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This paper reports on a search for electroweak diboson (WW/W Z/Z Z) production in associa-
tion with a high-mass dijet system, using data from proton–proton collisions at a center-of-mass
energy of

√
s = 13 TeV. The data, corresponding to an integrated luminosity of 35.5 fb−1,

were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider.
The search is performed in final states in which one boson decays leptonically, and the
other boson decays hadronically. The hadronically decaying W/Z boson is reconstructed as
either two small-radius jets or one large-radius jet using jet substructure techniques. The
electroweak production of WW/W Z/Z Z in association with two jets is measured with an
observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section
is measured to be 45.1 ± 8.6(stat.)+15.9

−14.6(syst.) fb.
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1 Introduction

Vector-boson scattering (VBS) is a key process for probing the non-Abelian gauge structure of the
electroweak (EW) sector of the Standard Model (SM), since it involves both the self-couplings of the vector
bosons and their coupling with the Higgs boson. In the absence of the SM Higgs boson, the amplitudes for
VBS would increase as a function of partonic center-of-mass energy and ultimately violate unitarity [1,
2]. The discovery of a Higgs boson in 2012 at the LHC [3, 4], with measured properties [5–8] consistent
with those of the SM Higgs boson, represents a major milestone in the understanding of electroweak
symmetry breaking. The study of the VBS process provides an important check of the SM by testing
whether the Higgs mechanism is the sole source of electroweak symmetry breaking. Theories of new
phenomena beyond the SM that alter the quartic gauge couplings [9, 10], or include the presence of
additional resonances [11, 12], predict enhancements of VBS at high transverse momentum of the vector
bosons and at high invariant mass of the diboson system.

The experimental signature of VBS is characterized by the presence of a pair of vector bosons and two
forward jets, VV j j (V = W, Z, γ), with a large separation in rapidity of jets and a large dijet invariant
mass. Multiple processes can produce the same final state of two bosons and two jets. The production of
VV j j at tree level has an EW contribution involving only electroweak-interaction vertices, and a strong
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contribution (QCD-induced) involving two strong-interaction vertices. The EW production is further
divided into two components. The first component is EW VBS production with actual scattering of the two
electroweak bosons. The scattering occurs via quartic gauge vertices, or triple gauge vertices involving
the s- or t-channel exchange of a Higgs boson or a W/Z boson. The second component is EW non-VBS
production that has electroweak vertices only, but where the two bosons do not scatter. The EW non-VBS
component cannot be separated from the EWVBS component in a gauge invariant way [13] and contributes
significantly to the total cross section. It is therefore included in the signal generation. Representative
Feynman diagrams at tree level are shown in Figure 1. Both the ATLAS and CMS Collaborations have
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Figure 1: Representative Feynman diagrams for (a) EW VV j j production via VBS, (b) EW VV j j production via
non-VBS contribution, and (c) QCD VV j j production.

searched for experimental evidence of VBS. So far, electroweak VV j j production is only observed in
the same-sign W±W± j j channel [14] and W Z j j channel [15] in the fully leptonic final states using data
collected at a center-of-mass energy of

√
s = 13 TeV. Evidence of electroweak VV j j production is also

obtained in the W±W± j j [16–18] and Zγ j j [19] channels using pp collisions at
√

s = 8 TeV. Limits on
fiducial cross sections of electroweak VV j j production are reported for the W Z j j [20, 21], Z Z j j [22],
Zγ j j [23] and Wγ j j [24] channels. Constraints on anomalous quartic gauge couplings are reported in
Refs. [16–19, 21, 23–27].

Reference [26] reports a study similar to the one in this paper, albeit focused on EW production of VV j j
in the WV → `νqq channel only and performed at

√
s = 8 TeV. This paper presents a study of the EW

production of VV j j (V = W, Z) with the vector-boson pair decaying semileptonically. A larger data sample
is used and additional diboson signal processes with similar final states are included.

ThreeVV semileptonic decay channels are explored: a Z boson decaying into a pair of neutrinos, Z → νν;1
a W boson decaying into a charged lepton (an electron or muon, denoted by `) and a neutrino, W → `ν;
and a Z boson decaying into a pair of light charged leptons, Z → ``. In all cases, the other vector
boson V is required to decay into a pair of quarks, V → qq, leading to ZV → ννqq, WV → `νqq and
ZV → ``qq final states. These processes overlap in the fiducial region of the measurement because
of the geometrical acceptance of the detector for leptons and jets. The decay channels are selected as
0-, 1- and 2-lepton final states, where the 1-lepton (2-lepton) final state receives only contribution from
WV → `νqq (ZV → ``qq) processes, and the 0-lepton final state receives about equal contributions from
WV → `νqq and ZV → ννqq processes.

Two different reconstruction techniques for the V → qq decay are considered: resolved and merged. The
resolved reconstruction attempts to identify two separate small-radius jets (small-R jet denoted by j) of
1 To simplify the notation, antiparticles are not explicitly labeled in this paper.
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hadrons from the V → qq decay, while the merged reconstruction uses jet substructure techniques to
identify the V → qq decay reconstructed as a large-radius jet (large-R jet denoted by J). The latter applies
when the momentum transfer in VV j j production is high, and as a consequence the qq pair from the V
boson decay is collimated. In this case, hadrons from the two quarks overlap in the detector and are more
efficiently reconstructed as a single large-R jet. In total, six final states are included in this study: 0-, 1- and
2-lepton final states, each using resolved or merged V → qq reconstruction techniques.

In order to extract the signal and to measure the cross section for the EW production of VV j j in a fiducial
volume, multivariate discriminants, which combine observables sensitive to the kinematics of the VBS
process, are used to separate EW-induced VV j j production from QCD-induced VV j j production.

This analysis measures the cross section of EW VV j j production in a region of kinematic phase space
close to the acceptance of the detector. Fiducial cross sections are measured in the 0-, 1- and 2-lepton
channels, where lepton refers to e and µ. Final states with V decaying into one or more τ-leptons (both
leptonically and hadronically decaying τ-leptons) are included as signal, but the contribution of V from top
quark decay is not considered as signal.

2 ATLAS detector

The ATLAS experiment is described in Ref. [28]. ATLAS is a multipurpose detector with a for-
ward–backward symmetric cylindrical geometry and a solid-angle2 coverage of nearly 4π. The inner
tracking detector (ID), covering the region |η | < 2.5, consists of a silicon pixel detector, a silicon microstrip
detector and a straw-tube transition-radiation tracker. The inner detector is surrounded by a thin super-
conducting solenoid providing a 2T magnetic field, and by a finely segmented lead/liquid-argon (LAr)
electromagnetic calorimeter covering the region |η | < 3.2. A steel/scintillator-tile hadronic calorimeter
provides coverage in the central region |η | < 1.7. The end-cap and forward regions are instrumented with
LAr calorimeters for both EM and hadronic energy measurements up to |η | = 4.9. A muon spectrome-
ter (MS) system incorporating large superconducting toroidal air-core magnets surrounds the calorimeters.
Three layers of precision wire chambers provide muon tracking in the range |η | < 2.7, while dedicated
fast chambers are used for triggering in the region |η | < 2.4. The trigger system is composed of two
stages [29]. The first stage, implemented with custom hardware, uses information from calorimeters and
muon chambers to reduce the event rate to a maximum of 100 kHz. The second stage, called the high-level
trigger, reduces the data acquisition rate to about 1 kHz on average. The high-level trigger is software-based
and runs reconstruction algorithms similar to those used in the offline reconstruction.

2 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center
of the detector and the z-axis along the axis of the beam pipe. The x-axis points from the IP to the center of the LHC ring, and
the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around
the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in
units of ∆R ≡

√
(∆η)2 + (∆φ)2.
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3 Data and Monte Carlo simulation

3.1 Data

The data were collected with the ATLAS detector in 2015 and 2016 from pp collisions at a center-of-mass
energy of

√
s = 13 TeV, corresponding to a total integrated luminosity of 35.5 fb−1.

The recorded 2-lepton channel and 1-lepton channel events were selected with a mixture of either multiple
single-electron or single-muon triggers with varying transverse energy ET (electron) and transverse
momentum pT (muon) thresholds, and quality and isolation requirements, that depended on the LHC
running conditions. The lowest ET or pT requirement without trigger prescaling was 26 GeV for both the
electrons and muons. Events for the 0-lepton channel were recorded with non-prescaled missing transverse
momentum (Emiss

T ) triggers where the Emiss
T threshold depended on the LHC running conditions. The

lowest threshold used is 110 GeV. The Emiss
T triggers used are fully efficient for events passing the selection

described below. The Emiss
T triggers are also used in the 1-lepton channel to compensate for single-muon

trigger inefficiency due to the difference in acceptance between the muon tracking and triggering.

Events in this analysis have all detector systems operating normally. Collision vertices are formed from
tracks with pT > 400MeV, and the one with the highest

∑
p2
T of its associated tracks is selected as the

primary vertex.

3.2 Signal and background simulation

Monte Carlo (MC) simulation is used to model signal and background processes. The simulated samples
are used to optimize the event selection, to develop the multivariate discriminant, and to estimate the
irreducible background yields.

The EW VV j j signal samples were generated using MadGraph5_aMC@NLO 2.4.3 [30] with amplitudes
of O(α6

EWα
0
S), where αEW (αS) is the EW (strong) coupling constant. Both the VBS amplitudes and

non-VBS amplitudes of the VV j j process with one boson decaying hadronically and the other leptonically
were included, using factorized on-shell decays for the gauge bosons. The NNPDF30LO [31] PDF set was
used. The parton showers and hadronization were modeled with Pythia 8.186 [32] using the A14 set of
tuned parameters (tune) for the underlying event [33].

The main background sources are Z and W bosons produced in association with jets (Z + jets and W+ jets),
as well as significant contributions from top quark production (both tt̄ pair and single-top) and QCD-induced
vector-boson pair production. The Z + jets and W+ jets events were simulated using the Sherpa 2.2.1 [34]
event generator. Matrix elements were calculated for up to two partons at NLO and up to four partons at
LO using the Comix [35] and OpenLoops [36] programs. QCD-induced diboson processes with one of
the bosons decaying hadronically and the other leptonically were simulated using Sherpa 2.2.1. They
were simulated for up to one additional parton at NLO and up to three additional partons at LO using
the Comix and OpenLoops programs. There is no overlap between the QCD-induced diboson samples
and the EW VV j j signal samples, as the former include diagrams of O(α4

EWα
2
S). For Z + jets, W+ jets

and diboson simulation, the matrix-element calculations were merged with the Sherpa parton shower
using the ME+PS@NLO prescription [37]. The NNPDF30NNLO [38] PDF set was used in conjunction
with a dedicated parton-shower tuning developed by the Sherpa authors. For the Z + jets and W+ jets
samples, boson decays into all lepton flavors (e, µ, τ) are included. For the generation of top quark pairs, the
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Powheg-Box v2 [39–41] event generator with the CT10 [42] PDF set in the matrix-element calculations
was used. Electroweak t-channel, s-channel and Wt-channel single-top-quark events were generated using
the Powheg-Box v1 event generator [43–45]. This event generator uses the four-flavor scheme for the
NLO matrix-element calculations together with the fixed four-flavor PDF set CT10f4 [42]. For all top
quark processes, top quark spin correlations are preserved (for the t-channel, top quark decay is simulated
using MadSpin [46]). The parton showers, fragmentation, and underlying event were simulated using
Pythia 6.428 [47] with the CTEQ6L1 [48] PDF set and the corresponding Perugia 2012 tune (P2012) [49].
The top quark mass was set to 172.5 GeV. The EvtGen v1.2.0 program [50] was used to simulate the
decay of bottom and charm hadrons for the Powheg-Box samples.

All simulated processes are normalized using the currently available state-of-the-art theoretical predictions
for their cross sections. Cross sections are calculated with up to next-to-next-to-leading-order (NNLO)
QCD corrections for Z + jets and W+ jets production [51]. Cross sections for diboson production are
calculated at NLO including LO contributions with two additional partons [34, 52]. The tt̄ production
cross section is calculated at NNLO in QCD, including resummation of next-to-next-to-leading logarithmic
(NNLL) soft-gluon terms [53, 54]. The single-top production cross sections are calculated to NLO in
QCD [55], including the soft-gluon resummation at NNLL [56] for the Wt process.

MC events were processed with a detailed detector simulation [57] based on Geant4 [58]. Additional
inelastic simulated pp collisions generated with Pythia 8.186 using the A2 set of tuned parameters [59]
and the MSTW2008LO [60] PDF set were overlaid in order to model both the in- and out-of-time effects
from additional pp collisions in the same and neighboring bunch crossings (pileup). MC samples are
reweighted to match the pileup conditions in the data. All simulated events are processed using the same
reconstruction algorithms as the data.

4 Object reconstruction

Electrons are identified as isolated energy clusters in the electromagnetic calorimeter matched to ID tracks,
and are required to have transverse energy ET > 7 GeV and pseudorapidity |η | < 2.47. A likelihood-based
requirement [61] is imposed to reduce the background from non-prompt electrons or hadrons misidentified
as electrons. Electrons are classified as either ‘loose’, ‘medium’ or ‘tight’ according to the likelihood-based
identification criteria described in Ref. [61].

Muons are reconstructed by a combined fit to the ID and MS tracks, and are required to have pT > 7 GeV
and |η | < 2.5. Muons must pass identification requirements, based on the number of hits in the ID and
MS subsystems, and the significance of the difference |q/pMS − q/pID | [62], where q is the charge and
pMS (pID) is the momentum of the muon measured in the MS (ID). Similarly to electrons, muons are
classified as either ‘loose’, ‘medium’ or ‘tight’, following the criteria in Ref. [62].

All electrons and muons are required to be isolated by using selections based on the sum of the pT of tracks
(excluding the track associated with the lepton) in a cone of pT-dependent size around their directions.
The isolation selection criteria are designed to maintain a constant efficiency of 99% in the pT–η plane for
reconstructed leptons from Z → `` decays. Furthermore, leptons are required to have associated tracks
satisfying |d0/σd0 | < 5 (3) and |z0 × sin θ | < 0.5 mm for electrons (muons), where d0 is the transverse
impact parameter relative to the beam line, σd0 is its uncertainty, and z0 is the distance between the
longitudinal position of the track along the beam line at the point where d0 is measured and the longitudinal
position of the primary vertex.
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Three types of jets are employed in the analysis. Two of them are reconstructed from three-dimensional
topological clusters of energy deposits in the calorimeter [63] (small-R jets and large-R jets), and the third
type from inner-detector tracks (track jets). All three use the anti-kt algorithm [64, 65] but with different
values of the radius parameter R. Small-R jets and large-R jets are reconstructed independently from the
same energy depositions for a given event. The treatment of the resulting overlap is discussed further
below.

Small-R jets are reconstructed with a radius parameter of R = 0.4. Energy- and η-dependent correction
factors derived from MC simulations are applied to correct jets back to the particle level [66]. Pileup
effects are corrected using a jet area method [67, 68]. Jets are required to have pT > 20 GeV for |η | < 2.5
and pT > 30 GeV for 2.5 < |η | < 4.5. A jet vertex tagger [67] is applied to jets with pT < 60 GeV and
|η | < 2.4 in order to select only jets from the hard interaction which are associated with the primary vertex,
and to suppress jets from pileup interactions. This tagger uses information about tracks associated with the
primary vertex and pileup vertices.

Small-R jets containing b-hadrons are identified using a multivariate algorithm (b-tagging) [69] which
uses information such as track impact-parameter significance and the position of explicitly reconstructed
secondary decay vertices. The chosen b-tagging algorithm has an efficiency of 70% for b-quark jets in
simulated tt̄ events, with a light-flavor jet rejection factor of about 380 and a c-jet rejection factor of about
12 [70].

Large-R jets are reconstructed with the radius parameter increased to R = 1.0. In order to mitigate
the effects of pileup and soft radiation, the large-R jets are trimmed [71]. Trimming takes the original
constituents of the jet and reclusters them using the kt algorithm [72] with a smaller radius parameter,
Rsubjet, to produce a collection of subjets. These subjets are discarded if they carry less than a specific
fraction ( fcut) of the original jet pT. The trimming parameters were optimized for W/Z boson tagging
and are Rsubjet = 0.2 and fcut = 5%. The large-R jet four-momenta are recomputed from the remaining
subjets, and the jet energies are calibrated to particle level using correction factors derived from MC
simulations [73]. The mass of a large-R jet (mJ ) is computed using a combination of calorimeter and
tracking information [74]. Large-R jets are required to have pT > 200 GeV and |η | < 2.0.

Track jets have a radius parameter of R = 0.2 [75]. Inner-detector tracks originating from the primary
vertex, with pT > 0.5 GeV and selected by impact parameter requirements, are used in the track jet
reconstruction. Track jets are required to satisfy pT > 20 GeV and |η | < 2.5. The number of track jets is
an input to the multivariate discriminant described later.

An overlap-removal procedure is applied to the selected leptons and jets in order to prevent double-counting.
The jet is removed if an electron and a small-R jet are separated by ∆R < 0.2; the electron is removed if the
separation satisfies 0.2 < ∆R < 0.4. The jet is removed if a muon and a small-R jet are separated by ∆R <

0.2 and if the jet has less than three tracks or the energy and momentum differences between the muon and
the jet are small; otherwise the muon is removed if the separation satisfies ∆R < 0.4. In order to prevent
double-counting of energy from an electron inside a large-R jet, the large-R jet is removed if an electron
and a large-R jet are separated by ∆R < 1.0. No overlap removal is applied between large-R jets or track
jets and small-R jets.

Boson tagging is applied to large-R jets in order to select those consistent with V → qq decays. A
pT-dependent requirement is applied to the jet substructure variable D(β=1)

2 , which is defined as a ratio of
two-point to three-point energy correlation functions [76, 77] that are based on the energies and pairwise
angular separations of the particles within a jet. This variable is optimized to distinguish between jets
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originating from a single parton and those coming from the two-body decay of a heavy particle. A detailed
description of the method and its optimization can be found in Ref. [78]. Large-R jets from V → qq
decays are required to have a jet mass mJ in a pT-dependent window centered around the expected value
of the boson mass. The configuration of the boson tagging algorithm is called a working point, which
is designed to provide constant efficiency independent of the large-R jet pT for the signals studied. Two
working points are used, one with 50% efficiency and the other one with 80% efficiency, with corresponding
misidentification rates for jets from multijet production of ∼ 2% and ∼ 10%, respectively.

The missing transverse momentum vector, ®Emiss
T , is calculated as the negative vectorial sum of the

transverse momenta of calibrated electrons, muons, and small-R jets where the calibration already includes
corrections for pileup. Large-R jets and track jets are not included in the ®Emiss

T calculation in order to
avoid double-counting of energy between the small-R jets and large-R jets. Energy depositions due to the
underlying event and other types of soft radiation are taken into account by constructing a ‘soft term’ from
ID tracks that are associated with the primary vertex but not used in any reconstructed object [79]. The
track-based missing transverse momentum vector, ®pmiss

T , is the negative vectorial sum of the transverse
momenta of all good-quality inner-detector tracks that are associated with the primary vertex.

5 Event selection and background estimation

Events are categorized into the 0-, 1- and 2-lepton channels depending on the number of selected electrons
and muons. In addition to a leptonically decaying candidate Vlep, events in all three channels are required to
contain a hadronically decaying candidate Vhad, and two additional small-R jets (referred to as tagging-jets).
The Vhad candidate is reconstructed as either two small-R jets (V → j j) in a resolved selection, or one
large-R jet (V → J) in a merged selection, and those jets are referred to as Vhad jets. Event selection criteria
are chosen to guarantee the statistical independence of the channels and to maximize the sensitivity of the
analysis. This selection results in nine non-overlapping distinct signal regions (SR): one for each of the
three lepton channels and three types of Vhad selections (resolved, and low- and high-purity merged).

The event selection for all channels and background estimations is summarized in Table 1. Further details
are given below.

5.1 Event selection

Signal events in the 0-lepton channel are typical of a hadronically decaying V boson recoiling against
a large amount of missing transverse momentum stemming from either a Z → νν decay or a W → `ν

decay, where the lepton is outside the acceptance of the detector. An initial selection is made by requiring
Emiss
T > 200 GeV, and rejecting events with electrons or muons passing the ‘loose’ quality requirements.

The multijet background originates primarily from the presence of mismeasured jets and non-collision
phenomena. It is suppressed using a requirement on the value of the track-based missing transverse
momentum, pmiss

T > 50 GeV. Three further angular selection criteria are: the azimuthal separation
between the ®Emiss

T and ®pmiss
T directions satisfies ∆φ( ®Emiss

T , ®pmiss
T ) < π/2; the azimuthal separation between

the directions of ®Emiss
T and the nearest small-R jet satisfies min[∆φ( ®Emiss

T , small-R jet)] > π/6; and
the azimuthal separation between the directions of ®Emiss

T and the reconstructed hadronically decaying
candidate Vhad satisfies ∆φ( ®Emiss

T ,Vhad) > π/9. The multijet background is found to be negligible after
these selections.
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The 1-lepton channel is typical of a leptonically decaying W boson. The W → `ν candidates are selected by
requiring one isolated lepton (electron or muon) satisfying the ‘tight’ criteria with pT > 27 GeV. Events are
required to have Emiss

T > 80 GeV, and must not have any additional ‘loose’ leptons. In order to reconstruct
the invariant mass of the WV system, needed later to construct the multivariate discriminant, the neutrino
momentum four-vector is reconstructed by imposing a W boson mass constraint on the lepton–neutrino
system. The neutrino transverse momentum components are set equal to the missing transverse momentum
of the event and the unknown z-component of the momentum (pz) is obtained from the resulting quadratic
equation. The pz is chosen as either the smaller, in absolute value, of the two real solutions or, if the
solution is complex, its real part.

In the 2-lepton channel, the Z → `` candidates are identified by requiring two isolated same-flavor leptons
satisfying the ‘loose’ criteria. The leading (subleading) lepton must satisfy pT > 28 (20) GeV. Opposite
charges are required for the muon pairs but not for the electron pairs, since electrons are more susceptible
to charge misidentification due to the conversion of photons from bremsstrahlung, especially at high pT.
The dilepton invariant mass is required to be consistent with that of the Z boson: 83 < mee < 99 GeV in
the case of electrons and (−0.0117 × pµµT + 85.63 GeV) < mµµ < (0.0185 × pµµT + 94 GeV) in the case of
muons. The pT-dependent requirement on mµµ recovers the selection efficiency at high pµµT , which would
otherwise fall due to the degraded dimuon invariant mass resolution [80].

The merged selection is applied as the first step in identifying a Vhad candidate. If an event is not selected,
then the resolved selection is used. The order is motivated by a smaller background expectation in the
merged analysis. Selecting the jets that form a Vhad candidate first and then selecting the tagging-jets from
the pool of remaining jets results in an analysis with a higher sensitivity compared with doing the selection
in the reverse order. The Vhad candidates are selected in three different non-overlapping channels.

Merged selection events are required to have at least one large-R jet. Next the boson tagging discussed in
Section 4 is applied to select the V → qq decays. Two SRs are defined, one for events passing the 50%
working point of the boson tagging requirement and the other for events failing the 50%, but passing the
80% working point requirement. The former is called the high-purity (HP) signal region, and the latter the
low-purity (LP) signal region. Given the different but overlappping W and Z boson tagging requirements,
large-R jets are required to satisfy either W or Z boson tagging. If multiple Vhad candidates are selected,
the one minimizing min(|mJ − mW |, |mJ − mZ |) is selected.

The resolved selection events are required to have two small-R signal jets with a dijet invariant mass lying
in the mW/Z window: 64 < mj j < 106 GeV. If multiple Vhad candidates are selected, the one minimizing
min(|mj j −mW |, |mj j −mZ |) is used. At least one of the jets forming the selected Vhad candidate must have
pT > 40 GeV, in order to improve the separation between the signal and the background; otherwise the
event is not selected.

After selecting the Vhad candidate, tagging-jets are selected from the remaining small-R jets that fail
the b-tagging described in Section 4. For the merged selection, all small-R jets with ∆R(J, j) < 1.4
are excluded before the tagging-jets selection. Tagging-jets are required to be in opposite hemispheres,
ηtag, j1 · ηtag, j2 < 0, and the invariant mass of the two tagging-jets must satisfy mtag

j j > 400 GeV. If there is
more than one pair of jets satisfying these requirements, the one with the highest mtag

j j value is chosen. In
order to suppress the contribution from pileup interactions, both tagging-jets from the selected pair must
have pT > 30 GeV; otherwise the event is rejected,

Finally, 1-lepton channel events are rejected if any of the small-R jets in the event is identified as a b-jet
prior to the Vhad candidate and tagging-jets selection. This reduces the contributions from top quark
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production.

5.2 Data control regions and background estimation

The dominant backgrounds for the 1-lepton channel are W+ jets and tt̄ production; for the 2-lepton channel
it is Z + jets production; while in the 0-lepton channel, they all contribute significantly. Smaller background
contributions for the 1-lepton channel arise from multijet background. Single-top and QCD-induced
diboson production is a small background for all three lepton channels. The background contributions
are estimated using a combination of MC and data-driven techniques. The shapes of kinematic variable
distributions are taken from MC simulations in all cases except for the multijet background in the 1-lepton
channel.

A Z+jets control region (ZCR) is defined for each of the three SRs in the 2-lepton channel by reversing the
mJ or mj j requirement. Events in each of the CRs are selected in exactly the same way as those in their
corresponding SRs except for the requirement on mJ or mj j . For the merged selection, the leading large-R
jet mass is required to be outside the large-R jet mass window of the 80% working point of the W/Z boson
tagging. For the resolved selection, a requirement of 50 < mj j < 64 GeV or mj j > 106 GeV is applied.
These CRs are dominated by the Z+jets contribution, with a purity higher than 95% in all regions. They
are therefore used to constrain its contribution in signal regions through simultaneous fits as discussed in
Section 10.

Three W+jets control regions (WCRs) are formed from events satisfying the 1-lepton signal region selection
except for the invariant mass requirement of the Vhad candidate, similar to the ZCRs. Approximately 86%
and 77% of the selected events are from W+jets production in the merged and resolved categories of the
1-lepton channel, respectively. The remaining events are primarily from tt̄ production.

The three tt̄ control regions (TopCRs) consist of events satisfying the signal region selection of the 1-lepton
channel except for the b-jet requirement, which is inverted. These CRs are dominated by tt̄ production,
with a purity of 79% and 59% for merged and resolved categories respectively, and the remainder are from
single-top, V+jets or diboson production, for both the merged and the resolved event topologies.

In the 0-lepton channel, it is not possible to define pure control regions forW+ jets, Z + jets and tt̄ processes,
thus events falling into the mass sideband regions of the Vhad, similar to WCRs and ZCRs, form three
different CRs (referred to as VjjCR), one for each of the corresponding SRs.

The contribution from multijet production primarily consists of events with jets or photon conversions
misidentified as leptons or real but non-prompt leptons from decays of heavy-flavor hadrons. This
contribution is negligible in all regions, except for the resolved 1-lepton SR. The fake-factor background
method of Ref. [81] is used to estimate the multijet background contribution in the resolved topology of the
1-lepton channel. The estimated multijet contribution is about 10% of the total background in the resolved
1-lepton SR.

The mtag
j j spectra of simulated W+ jets (Z + jets) events are not well modeled by the MC simulation in the

WCRs (ZCRs) for the three Vhad selections in the 1-lepton (2-lepton) channel. A data-driven procedure is
applied to the simulated W+ jets and Z + jets events to correct for this shape mismodeling. Reweighting
factors are derived from WCRs and ZCRs as a function of mtag

j j , and applied to all SRs and CRs (for 0-, 1-,
and 2-lepton regions) in the MC simulation of W+ jets and Z + jets events, respectively. The non-W+ jets
(Z + jets) contributions are subtracted from the spectra in data. Then the reweighting factors as a function of
mtag

j j are determined by performing a linear fit to the ratios of data to simulation in the control regions. The
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reweighting is done separately for the merged and resolved analyses. For W+ jets, the reweighting factor
ranges from 1.016 (1.024) at mtag

j j = 400 GeV to 0.47 (0.53) at mtag
j j = 3000 GeV in the resolved (merged)

analysis. For Z + jets, the reweighting factor ranges from 1.071 (1.062) at mtag
j j = 400 GeV to 0.42 (0.36) at

mtag
j j = 3000 GeV in the resolved (merged) analysis.

Additional reweighting factors are needed for the MC simulation of W+ jets and Z + jets events in the
0-lepton channel because the phase space is so different between the 0-lepton selection and the 1- and
2-lepton selections that the reweightings described above are not applicable. These additional reweightings
are derived from MC simulation as the ratio of the numbers of W+ jets (Z + jets) events in the 1-lepton
(2-lepton) and 0-lepton channels, and are applied to the MC simulation of W+ jets (Z + jets) events in the
0-lepton channel. Good agreement between the prediction from MC simulation and the data in the VjjCR
is achieved only after the two reweightings have been applied. Unless stated otherwise, the final reweighted
W+ jets and Z + jets simulated events are used everywhere in the analysis.

6 Multivariate analysis

A multivariate method is used to enhance the separation between the signal and background. The analysis
uses the Toolkit for Multivariate Data Analysis, TMVA [82], and its implementation of the Boosted
Decision Trees (BDTs) method. BDTs are constructed, trained and evaluated in each lepton channel and
analysis region separately. The BDT training is carried out using simulated signal and all background
MC samples. However, the events in high-purity SR and low-purity SR are merged together for the BDT
training due to an insufficient number of MC events. In order to make use of the complete set of simulated
MC events for the BDT training and evaluation in an unbiased way, the MC events are split for training and
validation into two subsamples of equal size following the procedure in Ref. [83]. The output distributions
of the BDTs trained on the two subsamples are averaged for both the simulated and data events.

The input variables used for the BDTs are chosen in order to maximize the separation between signal
and background, and are summarized in Table 2 and Table 3, for the merged and resolved category,
respectively. The distributions of input variables of the BDTs are compared between data and simulation,
and in general are found to be in good agreement. The small-R jets are labeled in decreasing pT as
‘ j1’ and ‘ j2’ for the jets used to reconstruct the hadronically decaying boson, and as ‘tag, j1’ and ‘tag,
j2’ for the tagging-jets. The invariant mass and transverse momentum of the reconstructed VV (VV j j)
system are denoted by mVV (mVV j j) and pVV

T (pVV j j
T ), respectively. Angular variables are also considered,

such as the pseudorapidity gap between the tagging-jets (∆ηtag
j j ) and between the small-R Vhad jets (∆ηj j),

the angular separation of the lepton and neutrino from the W boson decay (∆R(`, ν)) in the 1-lepton
channel, and the azimuthal angle between the directions of ®Emiss

T and the large-R jet (∆φ( ®Emiss
T , J)) in

the merged category of the 0-lepton channel. A topological variable named boson centrality is also
used, and it is defined as ζV = min(∆η−,∆η+), where ∆η− = min[η(Vhad), η(Vlep)] −min[ηtag, j1, ηtag, j2] and
∆η+ = max[ηtag, j1, ηtag, j2] −max[η(Vhad), η(Vlep)]. The variable ζV has large values when the tagging-jets
have a large separation in η, and when the two boson candidates lie between the tagging-jets in η. Variables
sensitive to the quark–gluon jet separation are also included, such as the width of the small-R jets (w) [84],
and the number of tracks associated with the jets (ntracks). The number of track jets, nj,track, and the number
of additional small-R jets other than the Vhad jets and tagging-jets, nj,extr, are also found to be useful for the
BDTs. In the 1-lepton channel, the pseudorapidity of the lepton (η`) is also considered.
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Table 2: Variables used for the BDT discriminant in the merged analysis category of each lepton channel.

Variable 0-lepton 1-lepton 2-lepton

mtag
j j X – X

∆η
tag
j j – – X

ptag, j2
T X X X

mJ X – –

D(β=1)
2 X – X

Emiss
T X – –
∆φ( ®Emiss

T , J) X – –
η` – X –
nj,track X – –
ζV – X X

mVV – – X

pVV
T – – X

mVV j j – X –
pVV j j

T – – X

wtag, j1 X – –
wtag, j2 X – –
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Table 3: Variables used for the BDT discriminant in the resolved analysis category of each lepton channel analysis.

Variable 0-lepton 1-lepton 2-lepton

mtag
j j X – X

∆η
tag
j j – – X

ptag, j1
T X X –

ptag, j2
T X X X

∆ηj j X X X

pj1
T X – –

pj2
T X X X

w j1 X X X

w j2 X X X

n j1
tracks – X X

n j2
tracks – X X

wtag, j1 X X X

wtag, j2 X X X

ntag, j1
tracks – X X

ntag, j2
tracks – X X

nj,track X – X

nj,extr X – –
Emiss
T X – –

η` – X –
∆R(`, ν) – X –
ζV – X X

mVV – – X

mVV j j – X –
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7 Fiducial cross-section definition

The fiducial phase space of the measurement is defined using stable final-state particles [85]. Leptons
produced in the decay of a hadron or its descendants are not considered in the charged lepton requirement
of the fiducial phase space. The fiducial selection is summarized in Table 4 and details are given below.

Charged leptons are required to satisfy pT > 7 GeV and |η | < 2.5. Jets are clustered from all final-state
particles except prompt leptons, prompt neutrinos, and prompt photons using the anti-kt algorithm. Small-R
jets are required to have pT > 20 GeV for |η | < 2.5 and pT > 30 GeV for 2.5 < |η | < 4.5. Jets within
∆R = 0.2 of any charged lepton (as defined above) are rejected. Jets containing a b-hadron, identified
using ‘truth’ information from the MC event record, are labeled as b-jets. Large-R jets are required to have
pT > 200 GeV and |η | < 2.0, and the same trimming algorithm as for the reconstruction-level large-R jets
is applied. No D(β=1)

2 requirement is applied to large-R jets.

The selection of hadronically decaying bosons and tagging-jets follows the same steps and apply the same
criteria as for reconstruction level, as shown in Table 4.

For the 0-, 1- and 2-lepton channels, the number of selected fiducial leptons is required to be 0, 1 and 2,
respectively. Events with additional leptons for the 1- and 2-lepton channels are vetoed. The lepton pT is
required to be larger than 27 GeV for the 1-lepton channel; for the 2-lepton channel, the leading (subleading)
lepton pT must be larger than 28 (20) GeV, and the invariant mass of the lepton pair must lie within
83 < m`` < 99 GeV. For the 0-lepton channel, the transverse momentum of the neutrino system must
satisfy pννT > 200 GeV; and for the 1-lepton channel, the events are required to have pνT > 80 GeV and
contain no b-jets.

8 Systematic uncertainties

The sources of systematic uncertainty can be divided into three categories: experimental uncertainties
related to the detector or to the reconstruction algorithms, uncertainties in the estimations of background
contributions, and uncertainties in modeling the signal. Unless stated otherwise, the uncertainties quoted
below are the uncertainties in the quantities themselves, not the impact on the analysis sensitivity.

The uncertainty in the integrated luminosity of the dataset is 2.1%. It is derived from the calibration of
the luminosity scale using x-y beam-separation scans, following a methodology similar to that detailed in
Ref. [86], and using the LUCID-2 detector for the baseline luminosity measurements [87]. This uncertainty
is applied to the normalization of the signal and also to background contributions whose normalizations
are derived from MC simulations. In addition to the luminosity uncertainty, a variation in the pileup
reweighting of MC events is also included to cover the uncertainty in the ratio of the predicted to measured
inelastic cross sections in Ref. [88].

The efficiencies of the lepton triggers for events with selected leptons are high, nearly 100% in the electron
channel and approximately 96% in the muon channel. The corresponding uncertainties are negligible. For
the selection used in the 0-lepton and 1-lepton channels, the efficiency of the Emiss

T trigger is also close
to 100% with negligible associated uncertainty. The modeling of the electron and muon reconstruction,
identification and isolation efficiencies is studied with a tag-and-probe method using Z → `` events in data
and simulation at

√
s = 13TeV [61, 62]. Small corrections are applied to the simulation to better model the
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Table 4: Fiducial phase-space definitions used for the measurement of electroweak VV j j production.

Object selection

Leptons pT > 7 GeV, |η | < 2.5
Small-R jets pT > 20 GeV if |η | < 2.5, and pT > 30 GeV if 2.5 < |η | < 4.5
Large-R jets pT > 200 GeV, |η | < 2.0

Event selection

Leptonic V selection

0-lepton Zero leptons, pννT > 200 GeV
1-lepton One lepton with pT > 27 GeV, pνT > 80 GeV

2-lepton Two leptons, with leading (subleading) lepton pT > 28 (20) GeV
83 < m`` < 99 GeV

Hadronic V selection

Merged One large-R jet, min(|mJ − mW |, |mJ − mZ |)
64 < mJ < 106 GeV

Resolved
Two small-R jets, min(|mj j − mW |, |mj j − mZ |)

pj1
T >40 GeV, pj2

T >20 GeV
64 < mj j < 106 GeV

Tagging-jets Two small-R non-b jets, ηtag, j1 · ηtag, j2 < 0, highest mtag
j j

mtag
j j > 400 GeV, ptag, j1,2

T > 30 GeV

Number of b-jets

0-lepton –
1-lepton 0
2-lepton –

performance seen in data. These corrections have associated uncertainties of the order of 1%. Uncertainties
in the lepton energy (or momentum) scale and resolution [62, 89] are also taken into account.

Uncertainties in the jet energy scale and resolution for small-radius jets are estimated using MC simulation
and in situ techniques [66]. For central jets (|η | < 2.0), the total uncertainty in the jet energy scale ranges
from about 6% for jets with pT = 25 GeV to about 2% for pT = 1 TeV. There is also an uncertainty in the
jet energy resolution [66], which ranges from 10% to 20% for jets with a pT of 20 GeV to less than 5% for
jets with pT > 200 GeV. Uncertainties in the lepton and jet energy scales and resolutions are propagated
into the uncertainty in Emiss

T . Uncertainties in the energy scale and resolution of the track soft term are
also propagated into the uncertainty in Emiss

T [79]. For the b-tagging efficiency of small-R jets, correction
factors are applied to the simulated event samples in order to compensate for differences between data and
simulation. The corrections and uncertainties in the efficiency for tagging b-jets and in the rejection factor
for light jets are determined from tt̄ samples [90, 91].

The uncertainties in the scale of the large-R jet pT, mass and D(β=1)
2 are of the order of 2–5%. They

are estimated using comparisons of data and simulation in Ref. [78]. An absolute uncertainty of 2% is
assigned to the large-R jet energy resolution, and relative uncertainties of 20% and 15% are assigned to the
resolution of the large-R jet mass and D(β=1)

2 , respectively.

The overall normalization of the main backgrounds (W+ jets, Z + jets and tt̄) is determined from the
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corresponding data control regions and is left unconstrained and floating in the global likelihood fit. For
W+ jets (Z + jets) events in the 0-lepton channel, additional normalization uncertainties are considered to
account for the acceptance difference between the 0-lepton channel analysis and the 1-lepton (2-lepton)
channel analysis, given that there are no corresponding pure control regions of 0-lepton events and the
normalization is determined mainly from control regions with 1-lepton (2-lepton) events. This additional
normalization uncertainty for W+ jets (Z + jets) events is estimated using the ratio of the event yield in
each signal region of the 0-lepton channel to that in the 1-lepton (2-lepton) channel, and by comparing this
ratio obtained from the nominal MC samples generated by Sherpa with the ratio from alternative samples
generated by MadGraph5_aMC@NLO. The normalization uncertainty is 8% (14%) for W+ jets events in
the merged (resolved) signal region, and 22% (42%) for Z + jets events in the merged (resolved) signal
region. These uncertainties are applied to the W+ jets and Z + jets events in the 0-lepton channel only.
The normalization uncertainties in the diboson background cross sections are studied with Sherpa. The
uncertainty due to missing higher-order QCD contributions (QCD scale uncertainty) is estimated by varying
the renormalization (µr) and factorization (µf) scales independently by a factor ranging from one-half to
two with the constraint 0.5 ≤ µf/µr ≤ 2. The PDF uncertainty corresponds to the 68% confidence-level
variations of the nominal PDF set NNPDF30NNLO, as well as its difference from the alternative PDF sets
CT10NNLO [92] and MMHT2014NNLO [93]. The overall normalization uncertainty for the diboson
background is estimated to be about 30%. For single-top-quark events, a 20% normalization uncertainty is
assigned [94].

The uncertainty in the modeling of the final discriminants, the BDT output and mtag
j j , for background

processes estimated usingMC simulation is assessed by comparing the nominalMC samples with alternative
samples. The uncertainties are of the order of 5–30%. The mtag

j j reweighting as described in Section 5.2 is
also included as a shape systematic uncertainty for Z + jets and W+ jets events by taking the difference of
their respective final discriminants before and after applying the reweighting. An uncertainty in the shape
of the BDT or mtag

j j distribution for the tt̄ background is derived by comparing the Powheg-Box sample
with the distribution obtained using MadGraph5_aMC@NLO 2.2.2. Additional systematic uncertainties
are estimated by comparing the nominal sample showered with Pythia 6.428 using the P2012 tune to
one showered with Herwig++ 2.7.1 [95] and using the UEEE5 underlying-event tune [96]. Samples of tt̄
events with the factorization and renormalization scales doubled or halved are compared with the nominal
samples, and the observed differences are taken as an additional uncertainty. These modeling uncertainties
for the tt̄ background are 5–30%. The shape uncertainty for diboson processes is obtained by comparing
MC samples generated by Sherpa and Powheg-Box, and it is found to be of the order of 2–30%. The
shape uncertainty for single-top-quark events is ignored due to their relatively small contribution to the
total background.

The following discussion describes the uncertainties in the predictions of EW VV j j signal processes. The
uncertainties in the signal-strength measurement, discussed in Section 10.1, include contributions from both
the normalization and shape; for the fiducial cross section measurement, discussed in Section 10.2, only the
shape uncertainties are taken into account for the measured fiducial cross sections, and the normalization
uncertainties are included for the SM predicted fiducial cross sections.

Theoretical uncertainties for EW VV j j signal processes include the PDF choice, the missing higher-order
corrections, and the parton-shower modeling. The signal modeling uncertainty due to PDF uncertainties is
estimated by taking the uncertainty from the PDF error sets of NNPDF23LO and adding it in quadrature
to the acceptance difference obtained using alternative PDF sets: CT10 and MMHT2014LO. The PDF
uncertainties are estimated to be 3–5%. The parton-shower uncertainty, estimated by varying relevant
parameters in the A14-NNPDF tune [33], ranges from 1% to 5%. The effect of the QCD scale uncertainty,
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of the order of 1–3%, is estimated by varying the factorization and renormalization scales independently by
a factor of two with the constraint 0.5 ≤ µf/µr ≤ 2.

The interference between EW- and QCD-induced VV j j processes is not included in the MC simulation,
since the EW- and QCD-induced VV j j samples were generated separately. The interference effect is
considered as an uncertainty affecting both the normalization and the shape of the EW VV j j kinematic
distributions. The effect is determined using the MadGraph5_aMC@NLO 2.4.3 MC generator at the
‘truth’ level as a function of mtag

j j . A reweighting is then applied to the simulated EW VV j j samples,
resulting in shape uncertainties of 5% to 10% at low and high values of the BDT score, respectively, and a
similar size for the normalization uncertainties.

9 Statistical analysis

The statistical analysis relies on the profile likelihood test statistic [97] implemented with the RooFit [98]
and RooStats [99] packages. A binned likelihood function L(µ, θ) is constructed as a product of Poisson
probabilities over all of the bins of the fit templates considered in the analysis. This function depends on
the signal-strength parameter µ, a multiplicative factor applied to the theoretical signal production cross
section, and θ, a set of nuisance parameters that encodes the effects of systematic uncertainties in the signal
and expected backgrounds. The binning is chosen so that the expected numbers of events ensure that the
statistical uncertainty is less than 5% in most bins, while finer binning is also allowed in signal-enriched
regions. The nuisance parameters are either free to float, or constrained using Gaussian or log-normal
terms defined by external studies. The likelihood function for the combination of the three channels is
the product of the Poisson likelihoods of the individual channels. However, only one constraint term per
common nuisance parameter is included in the product.

A simultaneous maximum-likelihood fit is performed to the observed distributions of the final discriminants,
BDT outputs, in the nine SRs to extract the signal rate information. The three ZCRs, WCRs and TopCRs
as well as the three VjjCRs are included in the fit’s likelihood calculation; the mtag

j j distributions are
used for ZCRs, WCRs and VjjCRs, while for the TopCRs only one bin for each of the three Vhad decay
channels is used. The purpose of using mtag

j j distributions for CRs is to constrain the mtag
j j reweighting

systematic uncertainties. The different regions and the corresponding discriminants entering the likelihood
fit are summarized in Table 5. Signal and background contributions, including their shapes in the
signal and control regions, are taken from MC simulations. For each source of systematic uncertainty,
the correlations across bins of BDT distributions are taken into account and are fully correlated. The
correlations between different regions, as well as those between signal and background, are also included.
Moreover, normalization scale factors (SFs) are applied to the MC estimates of the Z+jets, W+jets and top
quark contributions. These SFs are free parameters in the fit and are therefore constrained by the data in
both the signal and control regions. The diboson contribution is constrained to the theoretical estimate
within the corresponding uncertainties.

In general, one SF is introduced for each background component, common to both the SRs and CRs. One
common Z + jets SF is used for both the 0-lepton and 2-lepton channels, and one common W+ jets SF is
used for both the 0-lepton and 1-lepton channels. Similarly, one common tt̄ SF is used for both the 0-lepton
and 1-lepton channels. However, independent SFs are used for the resolved and merged categories, to take
into account different MC modelings in the different phase spaces of the same background component.
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Table 5: The distributions used in the global likelihood fit for the signal regions and control regions for all the
categories in each channel. “One bin” implies that a single bin without any shape information is used in the
corresponding fit region.

Regions Discriminants

Merged high-purity Merged low-purity Resolved

0-lepton SR BDT BDT BDT
VjjCR mtag

j j mtag
j j mtag

j j

1-lepton
SR BDT BDT BDT
WCR mtag

j j mtag
j j mtag

j j

TopCR One bin One bin One bin

2-lepton SR BDT BDT BDT
ZCR mtag

j j mtag
j j mtag

j j

The test statistic qµ is defined as the profile likelihood ratio [100], qµ = −2 lnΛµ withΛµ = L(µ, ˆ̂θµ)/L(µ̂, θ̂),
where µ̂ and θ̂ are the values of the parameters that maximize the likelihood function (with the constraint
0≤ µ̂ ≤ µ), and ˆ̂θµ are the values of the nuisance parameters that maximize the likelihood function for a
given value of µ. The best-fit signal strength µ̂ value (µobs

EWVV j j
) is obtained by maximizing the likelihood

function with respect to all parameters. To determine whether the observed data is compatible with the
background-only hypothesis, a test statistic q0 = −2 lnΛ0 is used.

10 Results

10.1 Results for the EW VV j j production processes

Figures 2 and 3 show a selection of representative post-fit distributions of input variables that are most
discriminating for each of the lepton channels, for the merged and resolved categories, respectively.
Background and EW VV j j signal contributions shown are obtained from the signal-plus-background fits
described previously.

The observed distributions of the BDT outputs in SRs used in the global likelihood fit are compared with the
predictions, shown in Figure 4 for the 0-lepton channel, Figure 5 for the 1-lepton channel, and Figure 6 for
the 2-lepton channel. The data distributions are reasonably well reproduced by the predicted contributions
in all cases, with the smallest p-value of 0.16 from the χ2 test [101] being for the mtag

j j distribution in the
merged high-purity ZCR. The numbers of events observed and estimated in the SRs are summarized in
Table 6 for the 0-lepton channel, Table 7 for the 1-lepton channel, and Table 8 for the 2-lepton channel.
The fitted value of the signal strength is

µobs
EWVV j j = 1.05+0.42

−0.40 = 1.05 ± 0.20(stat.)+0.37
−0.34(syst.).

The background-only hypothesis is excluded in data with a significance of 2.7 standard deviations, compared
with 2.5 standard deviations expected.
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Figure 2: The distributions for Emiss
T (top left), mtag

j j (top right), mVV j j (middle left), ζV (middle right), mtag
j j (bottom

left), and ζV (bottom right) in the 0-lepton (top), 1-lepton (middle) and 2-lepton (bottom) channels for the high-purity
merged signal region. The background contributions after the global likelihood fit are shown as filled histograms.
The signal is shown as a filled histogram on top of the fitted backgrounds normalized to the signal yield extracted
from data (µ = 1.05), and unstacked as an unfilled histogram, scaled by the factor indicated in the legend. The size
of the combined statistical and systematic uncertainty for the sum of the fitted signal and background is indicated
by the hatched band. The middle pane shows the ratios of the observed data to the post-fit signal and background
predictions. The bottom pane shows the ratios of the post-fit and pre-fit background predictions.
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Figure 3: The distributions for Emiss
T (top left), mtag

j j (top right), mVV j j (middle left), pj2
T (middle right), mtag

j j (bottom
left), and pj2

T (bottom right) in the 0-lepton (top), 1-lepton (middle) and 2-lepton (bottom) channels for the resolved
signal region. The background contributions after the global likelihood fit are shown as filled histograms. The
signal is shown as a filled histogram on top of the fitted backgrounds normalized to the signal yield extracted from
data (µ = 1.05), and unstacked as an unfilled histogram, scaled by the factor indicated in the legend. The size of
the combined statistical and systematic uncertainty for the sum of the fitted signal and background is indicated by
the hatched band. The middle pane shows the ratios of the observed data to the post-fit signal and background
predictions. The bottom pane shows the ratios of the post-fit and pre-fit background predictions.
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Figure 7 shows the measured signal strength from the combined fit with a single signal-strength fit parameter,
and from a fit where each lepton channel has its own signal-strength parameter. The probability that the
signal strengths measured in the three lepton channels are compatible is 36%.

Table 6: Numbers of events observed and predicted for signal and background processes in the 0-lepton channel
signal regions, obtained from signal-plus-background fits to the signal and control regions (Section 10). The signal
yields are calculated after the fit with the observed signal strength of 1.05 applied. The uncertainties combine
statistical and systematic contributions. The fit constrains the background estimate towards the observed data, which
reduces the total background uncertainty by correlating those uncertainties from the individual backgrounds.

Sample Resolved Merged HP Merged LP

Background

W + jets 9200± 1300 259± 27 582± 56
Z + jets 19 000± 1400 383± 29 955± 69
Top quarks 3280± 480 277± 28 276± 32
Diboson 720± 120 69± 12 68± 14

Total 32 100± 2000 988± 50 1881± 96

Signal

W(`ν)W(qq′) 56± 22 8.0± 3.2 5.4± 2.2
W(`ν)Z(qq) 12.0± 4.7 2.1± 0.8 1.6± 0.6
Z(νν)W(qq′) 66± 25 9.0± 3.5 7.4± 2.9
Z(νν)Z(qq) 27± 10 5.1± 2.0 3.1± 1.2

Total 161± 35 24.3± 5.2 17.5± 3.9

SM 32 300± 2000 1012± 50 1898± 96

Data 32 299 1002 1935

Table 7: Numbers of events observed and predicted for signal and background processes in the 1-lepton channel
signal regions, obtained from signal-plus-background fits to the signal and control regions (Section 10). The signal
yields are calculated after the fit with the observed signal strength of 1.05 applied. The uncertainties combine
statistical and systematic contributions. The fit constrains the background estimate towards the observed data, which
reduces the total background uncertainty by correlating those uncertainties from the individual backgrounds.

Sample Resolved Merged HP Merged LP

Background

W + jets 69 100± 1900 1201± 65 2828± 97
Z + jets 2770± 370 39± 3 83± 6
Top quarks 7100± 1100 394± 56 422± 63
Diboson 2660± 600 163± 35 229± 57
Multijet 13 400± 1600 – –

Total 95 100± 2800 1797± 93 3560± 130

Signal

W(`ν)W(qq′) 330± 120 45± 17 34± 13
W(`ν)Z(qq) 78± 29 11± 4 5± 2

Total 410± 130 57± 18 39± 13

SM 95 500± 2800 1854± 95 3600± 130

Data 95 366 1864 3571
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Figure 4: Comparisons of the observed data and expected distributions of the BDT outputs of the 0-lepton channel
signal regions: (a) high-purity and (b) low-purity merged signal regions; (c) the resolved signal region. The
background contributions after the global likelihood fit are shown as filled histograms. The signal is shown as a
filled histogram on top of the fitted backgrounds normalized to the signal yield extracted from data (µ = 1.05),
and unstacked as an unfilled histogram, scaled by the factor indicated in the legend. The entries in overflow are
included in the last bin. The middle pane shows the ratios of the observed data to the post-fit signal and background
predictions. The uncertainty in the total prediction, shown as bands, combines statistical and systematic contributions.
The bottom pane shows the ratios of the post-fit and pre-fit background predictions.
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Figure 5: Comparisons of the observed data and expected distributions of the BDT outputs of the 1-lepton channel
signal regions: (a) high-purity and (b) low-purity merged signal regions; (c) the resolved signal region. The
background contributions after the global likelihood fit are shown as filled histograms. The signal is shown as a
filled histogram on top of the fitted backgrounds normalized to the signal yield extracted from data (µ = 1.05),
and unstacked as an unfilled histogram, scaled by the factor indicated in the legend. The entries in overflow are
included in the last bin. The middle pane shows the ratios of the observed data to the post-fit signal and background
predictions. The uncertainty in the total prediction, shown as bands, combines statistical and systematic contributions.
The bottom pane shows the ratios of the post-fit and pre-fit background predictions.
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Figure 6: Comparisons of the observed data and expected distributions of the BDT outputs of the 2-lepton channel
signal regions: (a) high-purity and (b) low-purity merged signal regions; (c) the resolved signal region. The
background contributions after the global likelihood fit are shown as filled histograms. The signal is shown as a
filled histogram on top of the fitted backgrounds normalized to the signal yield extracted from data (µ = 1.05),
and unstacked as an unfilled histogram, scaled by the factor indicated in the legend. The entries in overflow are
included in the last bin. The middle pane shows the ratios of the observed data to the post-fit signal and background
predictions. The uncertainty in the total prediction, shown as bands, combines statistical and systematic contributions.
The bottom pane shows the ratios of the post-fit and pre-fit background predictions.
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Table 8: Numbers of events observed and predicted for signal and background processes in the 2-lepton channel
signal regions, obtained from signal-plus-background fits to the signal and control regions (Section 10). The signal
yields are calculated after the fit with the observed signal strength of 1.05 applied. The uncertainties combine
statistical and systematic contributions. The fit constrains the background estimate towards the observed data, which
reduces the total background uncertainty by correlating those uncertainties from the individual backgrounds.

Sample Resolved Merged HP Merged LP

Background

Z + jets 37 090± 310 331± 14 775± 24
Top quarks 645± 99 5.8± 0.9 9.9± 2.7
Diboson 830± 170 34.6± 7.6 36.7± 8.2

Total 38 570± 370 371± 16 821± 25

Signal

Z(``)W(qq′) 138± 53 8.6± 3.3 7.0± 2.7
Z(``)Z(qq) 46± 18 4.3± 1.7 2.9± 1.1

Total 185± 56 12.9± 3.7 9.8± 2.9

SM 38 760± 370 384± 17 831± 25

Data 38 734 371 810

SM
σ/σ=µBest fit 

0 2 4 6 8 10

Combination

0-lepton

1-lepton

2-lepton

1.05
 0.40−
 0.42+ (  0.34−

 0.37+ 0.20  ± )

2.47
 1.22−
 1.33+ (  0.93−

 1.05+ 0.80  ± )

0.33
 0.52−
 0.53+ (  0.46−

 0.47+ 0.25  ± )

1.97
 0.77−
 0.83+ (  0.59−

 0.65+ 0.50  ± )

  Tot.   ( Stat.  Syst. )Tot.

Stat.

ATLAS , Observed-1=13 TeV, 35.5 fbs

Figure 7: The fitted values of the signal-strength parameter µobs
EWVV j j

for the 0-, 1- and 2-lepton channels and their
combination. The individual µobs

EWVV j j
values for the lepton channels are obtained from a simultaneous fit with the

signal-strength parameter for each of the lepton channels floating independently. The probability that the signal
strengths measured in the three lepton channels are compatible is 36%.
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After the global maximum-likelihood fit, the uncertainties described in Section 8 are much reduced. The
effects of systematic uncertainties on the measurement after the fit are studied using the signal-strength
parameter µobs

EWVV j j
. The relative uncertainties in the best-fit µobs

EWVV j j
value from the leading sources of

systematic uncertainty are shown in Table 9. The individual sources of systematic uncertainty detailed in
Section 8 are combined into categories. Apart from the statistics of the data, the uncertainties with the
largest impact on the sensitivity of EW VV j j production are from the modeling of background (Z + jets,
W+ jets and QCD-induced diboson processes), the modeling of the signal, b-tagging, and reconstruction of
small-R and large-R jets.

Table 9: The symmetrized uncertainty σµ from each source in the best-fit signal-strength parameter µobs
EWVV j j

.
The floating normalizations include uncertainties of normalization scale factors for Z+jets, W+jets and top quark
contributions.

Uncertainty source σµ

Total uncertainty 0.41
Statistical 0.20
Systematic 0.35

Theoretical and modeling uncertainties

Floating normalizations 0.09
Z + jets 0.13
W+ jets 0.09
tt̄ 0.06
Diboson 0.09
Multijet 0.04
Signal 0.07
MC statistics 0.17

Experimental uncertainties

Large-R jets 0.08
Small-R jets 0.06
Leptons 0.02
Emiss
T 0.04

b-tagging 0.07
Pileup 0.04
Luminosity 0.03
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10.2 Cross-section measurements

The determination of the fiducial cross section is performed by scaling the measured signal strengths with
the corresponding SM predicted fiducial cross sections, σfid,obs

EWVV j j
= µobs

EWVV j j
· σfid,SM

EWVV j j
. It is assumed

that there is no new physics that could cause sizable kinematic modifications of the background and signal.
Therefore, the only new physics signals that can be detected in an unbiased way are those leading to an
enhanced EW VV j j signal strength in the search region of this analysis. The fiducial cross sections for EW
VV j j are measured in the merged and resolved fiducial phase-space regions described in Section 7 and
inclusively. The merged HP SR and LP SR are combined to form one single merged fiducial phase-space
region. The systematic uncertainties of the measured fiducial cross sections include contributions from
experimental systematic uncertainties, theory modeling uncertainties in the backgrounds, theory modeling
uncertainties in the shapes of signal kinematic distributions, and luminosity uncertainties. The measured
and SM predicted fiducial cross sections for EW VV j j processes are summarized in Table 10, where the
measured values are obtained from two different simultaneous fits. In the first fit, two signal-strength
parameters are used, one for the merged category (both HP and LP), and the other one for the resolved
category; while in the second fit, a single signal-strength parameter is used. The measured and SM
predicted fiducial cross sections in each lepton channel are also reported in Table 11. The measured values
are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter,
and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved
categories. The predictions are from MadGraph5_aMC@NLO 2.4.3 at LO only, and no higher order
corrections are included; the theoretical uncertainties due to the PDF, missing higher-order corrections,
and parton-shower modeling are estimated as described in Section 8. The measured fiducial cross sections
are generally consistent with the SM predictions.

Table 10: Summary of predicted and measured fiducial cross sections for EW VV j j production. The three lepton
channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two
signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved
category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength
parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the
measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic
uncertainty (syst.).

Fiducial phase space Predicted σfid,SM
EWVV j j

[fb] Measured σfid,obs
EWVV j j

[fb]

Merged 11.4± 0.7 (theo.) 12.7± 3.8 (stat.) +4.8
−4.2 (syst.)

Resolved 31.6± 1.8 (theo.) 26.5± 8.2 (stat.) +17.4
−17.1 (syst.)

Inclusive 43.0± 2.4 (theo.) 45.1± 8.6 (stat.) +15.9
−14.6 (syst.)
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Table 11: Summary of predicted and measured fiducial cross sections for EW VV j j production in the three lepton
channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own
signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the
merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.).
For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic
uncertainty (syst.).

Fiducial phase space Predicted σfid,SM
EWVV j j

[fb] Measured σfid,obs
EWVV j j

[fb]

Merged

0-lepton 4.1± 0.3 (theo.) 10.1± 3.3 (stat.) +4.2
−3.8 (syst.)

1-lepton 6.1± 0.5 (theo.) 2.0± 1.5 (stat.) +2.9
−2.8 (syst.)

2-lepton 1.2± 0.1 (theo.) 2.4± 0.6 (stat.) +0.8
−0.7 (syst.)

Resolved

0-lepton 9.2± 0.6 (theo.) 22.8± 7.4 (stat.) +9.4
−8.5 (syst.)

1-lepton 16.4± 1.0 (theo.) 5.5± 4.1 (stat.) +7.7
−7.5 (syst.)

2-lepton 6.0± 0.4 (theo.) 11.8± 3.0 (stat.) +3.8
−3.5 (syst.)

Inclusive

0-lepton 13.3± 0.8 (theo.) 32.9± 10.7 (stat.) +13.5
−12.3 (syst.)

1-lepton 22.5± 1.5 (theo.) 7.5± 5.6 (stat.) +10.5
−10.2 (syst.)

2-lepton 7.2± 0.4 (theo.) 14.2± 3.6 (stat.) +4.6
−4.2 (syst.)

11 Conclusion

A measurement of VV j j (V = W, Z) electroweak production using
√

s = 13TeV pp collisions at the LHC
is presented. The data were collected with the ATLAS detector in 2015 and 2016 and correspond to
a total integrated luminosity of 35.5 fb−1. The study explores the final states with one boson decaying
leptonically, and the other boson decaying into a pair of quarks, identified either as two separate jets or as
one large-radius jet.

The VV j j electroweak production cross section is measured with a significance of 2.7 standard deviations
over the background-only hypothesis. The expected significance is 2.5 standard deviations. The measured
signal strength relative to the leading-order SM prediction is µobs

EWVV j j
= 1.05 ± 0.20(stat.)+0.37

−0.34(syst.).
The fiducial cross section of VV j j electroweak production is measured to be σfid,obs

EWVV j j
= 45.1 ±

8.6(stat.)+15.9
−14.6(syst.) fb.
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