002675880 001__ 2675880
002675880 003__ SzGeCERN
002675880 005__ 20190916123754.0
002675880 0247_ $$2DOI$$9AIP$$a10.1063/1.5053375
002675880 0248_ $$aoai:inspirehep.net:1695476$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002675880 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1695476$$d2019-05-21T17:31:35Z$$h2019-05-22T07:02:15Z$$mmarcxml
002675880 035__ $$9Inspire$$a1695476
002675880 041__ $$aeng
002675880 100__ $$aAbe, [email protected]$$uKeio U.
002675880 245__ $$9AIP$$aAnalysis of H− extraction in the Linac4 negative ion source by 2.5D particle simulation
002675880 260__ $$c2018
002675880 300__ $$a3 p
002675880 520__ $$9AIP$$aThe purpose of this study is to investigate the extraction mechanisms of the H− ions in the Linac4 negative ion source by using an improved two-dimensional in real space and three-dimensional in velocity space Particle in Cell (2D3V-PIC) model. In this model, the following collision processes of the surface produced H− (Hsp−) ions have been introduced and the effects of the collisions on H− extraction have been analyzed: elastic (Hsp− - H2) and charge exchange (Hsp− - H). It is shown that the extracted Hsp− current increases due to the flow reversal of the Hsp ions caused by these collisions.
002675880 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002675880 690C_ $$aCERN
002675880 693__ $$aCERN LINAC4
002675880 700__ $$aNishioka, S$$uKeio U.
002675880 700__ $$aMattei, S$$uCERN
002675880 700__ $$aMiyamoto, K$$uNaruto U. of Education
002675880 700__ $$aHatayama, A$$uKeio U.
002675880 700__ $$aLettry, J$$uCERN
002675880 773__ $$c080020$$n1$$pAIP Conf. Proc.$$v2011$$wC17-10-15.2$$y2018
002675880 960__ $$a13
002675880 962__ $$b2238879$$k080020$$ngeneva20171015
002675880 980__ $$aARTICLE
002675880 980__ $$aConferencePaper
002675880 999C5 $$9refextract$$adoi:10.1063/1.4916432$$hJ. Lettry, et al.$$mNIBS-2014$$o1$$sAIP Conf.Proc.,1655,030005$$x1. J. Lettry, et al., NIBS-2014, AIP Conf. Proc. 1655, 030005 (2015). , DOI: 10.1063/1.4916432,$$y2015
002675880 999C5 $$9refextract$$adoi:10.1063/1.4936120$$hJ. Lettry, et al.$$mICIS-$$m139 (2016)$$o2$$sRev.Sci.Instrum.,87,02$$x2. J. Lettry, et al., ICIS-2015, Rev. Sci. Instrum, 87, 02B139 (2016). , DOI: 10.1063/1.4936120, ,$$y2015
002675880 999C5 $$9refextract$$adoi:10.1063/1.4995722$$hJ. Lettry, et al.$$mNIBS-2016$$o3$$sAIP Conf.Proc.,1869,030002$$x3. J. Lettry, et al., NIBS-2016, AIP Conf. Proc. 1869, 030002 (2017). , DOI: 10.1063/1.4995722,$$y2017
002675880 999C5 $$9refextract$$adoi:10.1063/1.4792767$$hS. Mochalskyy, et al.$$mNIBS-2012$$o4$$sAIP Conf.Proc.,1515,31$$x4. S. Mochalskyy, et al., NIBS-2012, AIP Conf. Proc. 1515, 31 (2013). , DOI: 10.1063/1.4792767,$$y2013
002675880 999C5 $$9refextract$$adoi:10.1063/1.3530454$$hS. Kuppel, D. Matsushita, A. Hatayama, and M. Bacal$$o5$$sJ.Appl.Phys.,109,013305$$x5. S. Kuppel, D. Matsushita, A. Hatayama, and M. Bacal, J. Appl. Phys. 109, 013305 (2011). , DOI: 10.1063/1.3530454, ,$$y2011
002675880 999C5 $$9refextract$$adoi:10.1063/1.4788725$$hK. Miyamoto, et al.$$o6$$sAppl.Phys.Lett.,102,023512$$x6. K. Miyamoto, et al., Appl. Phys. Lett. 102, 023512 (2013). , DOI: 10.1063/1.4788725, ,$$y2013
002675880 999C5 $$9refextract$$adoi:10.1063/1.4934206$$hI. Goto, et al.$$m918 (2016)$$mICIS-$$o7$$sRev.Sci.Instrum.,87,02$$x7. I. Goto, et al., ICIS-2015, Rev. Sci. Instrum. 87, 02B918 (2016). , DOI: 10.1063/1.4934206, ,$$y2015
002675880 999C5 $$9refextract$$9CURATOR$$adoi:10.1109/TPS.2008.927291$$hM. Cavenago, et al.$$mTrans. Plasma$$o8$$sIEEE Trans.Plasma Sci.,36,1581$$x8. M. Cavenago, et al., IEEE Trans. Plasma Science, 36, 1581 (2008). , DOI: 10.1109/TPS.2008.927291,$$y2008
002675880 999C5 $$9refextract$$adoi:10.1063/1.4939467$$hS. Nishioka, et al.$$o9$$sJ.Appl.Phys.,119,023302$$x9. S. Nishioka, et al., J. Appl. Phys. 119, 023302 (2016). , DOI: 10.1063/1.4939467, ,$$y2016
002675880 999C5 $$9refextract$$hS. Mattei$$m(private communication,)$$o10$$x10. S. Mattei (private communication, 2017).$$y2017
002675880 999C5 $$9refextract$$adoi:10.1088/1367-2630/18/8/085011$$hS. Mochalskyy, J. Lettry, and T. Minea$$o11$$sNew J.Phys.,18,085011$$x11. S. Mochalskyy, J. Lettry, and T. Minea, New J. Phys. 18, 085011 (2016). , DOI: 10.1088/1367-2630/18/8/085011,$$y2016
002675880 999C5 $$9refextract$$hK. Nanbu, S. Igarashi, and Y. Watanabe$$mProc. Soviet Union-Japan Symp. Comput. Fluid Dynamics, (Computing Center of the USSR Academy of Sciences,), Vol. 2, pp. 126-132$$o12$$x12. K. Nanbu, S. Igarashi, and Y. Watanabe, Proc. Soviet Union-Japan Symp. Comput. Fluid Dynamics, (Computing Center of the USSR Academy of Sciences, 1989), Vol. 2, pp. 126–132.$$y1989
002675880 999C5 $$9refextract$$mPublished by AIP Publishing$$xPublished by AIP Publishing.