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Abstract

We discuss the pp annihilation into a pair of charmed D mesons not far from
the threshold of the reaction. An interesting interference pattern in the differential
cross section is predicted to arise from the existence of both ¢-channel charmed-baryon
exchange and s-channel ¥" charmonium resonance amplitudes. We argue that the
experimental study of this process would provide new and valuable information about
the unknown pp¥" and A.ND couplings. These are important to know to solve the
long-standing puzzle of the heavy flavour contents of baryons and to test the semi-local

duality.
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There exist many meson states which couple to the NN system. These states then
appear as the poles in the amplitudes of the N N interaction and this, in principle, can lead to
observable effects. However the common situation in the light quark sector is that the widths
of the resonances are large; they therefore overlap and interfere. The necessity to account,
in addition, for an interference with the (generally unknown) ¢-channel exchange amplitudes
further complicates the situation, making a clean and detailed analysis an extremely difficult
task.

In this sense a rather uncommon situation is encountered in the pp annihilation into
a pair of D mesons close to the threshold. The s-channel resonance here is the \Il"(3770)
charmonium state with a relatively small width of I' ~ 23.6 MeV. The nearest charmonia are
too far and narrow to cause any appreciable interference effects, so the pole corresponding
to U can, to a good accuracy, be considered as isolated. In addition, there exist of course
non-resonant ¢-channel amplitudes, corresponding to the exchange of the states with the
quantum numbers of charmed baryon(s). The relation between the strengths of the resonant
and non-resonant amplitudes depends on two couplings, NNU" and N,ND. Almost nothing
is known at present about the values of the corresponding coupling constants, apart from a
few rather controversial predictions [1]-[5]. A possible admixture of the light quark—antiquark
pairs in the wave function of the U" can further complicate the situation, giving rise to a non-
perturbative contribution to the pp — ¥" amplitude. Another interesting issue concerning
the N.N D coupling is that the knowledge of its value is desirable to solve the problem of the
intrinsic heavy flavour contents of the baryons [6,7]. The arguments listed above indicate
that the study of the pp — DD reaction is interesting, but at the same time leave seemingly
little chance to make a reliable prediction for the relative importance of s- and ¢-channel

exchange amplitudes.

There exists, however, an attractive theoretical scheme which, when applied to our situa-
tion, gives a definite answer — the (semi-local) duality [8-11]. Namely, the semi-local duality
implies that the averages (over a finite—energy segment) of cross—sections corresponding to
the sum of all possible amplitudes in s- and ¢-channels, respectively, should be approximately
the same.

We therefore can expect the appearance of an interesting interference pattern in the
vicinity of the ¥” resonance, arising from the competing s- and #-channel amplitudes of
comparable size. To see in more detail how this pattern can appear, we shall try to calculate

directly the cross-section of the pp — DD process.



The s-channel resonant amplitude is given by

i) — _ A = pp)A(W" — DD) 0
s—MitiMaln

where Mg and I'g are the resonance mass and width and A(\II” — X)) stands for the resonance
decay amplitude.
For what concerns the ¢-channel amplitude, we shall model it by the A. charmed hyperon

exchange. We choose the effective Lagrangean of A.N D interaction as
Lint = ig(Uy:0)®, (2)

where ¢ = ga_ np 1s the corresponding coupling constant, ® is the field of the D meson, and
U is the Dirac spinor of the baryon. The interaction (2) induces the t-channel exchange

amplitude of the form
: 2
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T = Ve (G + A)u, (3)
where M and m are the charmed hyperon and nucleon masses, respectively, A = M — m,
and ¢ is the c.m.s. momentum of the D meson (in what follows we shall keep the notations

and metrics conventions of Bjorken and Drell [12]).

The initial- and final-state interactions must also be taken into account. If S,; and
Spp are the S—matrix elements describing the interaction in the initial and final channels,

respectively, then the total transition S matrix element can be represented as [13]
Sis = \/SesSis\/Spp; (4)

where S;-f is the transition matrix element induced by the amplitudes (1) and (3).

A fair description of the pp interaction in the energy range of interest for us is given by
the so-called Frahn—Venter (spin-dependent) model [14]. It has been successfully applied to
describe the pp scattering [15] and initial-state interaction in the pp — AA reaction [16].
We thus feel free to introduce the initial-state interaction in exactly the same way as it was
done in [16]. The main effect of the initial-state interaction is to damp the cross section by
a factor of ~ 1072 — 1073, depending on the partial waves involved.

The properties of the DD interaction are essentially unknown; it nevertheless seems
natural that it is much weaker than the strongly absorptive pp interaction. In what follows

we shall put Spp = 1, thus neglecting the final-state scattering.

We now have to consider the amplitudes of ¥ decay entering into the resonant amplitude

(1). A natural (though not necessarily true — see [17]) assumption is that the OZI-allowed
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DD mode dominates the ¥ decay; this fixes the A(\Il” — DD) amplitude by the relation
(V" — DD) ~Tkp.

The partial width F(\I/” — pp) is presently unknown; we thus have to make use of
available theoretical predictions [1]-[5]. They are quite contradictory: while Refs. [2] and [3]
predict the value of I'(U" — pp) to be in the range of 3—8 eV, and [1] — the value of ~ 40 eV,
Ref.[4] claims a value as high as 500 £ 150 eV. Keeping in mind the controversial character
of these theoretical predictions, we shall use a rather conservative value of >~ 7 eV, arising
from the appropriate scaling of the J/¥ and ¥ partial decay widths to the pp channel [2],
[3]. The corresponding resonant part of the pp — DD cross section at the peak (without

taking into account any of the interference effects) can therefore be estimated as

127 F(\IJ — pﬁ)

res({ — DD ~
o (pp =~ DD) ML —4m?  Tg

~ 0.5 nb (5)

The last ingredient that has to be fixed is the value of the A.pD coupling constant. To
the best of our knowledge, it has not been evaluated previously. Our first SU(4)-motivated

guess for it is
2 2
9IrepD  IApK
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where the last value is taken from Martin’s analysis [18] of kaon—nucleon scattering data using

~13.9 + 2.6, (6)

the forward dispersion relation techniques. The values extracted by other authors from
the analyses of kaon—nucleon scattering [19], kaon photoproduction [20], hyperon-nucleon
potential [21], and the pp — AA reaction [22] are consistent with this result.

The evaluation of the amplitude (3) is more conveniently performed in the helicity basis.
The two helicity amplitudes corresponding to the values of the total helicity A = X, — A;
equal to A = 0 and A = 1, respectively, are

c 2

tg p
Tfl =TT <AE + ¢ cos 9) ; (7a)
-2
g -F
1 = 0 (e o) (7)

where p and E = \/p? + m? are the momentum and energy of the (anti-) proton in the c.m.s.,
and 6 is the angle between the directions of the incoming antiproton and outcoming D~ or
D meson.

The machinery of the evaluation of the amplitudes (7) is standard [17], and includes the

decomposition of the helicity amplitudes into the components with definite total momentum.



It is further convenient to expand the denominator

(S B
(t—M?)  2pgz—cosf’
where -
p= — | (M? —m? = M2+ 2
pq L2 4

(Mp is the D-meson mass, and s is the c.m.s. energy squared), using the Heine formula

(z —cosf)~ Z (2m 4+ 1) P (cos 0)Qn(2),
m=0

with P,, being the Legendre polynomials and (),, the Legendre functions of the second kind.

We now have to correct for the initial-state interaction. The S matrix elements of the
pp scattering that enter formula (4) are parametrized [15], [16] in the {LS.J} basis, where
L and S refer to the orbital momentum and total spin in the pp system. To implement
the initial-state interaction one has therefore to make the transformation of the partial-wave

helicity amplitudes into {L.SJ} ones, which can be done easily:

Ty = ‘/2J — (VIT], +VT+11]_); (8a)
Ty ;0 = ,/2{]+1 (—VT+1T!, +ViT]). (8b)

The parity conservation allows only the transitions (J = L+1,5 =1) — (I = J), where [ is

the orbital momentum in the DD system.

Adding the s—channel resonant amplitude (1) to the t—channel one, we find ourselves
in a position to calculate the cross section 2. The use of the SU(4)-motivated value (6) for
the A.pD coupling constant leads to the t—channel contribution which is three orders of
magnitude larger than that of the s—channel U" resonance, thus leading to a result that is
in strong contradiction with the semi-local duality. We do expect however that due to the
large difference in the masses of charmed and strange quarks the SU(4) is severely broken,
and the value (6) is largely overestimated.

To perform an estimate of the cross section, we can however proceed in a different way,

choosing the magnitude of the A.pD coupling so that the energy-averaged contributions of

2Summing the s— and t—channel amplitudes seems to contradict the idea of duality and could lead to
double counting in computing the total reaction cross section. Nevertheless, it is clear that an interference

between these amplitudes should manifest itself in the differential cross section in the vicinity of a resonance.



the s— and t—channel amplitudes become equal, according to the semi-local duality [8], [9].

The resulting value is about

912x D
22ePZ ~ 0.5 9
2D 05, (9)

which is some 30 times less than the SU(4) motivated value (6). A very interesting interfer-
ence pattern then appears in the differential cross section.

As a typical example of our results we show in Fig. 1 the differential cross section of the
pp — DD reaction at v/s = 3.79 GeV, i.e. 20 MeV above the ¥"(3.77) mass. One can clearly
see how the cos @ distribution of the D mesons arising from the decay of the ¥" resonance
is distorted by the asymmetric t—channel-exchange amplitude. The magnitude of the cross
section that we find is of the same order as found by [25] and [26] in a different framework.

The appearance of the interference pattern is extremely sensitive to the relative strength
of the pp¥” and A,ND couplings; its very existence requires these couplings to be of the
same order of magnitude, in agreement with the semi-local duality.

To summarize: we have calculated the differential cross section of the pp — DD reaction
close to its threshold. We have found an interesting structure in the angular distributions of
D mesons, arising from the interference between the resonant s—channel and non-resonant
t—channel amplitudes. The very appearance of this interference pattern requires, however,
the strength of the two amplitudes to be approximately the same, as is required by semi-
local duality. Moreover, we find that the shape of the angular distributions and the value
of the total cross section altogether allow one to determine the pp¥” and A,ND couplings
unknown at present. The latter are important to know since they are possibly driven by
the non-perturbative effects sensitive to the heavy-flavour contents of baryons and/or to the
light quark—antiquark component of the ¥",

An additional interest in the production of charmed mesons in NN annihilation not far
from the threshold arises from the possible existence [27] of the exotic diquark—antidiquark
resonances with hidden charm, which would manifest themselves as additional s—channel
resonances.

We therefore consider the experimental measurement of the pp — DD reaction as very

desirable.
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