is instructive to first determine a constraint equation on M1:%%) that is equivalent
to the general unitarity constraint, Eq.

I M5 = M, ([@ Ay MG / Ages ML) ) (Méﬂfé“ O]k + / M sk)M%

(/D(u u)* @p 3lsZU)+//D(u u)*AStMgltZu) (/M(luu)*[gp Déusz)+//M(luu)*A ng o ) )

(63)

If the above is satisfied, M3 is consistent with unitarity through first order in Kq¢ 3. The relation is similar in structure
to Eq. , except that the result here has more terms because the terms linear in Kg4¢ 3 can occur both on the left
and on the right of the imaginary cut. An analog of the third term in Eq. is absent here because this term, which
leads to the final term in Eq. , is already completely generated by D(*%). As with Eq. 7 the key point is that
symmetrizing both sides gives the relevant contribution to the original unitarity constraint.

At this stage we note that our notation is overly complicated for two reasons: first, the same combination of [©p]
and A appears many times, and, second, all terms in this, and many of the preceding equations, have the form of a
matrix product with common indices integrated. With this in mind we introduce the shorthand

s = (O8] Ops + Aps (64)

and to adopt the convention that adjacent factors have a common index that is integrated over all values. We
emphasize the latter convention by including a dot wherever there is a common, integrated index. With this notation,

Eq. reduces to
ImM(luu) (M2+D w,u) ) M(luu)+M(1uu)* (M2+D(u,u)) (65)

Note that we are implicitly multiplying M3 and M3 by a delta function in such expressions, for example
M;-T,, = /t M3y byuTir = M5, T, (66)

with no sum or integral in the final expression.

To show that the result is satisfied, we recall the definition of /\/l glven in Eqgs. . above, which in our
reduced notation becomes

Mz())l,u,u) _ E(u,u) 'K:df,S _R(u,u) (67)
Acgi)u) = % M2p pp ps D;E;Z’u) Ps 5 Rf«:;,u) = %gr — Pk M2k rk — Pr D(u u) . (68)

We begin by taking the imaginary part of CI(,Z’“)

Im L") = — M3, [0p], Mayppdps + M3, [05], s — Im(DS") pg + D (O] . (69)
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Substituting the result for Im D(u’u) given by Eq. , we find

Im L&) = M3, {[@p] ps — [O]p0ps Masps — ApsMasps — [0p], D54 p, — / A, D }

(70)

+ /ID[();MU)* {[Gﬁ]f(;ts - [Gﬁ]t(;tsMZsps - AtsM2sps - [Gﬁ]tDt(?u)ps‘ - /Afr pe} 9
t T

/ (M2p bt + DL ) {[@p] O — / 7, (MQ,.prS,.s +p§g~">ps)} , (71)

where in the second form we have collected terms by inserting delta-functions as needed and also by using the definition
of Z, Eq. . Now we observe that the expression in curly braces in Eq. would equal Z - £(*®) were it not for
the first term. However, we now make use of the replacement identity

< 1 < 1
[©]p 6ps — 3 ([O8]p Ops + Aps) = 3Zos (when acting on a symmetric object) . (72)

This follows from the result Eq. (54)), since for a symmetric object there is no difference between versions with (u), (s)

and (§) superscripts. Note that the result applies irrespective of whether the action on a symmetric object is to the

left or the right. Here the symmetric object on which £*®) acts is Kat 3 (to the right), as can be seen from Eq. .
Applying the identity allows us to write Eq. [and its reflection leading to Im R(“’“)] in a compact form,

Tm £0) — (M + D) T L0, (73)

Since Kqr 3 is real, we have identified all contributions to Im /\/lél’u’u) [see Eq. ] We deduce that

T MEN = T (L£05) - K g - RO + L0007 Ky g - Tm (RO (75)
= (Mg + D) T MG 4 M T (M D) (76)

which is indeed the desired result, Eq. .

Finally, we are in position to demonstrate that the complete connected three-body scattering amplitude,

Ms =D+ Mg’c), satisfies the unitarity constraint, Eq. . This requires showing that Mg’c) satisfies the parts of
the constraint that depend on Ky 3. As above, we rewrite these parts as a required constraint on the unsymmetrized

version of Mé’c),
Im M) = (M; + D“W*) T M MY T (Mz + D(“ﬂ”) + MPe T M ()

Using the same steps as when considering Eqs. and , we find that this symmetrizes to parts of Eq. that
depend on KCg4¢,3. Note that the last term of Eq. (36]) does not need to be produced, as it is independent of Kgs 3, and
has already been accounted for by ImD.

To demonstrate Eq. (77), we begin by giving the shorthand versions of the results, Eqgs. and (35)), that give
the Kqf 3-dependent part of Ms,

MY = plow) T R T = Kypg — Kaps - pLW - T (78)

The imaginary part of ./\/l (Cow)

Im MUEE = I (gew)) . 7 R 4 plwws oy (7). R 4 plew) 7y (R | 79
3 (79)

can be partially evaluated using the replacement rules Eqs. and , which can be used since 7 is symmetric.
This leads to

Im M) = (M2 + D “>*) T MY T (M2 + D(“’“)> + LEW I (T) - RO . (80)
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Thus the first two terms in Eq. are reproduced, and all that remains to demonstrate is
E(u,u)* . Im (7—) . R(u,u) _ M:())K,u,u)* T Mz())lc,u,u) ) (81)

To do so requires evaluation of the imaginary part of 7. Using the integral equation in Eq., the result for
the imaginary part of £(*®) and the reality of Kas,3, we find

7T = Karz - [0 L5 - T — Kagz - p* (Mg + DOV T. LW T g5 p L4 I T (82)
In the first term on the right-hand side one can apply the symmetrization identity to write
7 =Ky - RO T LW T — Ky - p* L00*  Tm T, (83)
where we have made use of the definition of R, given in Eq. . The result can be rewritten as
I8 Im T = Kgp 3 - RWW* .. clww) (84)

where we have introduced
II’,CT = Spr + /de,S;psp:LgI;7U)* ’ (85)

which acts as an integral operator.
We now observe that this same operator can be used to rewrite the complex conjugate of the relation between Kqs 3

and T given in Eq. ,
Kasz =TI T*. (86)
Thus we find
I8 Im T =1F. 7 Rlewr .. Ll T (87)

Assuming that ZX is invertible, which is plausible using the same arguments given in Sec. [[II B 3| for the integral
operator encountered previously, we can drop the factors of this operator to reach

Im7 =7 RWwW*.7.c0w) T, (88)

Finally, inserting this result into the left-hind side of Eq. , we immediately find the right-hand side, concluding
the argument.

IV. CONCLUSION

In this work we have shown that the form of the infinite-volume three-particle scattering amplitude, M3, derived in
the context of finite-volume formalism, satisfies unitarity. Though this result was expected, the demonstration turns
out to be highly nontrivial, and thus provides an important check of the derivations of Refs. [I [47]. In particular, the
present derivation shows how the factors of 1/3 in the expressions for £(*%) and R(**) given in Eq. are essential
for unitarity to hold. Such factors are not present in the alternative representations of Refs. [0} §], and were initially
a source of confusion in understanding the consistency of the various approaches.

More generally, we have shown how K4t 3 and D individually contribute to the imaginary part of the connected
amplitude. While the latter is a somewhat standard object representing all-orders resummation of the one-particle
exchange interactions, K4y 3 is a quantity unique to the formalism of Refs. [I, 47]. It was introduced in Ref. [47] as a
fully symmetric amplitude that encodes the short-distance or microscopic physics. In analogy to the two-particle K
matrix it has no unitary branch cuts and is real for real energies.

In other approaches, e.g. Refs. [0, 8], similar objects appear, but these are not invariant under particle interchange.
The work presented here can shed light on the connection between these formalisms, as well as to other approaches
that derive three-body amplitudes from unitarity relations [3| 61} [63HG7]. Indeed, the relation between Kq¢ 3 and the
B-matrix used in Refs. [0l [§] has been determined in Ref. [68]. We also think that it will be worthwhile investigating
the use of the Kg4¢ 3-parametrization of M3 in analyses of experimental data. Given that the finite-volume observables
that may be accessed via lattice QCD are more directly related to Kq¢ 3 [47], this will serve as a stepping stone towards
bridging three-body physics in experiment and lattice QCD.
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Appendix A: Unitarity relation for the three-body scattering amplitude

In this appendix we review the derivation of Eq. , the constraint that follows from unitarity on the three-particle
scattering amplitude.

Unitarity implies that the 7' matrix satisfies T — TT = T1T. To derive the resulting constraint we evaluate matrix
elements of this equation using relativistically-normalized three-particle asymptotic states, |p) = |py, P2, P3). This
yields

®'[Tip) ~ (0|7 lp) = 2im (9'710) = 5 [[[ 17 o 1Tie) = 5 [[[ wlrtey Ty, (A
. p// . p//
where we have used

('IT"|p) = (p|T|p')* = (p'|T|p)" (A2)

in which the second equality follows from hermitian analyticity [69] [70], as well as the shorthand notation

=100 o

The factor of 3! in the denominator is needed for identical particles to cancel the overcounting arising from integrating
over the full three-particle phase space. The result (Al) can be rewritten as

w (o [716) = 5 [ @719 (71p). (A1)

In the following, we also need the total initial and final four-momenta

PM:(EvP):(wpl +wp2 +wp3>P1+P2+P3)a (A5)
P = (BE",P") = (wpy +wpy +wpy,PY +P3 +PY). (A6)

Next we decompose the T matrix into disconnected and connected pieces,
T=Tq+T., (A7)

with the disconnected piece having the matrix element

p”|Talp) = Za —p,)(2m)*0* (P} = Py) Az ("5 P) (A8)

(27r )54 (P — 25 p/ — py) A2k (P";P), (A9)

where the indices j and k run from 1 to 3. Here Ay jx(p”;p) is the two-particle scattering amplitude for the
subsystem defined by the fact that the initial and final spectators have momentua p; and p;-’ , respectively, while
Pl!=P—pj=(F- Wyt P —p//) and P, = P — p;. The corresponding result for the connected part is

(p"|Te|p) = (2m)*6*(P' — P)As(p'; p), (A10)

where Ajs is the connected three-particle amplitude.
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To proceed we insert the decomposition (A7) into the unitarity relation, Eq. (A4). The left-hand side becomes

LHS = [LHS]. + [LHS]4, (A11)
[LHS]. = (2m)"0"(P" — P) mAs(p p), (A12)
[LHS]q = (27)*6*(P" = P) > 0(p) — p)Tm Az, (p'; P) , (A13)

7,k

while for the right-hand side we obtain

1 * *
RHS = o—— /// {<p’|Tc|p”> (p"|Telp) + (P Te[p")" (p"|Talp)
. p//
+(p'|Talp”)" (P"|Tc|p) + (P'|Talp”)” <p”Td|p>} . (Al4)

Our aim is to determine the parts of this expression that equal [LHS]., for these give the unitarity relation for As.

We label the four terms in Eq. as [RHS];_4. The first three are fully connected, while the last contains
disconnected contributions. To pull out the latter we insert the expression for the disconnected contribution to the T
matrix, Eq. 7 into the final term in Eq. , obtaining

(RHSs § = PSP — i) (2m) 81 (P = P")(2m) 5" (P = P).A3 54(0's D) A k(B ).
szl;n/// (p] P (PP KPP
(A15)

Here we are using j and k for the external spectator indices, and ¢ and n for the internal indices. There are two
types of contribution to Eq. : those in which ¢ = n, which are fully disconnected since the same momentum is
a spectator for both scatterings, and the connected contributions in which £  n. For a given choice of j and k, there
are 3 contributions of the first kind and 6 of the second. We denote the fully disconnected contributions by [RHS]44,
and the connected by [RHS]4c.

The three contributions to the fully disconnected part are all equal when considering identical particles, so we can
set £ = n = j and multiply by an overall factor of three.? This allows us to write

(271' 454 P/ 6 464 "o * /AN . ", A
s, = CO0E Z [ (6}~ 0] —p1(2m) 5P = P) A (00 A0 50) (AL

Next we use the result Eq. (57]), which, after carrying out the remaining spectator-momentum integral, gives
4 4 ) B dap,,
* J * / 1 "
RS0 = (2r)'5'(P" = P) S O(E35, — 4o b [ A, 0 e 05D (A1)

We recall that ﬁ;,_/ is the direction of one of the intermediate particles in the center of mass of the two-particle

J
subsystem for which p} is the spectator momentum.
Equating the fully disconnected contributions to the left- and right-hand sides of the unitarity relation, which are

given respectively by Egs. ) and (| m, we find

da 7
Im Ay 1 (p'; p) = O(E3 2, — 4m )ﬁ(pk)/T;?_]A;,jj(p1§p//)AQ,jk(pH§p)- (A18)

This is the standard unitarity constraint on the two-body scattering amplitude, as given, for example, in Egs. (6) and
(7) of Ref. [§], taking into account that here we have an additional factor of 1/2 on the right-hand side due to our use
of identical particles.

2 The choice of ¢ and n does not matter as long as they are equal. For example, we could equally well choose £ =n =k or £ =n = 1.
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We now evaluate the connected piece of Eq. (A15)),

[RHS} (27‘(’)4(54 P — Z ///N (5 p] ( _ pk)(27f)454(PN . P) ;,;‘é(p/; p”)AQ,nk(p//§ p) , (Alg)

- 2x3 P
27)45%( P' .
G Gl ) Z / / 50! — I3R! — p)(@m) ' (P” — P)A3 1 (0" ) Ao (D), (A20)
= (2m)*6"(P' - P) ZM (03, —m?) A5 ;1 (P P") A2,3k (P P) - (A21)

To obtain the second line we have used the fact that all six terms in the sum over £ # n are equal, since they differ
only by the choice of dummy indices. We have thus made a canonical choice (¢ =1 and n = 3) and multiplied by six.
To obtain the final line we have simply carried out the integrals, and used the definition b, = P — p;- — Pk

The remaining terms in Eq. are more straightforward to evaluate. For example, the second term gives

[RHS], 3,2 i / (B [TLlp")* 6(p) — py)(2m) '3 (P — P)As ("5 p). (A22)
T 4 4 /

- e )§XP3, Z JJ], 4 p 55— poen P~ Pseie) (429

= (25 (P = P) R O3, — 4n)oe) [ A Ansi 6 ). (A24)

In going from the second to third line, we have again used Eq. , and the fact that we are summing over three
values of k, all of which give the same contribution.

The third term in Eq. can be written similarly (interchanging p < p’ and complex conjugating), while the
first term becomes

2 454P,_ /" EYS AN "
ras), = G ] on) s (P P As(e 0. (425)

Equating [LHS]. to [RHS]; + [RHS]; + [RHS]3 + [RHS]4c leads to the claimed unitarity relation, Eq. (36).
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