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We derive a simple formula relating the cross section for light cluster production (defined via a co-
alescence factor) to the two-proton correlation function measured in heavy-ion collisions. The formula
generalises earlier coalescence-correlation relations found by Scheibl & Heinz and by Mrowczynski for
Gaussian source models. It motivates joint experimental analyses of Hanbury Brown-Twiss (HBT) and
cluster yield measurements in existing and future data sets.

I. INTRODUCTION

The Large Hadron Collider (LHC) made available a di-
verse data set of production cross sections of light nu-
clear clusters like deuterons (D), helions (3He) and tritons
(3H) [1, 2]. The LHC also brought progress in femtoscopy,
the study of the momentum-space correlations of particles
emitted in hadronic collisions1 [5–12]. These measurements
are a source of information on the state produced in heavy-
ion collisions [13–21]. A review of future prospects can be
found in [22].

In this paper we consider an interesting feature in the
data [23]: the anti-correlation between the source homoge-
niety volume, probed in femtoscopy, and the coalescence
factor of nuclear clusters. This correlation was predicted
two decades ago in a seminal work by Scheibl & Heinz [17].
For a cluster with mass number A and spin JA, observed
at vanishing transverse momentum pt = 0 in the collider
frame, it is summarised by the relation [20, 23]23:

BA
m2(A−1)

≈ 2JA + 1

2A
√
A

(
mR√

2π

)3(1−A)

. (1)

Here, the coalescence factor is defined as BA =(
P 0
A
dNA

d3PA

)
/
(
p0 dN

d3p

)A
, where p0dN/d3p is the Lorentz-

invariant differential yield for constituent nucleons at p =
PA/A. The homogeniety volume is parametrised by the
HBT radius R [5–12]4. m ≈ 0.94 GeV is the nucleon mass.

Eq. (1) was predicted to apply in the limit that the size pa-
rameter dA of the cluster’s wave function can be neglected
compared to the source homogeniety radius: dA � R. For
small systems with R . dA, Eq. (1) receives a correction
via R2 → R2 + (dA/2)2. At finite pt, Ref. [17] suggested

that Eq. (1) should be modified by m→ mt =
√
m2 + p2

t .

∗Electronic address: kfir.blum@cern.ch
1 Also known as Hanbury Brown-Twiss (HBT) [3, 4] analyses.
2 See also [16].
3 See, e.g. [24–26] for the appearance of a similar formula within a

thermodynamic model.
4 More practical details about the definition of R are given in Sec. IV.

A comparison of Eq. (1) to LHC data was presented in
Ref. [23], which used it to extrapolate measurements in Pb-
Pb collisions into a prediction of the coalescence factor of
D, 3He and 3H in p-p collisions. This extrapolation is non-
trivial. The HBT radius characterising Pb-Pb collisions is
R ∼ 4 fm, compared to R ∼ 1 fm measured in p-p colli-
sions. Thus, Eq. (1) predicts a large increase in BA going

from Pb-Pb to p-p: Bp−p
3 /BPb−Pb

3 ∼ 4× 103. Subsequent
ALICE measurements [2] in p-p collisions were consistent
with this prediction: Eq. (1) appears to work, at least to
O(1) accuracy, over orders of magnitude in BA. The ques-
tion we ask (and answer) in this study is, why does it work?

To substantiate this question, note that Ref. [17] derived
Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).

Given this procedure, it is natural to question the theo-
retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
at pt > 0; at intermediate centrality; and so on?

The outline of our analysis and main results is as follows.
In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.

In Sec. III we show that adopting the same assumptions
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our formalism reproduces Eq. (1) as found in [17]5. The up
shot is that our work makes Eq. (1) a generic prediction.
If, above, we argued that the model dependence in [17]
makes it a surprise that Eq. (1) successfully describes sys-
tems from Pb-Pb to p-p, then in light of the discussion in
Sec. II it becomes nontrivial to imagine a system for which
Eq. (1) would fail. The down side is that Eq. (1) is es-
sentially a kinematical relation and can teach us relatively
little about the dynamics of the state produced in heavy-ion
collisions. Our analysis bears a connection to (being a less
sophisticated version of) Ref. [18], which showed that the
number of pion pairs produced in Coulomb bound states
is related to the number of free pion pairs at small rela-
tive momentum. Our work is also close in spirit to work by
Mrowczynski [14, 29–33].

In Sec. IV we consider complications including final-state
interactions and source chaoticity (Sec. IV A). We do not
address these complications in detail, but show how exper-
imental analyses that take these issues into account can be
used to test the coalescence-correlation relation at the cost
of some model-dependence. In Sec. IV B we generalise our
results to A ≥ 2, postponing some details to App. B. In
Sec. IV C we compare our theoretical results to data. In
Sec. IV D we recap the results of Ref. [23], comparing the
coalescence-correlation relation with data across systems.
While our results are consistent with available measure-
ments, the uncertainties are large. Existing experimental
analyses were not geared for a direct comparison of fem-
toscopy and cluster yields. This lack motivates dedicated
experimental work.

We conclude in Sec. V.

II. QM CONSIDERATIONS

Hadronic collisions produce a high-excitation state
(HXS), characterised by a density matrix ρ̂HX. QM allows
to calculate the probability density to find a certain non-
relativistic state in the HXS by projecting that state onto
ρ̂HX. In this section we use the QM formalism to derive
a relation between D and two-particle spectra. We then
convert to Lorentz-invariant quantities.

We emphasise that the QM formulation we use is far
from new. It had been utilised in different guises in many
early studies including (as a partial list) Refs. [13, 14, 16,
17, 19, 28, 32–35]. Our discussion in Secs. II A and II B is
merely intended to review the derivation of D and particle
pair formation, respectively, in the HXS, recalling that the
two phenomenae stem from building blocks that are closely
related on general grounds. Our next step, in Sec. II C, is to
explicitly combine the expressions into a direct relation be-

5 Apart from the fact that the natural definition we find for R is in
the so-called pair rest frame, compared to the longitudinal frame
adopted in [17], and apart from the replacement m → mt. Please
see Sec. III for details.

tween coalescence and pair spectra, summarised in Eq. (24).
This result, as far as we know, is new to the current work.

A. Deuteron formation

A D at lab-frame momentum Pd is a two-particle
(neutron-proton) bound state |ψPd

〉 with wave function

ψPd
(x1, x2) = ei

~Pd
~Xφd(~r), (2)

where

~X = (~x1 + ~x2)/2, ~r = ~x1 − ~x2 (3)

and
∫
d3r|φd(~r)|2 = 1. The probability density of D in the

HXS is [13]

dNd
d3Pd

= (2π)−3〈ψPd
|ρ̂HX|ψPd

〉 (4)

=
Gd

(2π)3

∫
d3x1

∫
d3x2

∫
d3x′1

∫
d3x′2

ψ∗Pd
(x′1, x

′
2)ψPd

(x1, x2) ρ2 (x′1, x
′
2;x1, x2; tf ) ,

where ρ2 (x′1, x
′
2;x1, x2; tf ) is the two-particle reduced HXS

density matrix. Gd is a dimensionless normalisation factor.
In this section, for simplicity, we assume the existence of a
well-defined freeze-out time tf and consider the HXS density
matrix as being specified at the moment tf . We emphasise
that this simplification is not essential for the derivation,
and our main result [Eq. (24) below] holds also if we allow a
finite-duration freeze-out window. An alternative derivation
that makes this point manifest is given in App. A.

It is commonly assumed that the HXS density matrix can
be factorised into 1-particle density matrices,

ρ2 (x′1, x
′
2;x1, x2; t) = ρ1 (x′1, x1; t) ρ1 (x′2, x2; t) , (5)

that can in turn be described in terms of Wigner densities
fW1 ,

ρ1(x, x′; t) =

∫
d3k

(2π)3
ei
~k(~x′−~x)fW1

(
~k,
~x+ ~x′

2
; t

)
.(6)

Inserting Eqs. (5) and (6) into Eq. (4) we obtain

dNd
d3Pd

=
Gd

(2π)3

∫
d3R

∫
d3q

(2π)3

∫
d3rDd (~q, ~r) × (7)

fW1

(
~Pd
2

+ ~q, ~R+
~r

2
; tf

)
fW1

(
~Pd
2
− ~q, ~R− ~r

2
; tf

)
,

where Dd is the Wigner density of the D,

Dd (~q, ~r) =

∫
d3ζ e−i~q

~ζ φd

(
~r +

~ζ

2

)
φ∗d

(
~r −

~ζ

2

)
.(8)

In terms of the original variables of Eq. (4), ~R = (~x1 +~x′1 +
~x2 + ~x′2)/4 is the classical centre of mass coordinate of the
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two-nucleon system and ~r = (~x1 + ~x′1)/2− (~x2 + ~x′2)/2 is
the classical relative coordinate between the nucleons.

It can be shown that neglecting ±~q inside of the fW1
functions in Eq. (7) is a reasonable approximation, valid
to ∼ 10% accuracy for Pb-Pb collisions [17]. With this
approximation we can perform the q integration which gives∫
d3qDd (~q, ~r) = (2π)3|φd(~r)|2. Defining

|φd (~r)|2 =

∫
d3k

(2π)3
ei
~k~r D

(
~k
)

(9)

we obtain

dNd
d3Pd

≈ Gd
(2π)6

∫
d3qD (~q)

∫
d3R

∫
d3r ei~q~r × (10)

fW1

(
~Pd
2
, ~R+

~r

2
; tf

)
fW1

(
~Pd
2
, ~R− ~r

2
; tf

)
.

Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d3Pd. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
different emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state |ψsp1,p2〉 describing two free propagating
protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of |ψsp1,p2〉 is an antisymmetric function of the particle co-
ordinates,

ψsp1,p2(x1, x2) =
1√
2
e2i ~P ~X

(
ei~q~r/2 − e−i~q~r/2

)
,

(11)

where the average pair momentum and the momentum dif-
ference are defined as

~P = (~p1 + ~p2) /2, ~q = ~p1 − ~p2. (12)

The probability density associated with |ψsp1,p2〉 can be cal-
culated as [34, 35]

dNs

d3p1d3p2
= (2π)−6〈ψsp1,p2 |ρ̂HX|ψsp1,p2〉 (13)

=
Gs2

(2π)6

∫
d3x1

∫
d3x2

∫
d3x′1

∫
d3x′2

ψs∗p1,p2(x′1, x
′
2)ψsp1,p2(x1, x2) ρ2 (x′1, x

′
2;x1, x2; tf ) .

Assuming unpolarised isospin-invariant HXS, we use
the same ρ2 (x′1, x

′
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). Gs2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain

dNs

d3p1d3p2
= Gs2 (A2 (p1, p2)−F2 (P, q)) , (14)

F2 (P, q) =
1

(2π)6

∫
d3R

∫
d3r ei~q~r ×

fW1

(
~P , ~R+

~r

2
; tf

)
fW1

(
~P , ~R− ~r

2
; tf

)
,

A2 (p1, p2) =
1

(2π)6

∫
d3xfW1 (~p1, ~x; tf )

∫
d3xfW1 (~p2, ~x; tf ) .

We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.

We can repeat the same steps above for the spin anti-
symmetric state |ψap1,p2〉, for which the wave function is an
symmetric function of the particle coordinates. We find

dNa

d3p1d3p2
= Ga2 (A2 (p1, p2) + F2 (P, q)) , (15)

with Ga2 = Gs2/3.

C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per differential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
γd dNd/d

3Pd and γ1γ2 dN
s,a/d3p1d

3p2. Subtleties arise in
the computation of the RHS because for a relativistically ex-
panding HXS, different parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time tf we expect a freeze-out

surface tf = tf (~R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a differential

coalescence-correlation relation

d

d3R

(
dNd
d3Pd

)
≈ Gd

d

d3R

∫
d3qD(~q)F2

(
~Pd
2
, ~q

)
.

(16)

The differential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have

d

d3R

(
dNd
d3Pd

)
=

Gd
(2π)3

fW1

(
~Pd
2
, ~R; tf

)
×

∫
d3r |φd(~r)|2 fW1

(
~Pd
2
, ~R− ~r; tf

)
.

(17)

It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function fd. This was



4

done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement γd

∫
d3Rfd →

(1/2m)
∫ [
d3σµP

µ
d

]
fd, where d3σµ is the volume element

perpendicular to the HXS relativistic freeze-out surface.
While Ref. [17] (which focused on D formation) arrived at

this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass

coordinate ~R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need

to specify the details of the freeze-out surface tf (~R) because
Eq. (16) relates the pair emissivity and the D emissivity per
differential volume element d3R in the HXS. Having noted
this point, we can drop the differential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor

B2(p) =
P 0
d
dNd

d3Pd(
p0 dN

d3p

)2 , (18)

with p = Pd/2 and where p0 dN
d3p is the unpolarised proton

yield. The two-particle correlation function is constructed
as

C2(P, q) =
p0

1 p
0
2

dN
d3p1d3p2(

p0
1
dN
d3p1

)(
p0

2
dN
d3p2

) . (19)

The numerator on the RHS of Eq. (19) sums together the
different spin states of the proton pair. In the denominator,
the unpolarised differential yields at p1 and p2 are obtained
by scrambling between proton pairs from different events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1− Gs2 −Ga2
Gs2 +Ga2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| � m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that

B2(p) =
Gd

Gs2 +Ga2

2m

m2A2

∫
d3qD(~q)F2(~p, ~q). (22)

Assuming unpolarised isospin-symmetric HXS [36] we have

Gd
Gs2 +Ga2

=
3

3 + 1
. (23)

Using these conventions and noting that γ1 ≈ γ2 ≈ γd for
small |~q| � m, we are finally led to the result:

B2(p) ≈ 3

2m

∫
d3qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 � m2, but that is not a real concern because both C2
and D cut-off at |~q| ∼ 0.1m.

We comment that the coalescence factor B2(p) is defined
for on-shell D with P 2

d = 4p2 ≈ (2m)2. Thus, there will
actually be no on-shell proton pairs that satisfy p2

1 = p2
2 =

m2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q2/m2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p0 of Eq. (18), while

at the same time enforcing ~P = ~Pd/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,

φd(~r) =
e−

~r2

2d2

(πd2)
3
4

(25)

with d = 3.2 fm. This leads to

D(~k) = e−
~k2d2

4 . (26)

For the HBT analysis, Ref. [17] used the parameters R⊥
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e−R

2
⊥~q

2
⊥−R

2
||~q

2
l , (GSM) (27)

where ~ql is the component of ~q parallel to the beam axis
and ~q⊥ spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6

B2 =
3π

3
2

2m
(
R2
⊥ +

(
d
2

)2)√
R2
|| +

(
d
2

)2 , (GSM).

(28)

6 See also [16, 37].
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This reproduces Eq. (1) and the main result of [17] (see
Eqs. (6.3) and (4.12) there), up to the replacement m →
mt =

√
m2 + ~p2

t . Please note that we have defined R⊥
and R|| in the PRF, while [17] defined these parameters in
the YKP frame [28, 38–40] which is offset by a transverse
boost compared to the PRF.

Mrowczynski discussed the connection between coales-
cence and two-particle correlations in a series of papers [14,
29–33]. This program resulted in a QM sum rule of the
neutron-proton correlation function, that was proposed to
give the D coalescence factor as a q-integral on the cor-
relation function [33]. The power of this idea was in that
there was no need to correct the measured correlation func-
tion for long- or short-range final state interactions: the
sum rule should apply directly to the observable correlation.
In practice, this suggestion fails, apparently because the q-
integral proposed in [33] receives contributions from large-q
regions in the integration.

In comparison to the sum rule of [32, 33], Eq. (24) is
less ambitious. The correlation function entering Eq. (24)
does need to be corrected for final state interactions, be-
cause it assumes a kinetic picture where an HXS density
matrix can be defined and projected into propagating par-
ticles. Eq. (24) also invokes assumptions such as isospin
symmetry and smoothness for the HXS freezeout surface.
In return, however, the RHS of Eq. (24) receives no contri-
butions from large-q modes because D(~q) in the integrand
constrains the support to the small q region, |~q| . 0.1m.

A QM derivation of the coalescence factor using a spe-
cific one-dimensional Gaussian source model was given in
Ref. [19]. This derivation agrees with Eq. (28) up to the
replacement m→ p0 = mγd.

IV. REAL-LIFE COMPLICATIONS, A > 2 CLUSTERS,
AND COMPARING TO DATA

Eq. (24) is idealistic. In practice we cannot pull out a di-
rectly measured correlation function C2, plug into Eq. (24)
and calculate B2. Two main complications, preventing di-
rect implementation of Eq. (24), are: (i) Long-lived reso-
nances, decaying outside of the freeze-out surface of the
HXS, distort the correlations. (ii) Long-range Coulomb and
short-range strong nuclear FSI cause the two-particle wave
function to differ from the plane-wave form. For proton
pairs, FSI actually dominate the correlation function, mean-
ing that the QM statistics contribution must be extracted
indirectly as a sub-leading contribution to the actual observ-
able C2. To make things more difficult, different spin states
exhibit different short-range FSI.

We will not address the complications above in detail
in this paper, deferring such refinements to future work.
Instead, we build on femtoscopy data analyses that explicitly
treat items (i-ii). The price we pay is to introduce model-
dependence, that enters via an assumed simple analytic form
for the correlation function. Our procedure and results are
explained in the next sections.

A. The chaoticity parameter λ

The GSM assumed in [17, 19, 28] predicts not only
the shape, but also the normalisation of C2: it predicts
CPRF

2 (~q → 0) = 1. In reality, measurements show
CPRF

2 (~q → 0)→ λ < 1, where λ is known as the chaoticity
(or intercept) parameter [41, 42]. In HBT analyses of pions,
λ < 1 follows from the fact that a sizeable fraction of the
pions come from the decay of long-lived resonances, leading
to a non-Gaussian contribution to C2 that is concentrated
at very small |~q| and cannot be resolved experimentally [41].
In HBT analyses of proton pairs, hyperons are the resonant
contamination [11, 43, 44]. Since strong FSI between pΛ
and pp are crucial in shaping the pΛ and pp correlation
functions, studies [9, 11, 43, 44] separate the pΛ→ pp and
genuine pp contributions entering the observed pp correla-
tion into different terms, that are fit in a combined analysis.
In [9, 11], separate chaoticity parameters λpp, λpΛ were as-
signed to the genuine pp pairs and the pairs coming from
pΛ → pp. The value of λ defined in this way could reflect
intrinsic departures of the source functions from Gaussianity.

In Ref. [28] (and many other analyses in the literature),
λ was introduced as a free parameter. Thus, it did not
enter into the coalescence-HBT correspondence of Ref. [17].
However, Eq. (24) shows that B2 is directly proportional to a
q-moment of CPRF

2 . If we adopt the Gaussian form together
with the λ modification as an empirical description of C2,

CPRF
2 = λ e−R

2
⊥~q

2
⊥−R||~q

2
l , (GSM, chaoticity λ)

(29)

then B2 should match Eq. (28) simply multiplied by the
experimentally deduced value of λ:

B2 =
3π

3
2λ

2m
(
R2
⊥ +

(
d
2

)2)√
R2
|| +

(
d
2

)2 , (GSM, chaoticity λ).

(30)

B. A ≥ 2

Eq. (24) can be generalised to clusters with A ≥ 2. As-
suming an (A − 1)-dimensional symmetric Gaussian form
for the cluster’s relative coordinate wave function, and as-
suming that the A-particle correlation function can be de-
composed as a product of 2-particle Gaussian correlators
described by the same HBT radii R⊥ and R|| and chaotic-
ity λ, then the analogue of Eq. (30) is:

BA
m2(A−1)

= λ
A
2

2JA + 1

2A
√
A
× (2π)

3
2

m3
(
R2
⊥ +

(
dA
2

)2)√
R2
|| +

(
dA
2

)2

A−1

.

(31)
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The definition of the cluster wave function and its size pa-
rameter dA, used in Eq. (31), are given in App. B.

C. Comparing to data

Experimental collaborations often report the results of
HBT analyses in terms of empirical fit parameters R and
λ [5–12], assuming Eq. (29) and accounting explicitly for
the spin symmetry of the pair wave function and for the
distortion due to FSI [18, 34, 45]. To compare our theoreti-
cal results to data, we will therefore use Eqs. (30) and (31).
We further take the extra simplification of a 1-dimensional
HBT parametrisation with R⊥ = R|| = R.

Pion, kaon, and proton femtoscopy results in Pb-Pb col-
lisions were reported in [9, 11]. Results for proton and kaon
femtoscopy in p-p collisions were given in [12] and [6], re-
spectively. The kaon results are of potential use because
Ref. [9] showed compatible results for the parameters R
and λ obtained in proton and kaon correlations at the same
mt. Using these HBT analyses we can calculate the RHS
of Eqs. (30) and (31), and compare to experimental data
on the production of light nuclei [1, 2].

1. Pb-Pb collisions

The top two panels in Fig. 1 summarise experimental
results for R and λ in central (0-10%) Pb-Pb collisions at√
s = 2.76 TeV [9]7. The bottom two panels show R and

λ obtained in intermediate centrality (30-50%) data. For
R, we show the average values found for pp and p̄p̄ pairs.
The uncertainties are mostly systematic, and the width of
the band neglects the statistical uncertainty. For λ, we
show the sum λpp+λpΛ, take the average of the systematic
uncertainty, and average the result between particles and
anti-particles8.

Plugging these values of R, λ into the RHS of Eq. (30),
we obtain a prediction for B2. The result for (0-10%) cen-
trality events is shown by the blue shaded band in the top-
most panel of Fig. 2. The uncertainty of the theory pre-
diction was obtained by using the lower value for λ and the
upper value for R to calculate the lower value of the pre-
dicted B2, and vice-verse. An experimental measurement
of B2 [1] is shown in the same plot as a grey band. We
can also compare the data with the theoretical prediction
of Ref. [17]; this is done in the second from top panel of
Fig. 2. In the bottom two panels of Fig. 2 we repeat the

7 Useful details can be found in Tables 7.4-7.9 in [11].
8 The reason to use the sum of λpp+λpΛ, and not just λpp, is that we

are interested to use Eq. (30) which assumes the same single-particle
spectrum normalisation in the definition of C2 and B2. However, the
single-particle spectrum entering the denominator of B2 in the ex-
perimental analysis includes only the prompt contribution, while the
denominator in the C2 experimental analysis with pp and pΛ terms
explicitly separated includes both prompt and secondary protons.

analysis using the intermediate centrality (30-50%) HBT
parameters, compared to B2 data corresponding to events
at (20-40%) and (40-60%) centrality events9.

In Fig. 3 we consider experimental results for B3 [1] from
centrality classes (0-20%) and (20-80%), shown in the top
two and bottom two panels, respectively.

2. p-p collisions

Ref. [12] reported R ≈ 1.14+0.07
−0.02 fm (comparable statis-

tic and systematic uncertainties were added in quadrature)
in a combined analysis of pp, pΛ, and other hyperon corre-
lation data from

√
s = 7 TeV p-p collisions at pair average

momentum corresponding to mt = (1.2 − 1.6) GeV. The
analysis in this work effectively assumed λ = 1. However, in
an analysis that allowed λ to vary as a free parameter, kaon
correlations were found to give λ ∼ 0.5 at mt = 1.4 GeV,
along with R ≈ 0.8±0.3 fm [6]. This is of potential interest
because Ref. [9] demonstrated HBT parameters that were
the same, within measurement uncertainties, for kaon and
proton final states at the same mt.

Using R ≈ 1.14+0.07
−0.02 fm as found in the pp analysis [12],

Eqs. (30) predicts B2 = 10−2 × (0.8− 0.9)× λ GeV2. Us-
ing, instead, R ≈ 0.8 ± 0.3 fm as found from kaon corre-
lations [6], Eq. (30) predicts B2 = 10−2 × (0.9− 1.4) ×
λ GeV2. These predictions can be compared to light clus-
ter data from Ref. [2], which found the experimental result
Bexp

2 ≈ 10−2 × (1.6− 2.2) GeV2 at mt ≈ 1.4 GeV.
Using R ≈ 1.14+0.07

−0.02 fm [12], Eq. (31) predicts B3 =

10−4 × (2.1− 2.8) × λ 3
2 GeV4. For R ≈ 0.8 ± 0.3 fm [6],

Eq. (31) predicts B3 = 10−4 × (3.1− 23)× λ 3
2 GeV4. The

experimental result [2] is Bexp
3 ≈ 10−4 × (1 − 3) GeV4 at

mt ≈ (1.1− 1.4) GeV.

D. Discussion: BA vs. R, coalescence across systems

Measurement uncertainties on the HBT R and λ parame-
ters lead to large uncertainties on our theoretical prediction
of B2 and B3, derived from Eqs. (30-31). Part of this uncer-
tainty is due to our crude treatment of the data. For exam-
ple, our uncertainty estimate on B2 and B3 in the left pan-
els of Figs. 2-3 added together the effects of the systematic
measurement uncertainties on R and λ. As a result, while
Eqs. (30-31) are consistent with the data, there is much
room to improve the analysis. The coalescence-correlation
correspondence motivates an experimental re-assessment of
the data presented in Refs. [6, 9, 12] and [1, 2], aiming at
a joint analysis of HBT and cluster yields in events sharing
the same pt and centrality classes.

9 Note that the analysis of Ref. [17] was restricted to radially sym-
metric HXS in the plane transverse to the beam axis. It should not,
in principle, be valid for intermediate centrality.
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FIG. 1: Experimental fit results for the 1-dimensional HBT radius
R and λ parameters, extracted from correlations of pp, pΛ, and
their anti-particles in central (0-10%; panels (a) and (b)) and
intermediate centrality (30-50%; panels (c) and (d)) Pb-Pb
collisions at

√
s = 2.76 TeV [9, 11].

ALICE (0-10%)

This work, Eq.(30)

(a)
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ALICE (0-10%)

Scheibl & Heinz 1998

(b)

1.25 1.5 1.75 2 2.25
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0.0001

0.001

B2 [GeV
2]

ALICE (20-40%)

ALICE (40-60%)
This work, Eq.(30)

(c)

1.25 1.5 1.75 2 2.25
mt [GeV]

0.0003

0.001

0.003

B2 [GeV
2]

ALICE (20-40%)

ALICE (40-60%)Scheibl & Heinz 1998

(d)
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mt [GeV]
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0.001

0.003

B2 [GeV
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FIG. 2: Panels (a) and (b): experimental results for B2 from
central (0-10%) PbPb collisions at

√
s = 2.76 TeV [1], shown by

grey band, compared to Eq. (30) derived here (blue band) and
to the prediction of Ref. [17] (orange band). The coalescence
calculation uses the experimentally extracted HBT R and λ pa-
rameters shown in Fig. 1. Panels (c) and (d): experimental
values of B2 from two intermediate centrality classes, (20-40%)
and (40-60%), and the theoretical prediction calculated using
HBT data from events at (30-50%).
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ALICE (0-20%)This work, Eq.(31)
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(b)
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ALICE (20-80%)

This work, Eq.(31)

(c)
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mt [GeV]
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Scheibl & Heinz 1998
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FIG. 3: Panels (a) and (b): Experimental results for B3 from
central (0-20%) PbPb collisions at

√
s = 2.76 TeV [1], shown by

grey band, compared to Eq. (31) derived here (blue band) and to
the prediction of Ref. [17] (orange band). Panels (c) and (d):
experimental values of B3 from the centrality class (20-80%),
and the theoretical prediction calculated using HBT data from
events at (30-50%).

Before we conclude, in Fig. 4 we take a broader look
at the data-theory comparison by considering the BA − R
(anti-)correlation across different systems [23]. In Fig. 4,
the grey shaded band shows the theoretical prediction for
B2 (top) and B3 (bottom), calculated as function of R
using Eqs. (30-31). The calculation uses an estimate of the
experimentally measured value of λ. To define the upper
edge of the bands, we interpolate between λ = {1, 0.7, 0.7}
defined at R = {0.85, 2.5, 5}. To define the lower edge
we interpolate between λ = {0.5, 0.3, 0.3} defined at R =
{0.85, 2.5, 5}. This range of λ is roughly consistent with
the experimental results found in Ref. [6, 9, 12]. The red
horizontal bands in Fig. 4 show the (0-10%) (for B2) and
(0-20%) (for B3) coalescence factor measurements for Pb-
Pb. Each of the three red bands corresponds to a different
bin in mt, among the three bins shown in Ref. [9]. The blue
horizontal bands show the result for the (20-40%) (for B2)
and (20-80%) (for B3) events, respectively. The green band
shows the result for p-p collisions [2].

1 2 3 4 5
R [fm]0.0001

0.0003

0.001

0.003

0.01

B2 [GeV
2]

1 2 3 4 5
R [fm]10-8

10-7

10-6

10-5

10-4

10-3
B3 [GeV

4]

FIG. 4: Summary of data. Top: B2 vs. R. Bottom: B3 vs. R.

V. CONCLUSIONS

We considered the relation between nuclear cluster forma-
tion (defined via a coalescence factor BA) and two-particle
correlation measurements (known as femtoscopy or Hanbury
Brown-Twiss (HBT) analyses, with two-particle correlation
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function C2) in hadronic collisions. Scheibl & Heinz [17] de-
rived a theoretical result, Eq. (1), equating BA to inverse-
powers of the source homogeneity radius R measured in
HBT analyses. Eq. (1) is consistent with LHC data over
several orders of magnitude in BA, albeit with large uncer-
tainties [23]. Ref. [17] based their derivation of Eq. (1) on
a specific, simplified model of collective flow. This model
is unlikely to actually represent in detail the dynamics in
different systems ranging from Pb-Pb to p-p. The question
we addressed to ourselves was, therefore: why does Eq. (1)
work?

Using an idealised quantum mechanical (QM) framework,
we derived a direct integral relation between the coales-
cence factor and the two-particle correlation function. Our
main result is Eq. (24), which gives B2 as an integral of
C2 weighted by the D probability density. The derivation
does not require a detailed model of the particle emission
source. In particular, we need not invoke the assumptions
and approximations of [17]. If we specialise to the assump-
tions in [17], our formula essentially reproduces Eq. (1).
Importantly, Eq. (1) also obtains under more general cir-
cumstances if the two-particle correlation function can be
approximately described empirically by a Gaussian form, as
commonly used in experimental HBT studies.

While our theoretical results are consistent with currently
available measurements, the uncertainties are large. Exist-
ing experimental analyses were not geared for a direct com-
parison of femtoscopy and cluster yields. No HBT analysis
precisely overlaps, in terms of, e.g., pt and centrality bin-
ning, with cluster yield measurements. The recent study
in [20] (see also [46]) proposed to bypass this gap by re-
placing the HBT part in the coalescence-correlation com-
parison with multiplicity measurements that correlate with
the HBT scales. We suggest, instead, that the coalescence-
correlation relation offers a fundamental probe of the (gen-
erally defined) coalescence model, justifying dedicated ex-
perimental work aiming to test the relation directly.
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Appendix A: Coalescence from correlation functions:
kinetic theory

Here we give another derivation of Eq. (24). The starting
point of our analysis is equivalent to Eq. (3.12) of Ref. [17],
derived in Ref. [15].

We assume that the 2-particle source can be factorised as
a product of 1-particle source terms. The production rate
of deuterons (D) at momentum Pd, per four dimensional
volume in the source region parametrised by D formation
coordinates R, is given by

d

d4R

dNd
d3Pd

=
3 · 2

(2π)3

∫
d3r d3Q

(2π)3
Dd
(
~Q,~r
)

(A1)

f(R+;Q+) Γfree(R−;Q∗−),

where the factor 3 is due to the deuteron spin and the factor
2 is due to exchange of proton and neutron. Γfree indicates
the production rate of free nucleons. We have Q+ +Q∗− =
Pd, and we take Q∗− slightly off-shell to ensure momentum

conservation. For small ~Q, we can approximate

d

d4R

dNd
d3Pd

≈ 3 · 2
(2π)3

∫
d3r |φd(~r)|2 (A2)

f(R+;Pd/2) Γfree(R−;Pd/2).

It is convenient to consider the coalescence problem in
the D rest frame (DRF). In the DRF, we define the source
function S as

S(x) =
mΓfree(x)

(2π)3
, (A3)

such that the free nucleon distribution function is given by

f(y) =
(2π)3

m

∫ y0

−∞
dt S(t, ~y). (A4)

For small | ~Q|2 � m2, the constituent nuclei energies are
≈ m in the DRF, so the Lorentz invariant D yield is(
Ed

dNd
d3Pd

)DRF

≈ 2m

m2
3 · 2(2π)3

∫
d4R

1

2

∫
d4r |φd(~r)|2

S

(
R0 − t, ~R− ~r

2
;m

)
S

(
R0, ~R+

~r

2
;m

)
.

(A5)

Now, consider the two-point correlation function C2(P, q).
C2(q, P ) depends on frame and we take the pair centre of
mass frame (PRF). For clarity, we use the symbol CPRF

2

to define the two-point function in this frame. Under the
same source factorisation assumption we considered for the
coalescence problem, we have [28]

CPRF
2 (P, q) =

4
∫
d4R

∫
d4rS

(
R+ r

2 ;P
)
S
(
R− r

2 ;P
)
eiq·r(

E dN
d3P

)2 ,

(A6)

where the factor 4 comes from the spin combinations.
Comparing Eqs. (A5) and (A6), and using Eq. (9), we

reproduce Eq. (24).



10

Appendix B: Cluster wave function

We consider the cluster internal wave function to be a
symmetric Gaussian function of the normalised Jacobi co-

ordinates ~ξn, n = 1, ..., A− 1,

φA

(
~ξ1, ..., ~ξA−1

)
=

exp
(
−

∑A−1
i=1

~ξ2i
2d2A

)
A

3
4 (π d2

A)
3(A−1)

4

, (B1)

where [47]

~ξn =
n√

n2 + n

(
~rn+1 −

1

n

n∑
m=1

~rm

)
(B2)

and where ~rm, m = 1, ..., A are the Cartezian constituent
nucleon coordinates. The size parameter dA is related to
the cluster rms charge radius via [17, 20, 36]

r2
rms =

3(A− 1)

2A
d2
A. (B3)
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