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We discuss unitarity constraints on the dynamics of a system of three interacting particles. We
show how the short-range interaction that describes three-body resonances can be separated from
the long-range exchange processes, in particular the one-pion-exchange process. It is demonstrated
that unitarity demands a specific functional form of the amplitude with a clear interpretation: the
bare three-particle resonances are dressed by the initial- and final-state interaction, in a way that
is consistent with the considered long-range forces. We postulate that the resonance kernel admits
a factorization in the energy variables of the initial- and the final-state particles. The factorization
assumption leads to an algebraic form for the unitarity equations, which is reminiscent of the
well-known two-body-unitarity condition and approaches it in the limit of the narrow-resonance
approximation.

PACS numbers: 11.80.m, 11.80.Cr, 11.80.Et, 11.80.Jy

I. INTRODUCTION

Unitarity of the S-matrix is one of the most important constraints on reaction amplitudes. On one hand, it
ensures probability conservation in scattering reactions, on the other, when combined with analyticity [1], it enables
to correlate structures in measured cross sections with properties of the underlying resonances. The vast majority of
hadron resonances can be classified by their valence quark (antiquark) content. A much richer spectrum, however,
is expected from Quantum Chromodynamics (QCD) and, consequently, QCD dynamics cannot be fully understood
without exploring hadron structure beyond the quark model. Recent experiments have identified numerous signatures
of such exotic states as, for example, XY Z states in the charmonium sector [2–4], and π1(1600), π2(1880), and a1(1420)
in the light meson sector [5, 6]. In parallel, great progress has been made in calculating hadron reactions from first
principles, in lattice QCD [7–10]. Since the majority of these new states is observed decaying to three particles, it
is necessary to develop 3→3 scattering amplitudes that satisfy the S-matrix principles and therefore can be used to
extract resonances from the analyses of the experimental and lattice simulation data [11–13]. Furthermore, a better
understanding of three-hadron dynamics is necessary to take full advantage of the large data sets from COMPASS,
LHCb, CLAS, GlueX, BESIII, and BelleII where genuine three-body effects have already been observed (e.g. see the
a1(1420) phenomenon [6, 14–16]).

The goal of this paper is to present an approach to construct the 3→ 3 scattering amplitude within the isobar
representation, which satisfies unitarity and analyticity of partial waves by separating the long-range interactions
from the short-range QCD dynamics. The isobar representation, when dealing with three particles, is a form of the
amplitude written as a sum of three partial-wave series, one for every pair of particles [17]. An alternative, partial-
wave representation of the scattering amplitude corresponds to projecting the amplitude onto a single set of partial
waves with a particular choice of the third particle. In the partial-wave representation, in order to reproduce the
threshold singularities in all two-body subchannels, it would be necessary to explicitly include an infinite number of
partial waves. The isobar representation has the advantage that such singularities can be accounted for even with a
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finite number of isobar terms. Moreover, the isobar representation naturally incorporates the permutation symmetry
required when dealing with indistinguishable particles.

In our model, we explore the idea separating the scattering amplitude components according to the different
interaction ranges. The long-range interaction is dominated by one-pion-exchange (OPE) processes and is inherent
to the three-particle dynamics. The short-range interaction is expected to govern resonance formation. Unitarity
in three-particle systems has been studied extensively in the past [1, 18–26]. For the derivation of the unitarity
equations, we follow the work of G. Fleming [21]. However, the model which we deduce from said equations has a
major difference compared to Ref. [21, 23]. In the latter, discontinuity relations for the isobar-spectator partial waves
were derived in all relevant variables in order to formulate the N/D equations [27]. Schematically, the D function
is constructed from a driving term N in such a way that the full amplitude satisfies unitarity. In contrast, in our
approach we identify an analytical solution of the unitary relations without solving the complicated N/D equations.
Specifically, for the long-range part one solves a linear integral equation of the Blankenbecler and Sugar (BS) type [28]
(for application to the three-body problem see Ref. [12, 29–32]), while the short-range interactions are incorporated
additively. As we demonstrate, unitarity requires to append an infinite series of exchange processes to both sides of
the short-range kernel. Such an infinite series of rescatterings is provided implicitly by the solutions of the well-known
Khuri-Treiman (KT) equations [33–42]. The KT framework is based on the assumption of the analytic continuation
of two-body unitarity equation from the scattering domain to the three-particle decay region. The KT framework
provides a quantitative estimate for the size of rescattering corrections. As it turns out, these corrections are the
only ingredients that enter the unitarity constraint to the properties of resonances. In Ref. [34, 38] it was shown that
KT equations contain a particular realization of the 3→ 3 dynamics. We adopt this model and matched with the
three-body unitarity requirements.

The central idea of the paper is the factorization assumption. Guided by the factorization of residues at the
resonance pole, we assumed that the short-range kernel can be written as a product of functions that depend on
either energy variables of the incoming particles or the outgoing ones. The full 3→ 3 scattering amplitude does not
factorize due the one-pion-exchange process. However, as soon as the short-range part of amplitude is considered
separately, the factorization ansatz can be implemented consistently. Under this assumption, unitarity becomes an
algebraic constraint that is reminiscent of the two-body-unitary condition.

The paper is organized as follows. In Sec. II we present a general model consistent with three-body unitary that
treats separately the long- and short-range interactions. We show that the scattering amplitude can be written as a
sum of a function L representing the ladder of exchanges and another one, R, which contains the resonance physics
dressed by initial- and final-state interactions. In Sec. III, the factorization assumption is discussed. Following the
simplification of the constraints, we derive two practical limits when the subchannel interaction is described by a
narrow resonance. Sec. IV is dedicated to the relation of the three-body-unitarity and Khuri-Treiman model. We
discuss a three-particle-production amplitude and a specific realization of the long-range kernel. Conclusions and
outlook are given in Sec. V.

II. A GENERAL UNITARY MODEL

In order to simplify the presentation, we consider the case of three identical, scalar particles with mass mπ for which
the interaction is only significant in the S-wave. In our simple setup we do not consider the isospin symmetry assuming
that the generalization is straightforward and is required to be done when higher partial waves are included. The
scattering amplitude is defined as the expectation value of the transition operator T sandwiched between projected
three-particle states as discussed in Appendix A. To derive the isobar representation, the symmetrized three-particle
state is decomposed into three series of partial-wave-projected states. The partial-wave projection of the three-particle
state is done in two steps. First, the state of a selected pair of particles is expanded in the helicity basis. Second, the
partial-wave expansion is performed in the overall center-of-mass frame combining the particle-pair state (isobar), and
the remaining third particle (bachelor). The interaction operator is split into the fully connected Tc and the partially
disconnected Td following the connectedness principle of Ref. [1]. An equivalent separation is obtained using the LSZ
reduction [43, 44]. We write, schematically,

=
∑
9

(
3 + ×

)
(1)

with T =
∑3
Q=1 T

Q
d + Tc, where the sum for the identical particles acting on different subchannels gives a factor of 3

for the disconnected part (for details see Appendix A, also discussions in Ref. [1, 21]). The sum over 9 combinations
count all possible ways of choosing the third particle in the initial and final state. Each of the nine connected terms
in Eq. (1) is considered as a partial-wave series.
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The S-wave projection of the two-particle scattering amplitude is denoted by t(σ), where σ is the invariant mass
squared of these two particles. For the S-wave amplitude, each of the nine connected amplitudes in Eq. (1) is given by
the same scalar function of the three-particle invariant mass squared, s and the two isobar invariant masses squared
in the initial and final state, respectively. Schematically,

= t(σ), (2)

× ≡ = t(σ′) T (σ′, s, σ) t(σ), (3)

By separating the t(σ(′)) functions on both sides, we define the amputated isobar amplitude which is indicated by
the large empty circle in the drawing. As shown in Appendix A, the unitarity equation is simpler for the amputated
isobar amplitude than for the fully connected amplitude. The left-hand singularities of t(σ) are here ignored, but they
could be taken care of by replacing t(σ) in Eq. (3) with the Omnès’ function [45].

The unitarity condition, that is T − T † = iT †T for the abstract interaction operator, splits into two separate
equations: one for the connected amplitude, and another one for the disconnected amplitude. The condition for the
disconnected part reproduces the unitarity relation for the 2→ 2 scattering amplitude t(σ):

− † t(σ)− t†(σ) = i t†(σ)ρ(σ)t(σ) θ(σ − 4m2
π). (4)

Here, the two-body phase-space factor is given by ρ(σ) = λ1/2(σ,m2
π,m

2
π)/(8πσ). The Källén triangle func-

tion is defined as λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx [46]. The amplitude t†(σ) ≡ t∗(σ) is de-
fined as the expectation value of the operator T † between the S-wave projected two-particle states. Similarly,
T †(σ′, s, σ) = T ∗(σ, s, σ′). Moreover, for strong interactions time-reversal symmetry implies T (σ′, s, σ) = T (σ, s, σ′).
The three-body unitarity equation for the reduced S-wave amplitude T (σ′, s, σ) then reads (cf. Appendix A):

T (σ′, s, σ)− T †(σ′, s, σ) =

2i
1

λ
1/2
s (σ′)

1

8π

∫ σ+(σ′,s)

σ−(σ′,s)

dσ′3 t(σ
′
3)T (σ′3, s, σ) (5a)

+
i

3

∫ (
√
s−mπ)

2

4m2
π

dσ′′

2π
T †(σ′, s, σ′′) t(σ′′)t†(σ′′) ρ(σ′′)ρs(σ

′′) T (σ′′, s, σ) (5b)

+
2i

3

1

(8π)2

∫∫
φ(σ′′2 ,s,σ

′′
3 )>0

dσ′′2dσ′′3
2πs

T † (σ′, s, σ′′2 )t† (σ′′2 )t(σ′′3 )T (σ′′3 , s, σ) (5c)

+ 2i
1

λ
1/2
s (σ)

1

8π

∫ σ+(σ,s)

σ−(σ,s)

dσ2 T †(σ′, s, σ2)t†(σ2) (5d)

+ 6i
2πs

λ
1/2
s (σ′)λ1/2s (σ)

θ+(φ(σ′, s, σ)). (5e)

Here, ρs(σ) = λ
1/2
s (σ)/(8πs) with λs(σ) ≡ λ(s, σ,m2

π) describes the isobar-bachelor phase-space factor. The term
in Eq. (5b) gives a direct coupling of the particles combined into the isobar, while the term (5c) involves the recou-
pling, i.e. the pairs of particles coupled to an isobar are different for the amplitudes T and T †. A term in Eq. (5e)
represents a real-particle exchange between isobars in the initial and final state, which is kinematically allowed only
in the decay region, i.e. the exchanged particle can only be on its mass shell when, for given s, σ and σ′ are inside
the kinematic limits of the Dalitz plot. Therefore, the decay region is defined by the condition φ(σ′, s, σ) > 0, with
φ = σσ′(3m2

π + s−σ−σ′)−m2
π(s−m2

π)2 being the Kibble function [47], together with s > 9m2
π and σ(′) > 4m2

π. The
function θ+(φ(σ′, s, σ)) combines four Heaviside functions that implement these restrictions (cf. Eq. (A21)). For fixed
s and σ′, the integration limits in Eq. (5) are determined by the Dalitz plot boundary, φ(σ′, s, σ) = 0, which yields

σ±(s, σ) = (s + 3m2
π − σ)/2 ± λ1/2s (σ)λ1/2(σ)/(2σ) as solutions. To simplify the further discussion, we introduce a

shorthand notation, in which the integrations over the σ-variables are implicit. In order to achieve this, we unify the
integration limits for all integrals in Eq. (5) with use of Heaviside functions. In our shorthand notation, Eq. (5) reads

T − T † = DτT + T †(τ − τ †)T + T †τ †DτT + T †τ †D +D, (6)

where we defined τ(σ) = t(σ)ρs(σ)/3 and

D (σ′, s, σ) = 2πi
6s

λ
1/2
s (σ′)λ1/2s (σ)

θ+(φ(σ′, s, σ)). (7)
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A multiplication by τ in the shorthand notation implies an integral over a sub-energy variable σ, shared by τ and two
functions on both sides of it in the product:

XτY ←→
∫ (
√
s−mπ)

2

4m2
π

dσ

2π
X(. . . , s, σ)ρs(σ)t(σ)Y (σ, s, . . .). (8)

Note that we used Eq. (4) to identify the term in Eq. (5b) with the second term on the right side of Eq. (6).
Interestingly, the lower integration limit in Eq. (8) can be chosen smaller then 4m2

π. The reason for this appearing

arbitrariness is given by the fact that the integration limits are truncated to the physical region, ie σ(′) > 4m2
π,√

s > 9m2
π and φ(σ′, s, σ) > 0, by the Heaviside functions in every term of Eq. (6).

It is important to realize that Eq. (6) does not specify a model for the scattering amplitude unambiguously. It is a
constraint that has to either be checked for whatever model is considered, or, built in explicitly during the construction
of the model. For our model construction, we follow the latter approach. As a first step, we decompose T (σ′, s, σ)
into a sum of a long-range piece, described by what we call the ladder amplitude L, and the short-range term, which
we refer to by R,

T (σ′, s, σ) = L(σ′, s, σ) +R(σ′, s, σ). L + R (9)

There are no assumptions implied in the decomposition, however, it will lead to a clear intuitive picture of the
interactions. In the remainder of this section, we will give meaning to the functions L and R one after the other and
demonstrate how a unitary model for the scattering amplitude emerges.

We use a general ansatz, the BS-type equation, 1 which satisfies the three-body-unitarity constraint in Eq. (6) as
suggested in Ref. [12]. The ladder amplitude, L is defined via iterating the long-range kernel B (σ′, s, σ):

L L = B + LτB = B + BτL. + L (10)

The kernel B satisfies

B − B† = D, (11)

where D is the discontinuity of the real-particle exchange introduced in Eq. (7). This condition does not specify B
uniquely (see discussion on different choices in Ref. [13]). The discussion in the rest of this section is general, while
we will choose a specific form of the kernel in Sec. IV.

The unitarity of the amplitude L given by Eq. (10) is proven already in Ref. [12] formally inverting the operators.
Using the short notation from Eq. (8), the linear proof becomes straightforward:

L − L† = L†(τ − τ †)L+ (1 + L†τ †)L − L†(1 + τL)

= L†(τ − τ †)L+ (1 + L†τ †)B(1 + τL)− (1 + L†τ †)B†(1 + τL)

= L†(τ − τ †)L+ (1 + L†τ †)D (1 + τL)

= DτL+ L†(τ − τ †)L+ L†τ †DτL+ L†τ †D +D. (12)

were the five terms in Eq. (12) directly correspond to the five terms in Eq. (6). Inserting Eq. (9) into the unitarity
equation (6) and eliminating contributions from the ladder (cf. Eq. (12)), we obtain the unitarity constraint for R,
which reads

R−R† = R†(τ − τ †)R+R†τ †DτR R R + R R (13a)

+
(
Dτ + L†(τ − τ †) + L†τ †Dτ

)
R

(
+ L + L

)
R (13b)

+R†
(
τ †D + (τ − τ †)L+ τ †DτL

)
. R

(
+ L + L

)
(13c)

The interpretation of Eq. (13) is rather clear as illustrated by the diagrams: The two terms (13a) represent intermediate
states between R, either with matched isobar sub-energies or with recoupled ones. The terms (13b) and (13c) are

1 In Ref. [12], this equation is referred to as Bethe-Salpeter equation. We find it more appropriate to name it Blankenbecler-Sugar
equation following Ref. [28], where a similar form of equation was proposed in the context of the S-matrix approach.
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reminiscent of the unitarity relation of the ladder with the exchange interaction attached to R from the left- and the

right-hand side. The latter fact motivates the introduction of the reduced amplitude R̂(σ′, s, σ) defined by,

R R ≡ (1 + Lτ) R̂ (τL+ 1).
(

+ L
) (

L +
)
, (14)

where the structures (1 + Lτ) and (τL+ 1) generate an infinite sum of successive attachments of exchange processes

to the left and right of R̂. After combining Eq. (13) and Eq. (14), we find that the terms in Eq. (13c) and Eq. (13b)
are eliminated due to the unitarity property of L. For instance, the term (13b) can be reduced using the following:(

Dτ + L†(τ − τ †) + L†τ †Dτ
)
(1 + Lτ)R̂ = (1 + Lτ) R̂ − (1 + L†τ †) R̂.

Straightforward algebraic manipulations yield

R̂ − R̂† = R̂†(1 + τ †L†)
[
τ − τ † + τ †Dτ

]
(1 + Lτ) R̂ (15)

= R̂†
[
τ − τ † + τLτ − τ †L†τ †

]
R̂. (16)

An important observation that we explore in the next section is that Eq. (15) is reminiscent of two-body-unitary
equations, however, with notable differences. The phase-space factor, proportional to τ −τ †, is modified by the ladder
of one-pion exchanges, i.e. the terms (1 + Lτ) and (1 + τ †L†). Moreover, it includes cross-channel terms τ †Dτ . It is

clear from Eq. (16) that a recursive solution 2 can be written down for R̂:

R̂ = X + X (τ + τLτ) R̂, (17)

where X (σ′, s, σ) is supposed to have no right-hand-cut singularities. It is a real function in the physical region, i.e.
X † = X , and plays the role of a K-matrix as commonly used in 2→ 2 scattering.

Equation (17) completes the discussion on the most broad class of models within the isobar approach. In particular,
we have found that T = L is a valid unitary amplitude. Furthermore, we showed that it can be extended by a function

R in the form of Eq. (14), where the exchange processes dress the amplitude R̂, while the latter obtains a simple
unitarity condition, i.e. Eq. (16). Using the terminology introduced in this section, we now compare several models
that are currently discussed in the literature [12, 13, 48]. The present model, as well as the one from Ref. [13],
are constructed for the partial-wave amplitude, in order to facilitate applications to resonance physics. In contrast,
Refs. [12, 48] keep the full scattering amplitude as a function of bachelor momenta, which is more suitable for finite
volume applications. The models of Ref. [12] and Ref. [13] explore a similar construction: the kernel function B
includes the one-pion-exchange and the contact term. A difference between these models can be found in the lower
integration limit in Eq. (8). As soon as the latter is smaller than 4m2

π, one obtains indeed the same value for T − T †
in (5), which is the only quantity constrained by unitarity. The value 4m2

π is employed in Ref. [13], the lower limit
is set to −∞ in [12] (see the detailed discussion in [13]). Treating the long-range exchanges as a separate ladder

term allowed us to focus on the short-range physics (i.e. function R̂), which is dressed with rescattering processes (see
Eq. (14)). One finds that the divergence-free function Kdf,3 introduced in Ref. [48] is analogous to our X function. The
divergent part of the scattering amplitude named D in Ref. [48] is equivalent to the ladder function L in our approach,
in case only the pion-exchange process is included to B. Despite these similarities, the exact relation between the two
approaches requires a more careful scrutiny, due to the different symmetrization procedure and construction of the
divergence-free part.

III. FACTORIZATION OF THE RESCATTERING

Equation (17) gives a general solution to the three-body unitarity problem, however, it is still a complicated
integral equation. In this section, we show how assuming factorization of final-state interactions helps to transform

2 The fact that Eq. (17) is a solution can be demonstrated as follows. First, rewrite the right-hand side of Eq. (16) as R̂†[Ô − Ô†]R̂,

with Ô = τ + τLτ . Then, two zero additions lead to:

R̂†
[
Ô − Ô†

]
R̂ =

[(
R̂† −X †

)
ÔR̂ − R̂†Ô†

(
R̂ − X

)]
+
[
X †ÔR̂ − R̂†Ô†X

]
.

Finally, due to the definition in Eq. (17) and its complex conjugation, the expression in the first square brackets vanishes. The expression
in the second brackets gives the left-hand side of Eq. (16), when using X † = X (since X is real).
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the constraint to an algebraic form. Since we are interested in the direct channel dynamics only, we can expand

R̂(σ′, s, σ) in powers of σ, and σ′: 3

R̂(σ′, s, σ) = R̂00(s) + σ′R̂10(s) + R̂01(s)σ + σ′R̂11(s)σ + . . . , (18)

where R̂ij(s) are distinguishable coefficients. We notice that every term factorizes in the variables σ′, s, and σ. By

plugging the expansion (18) into Eq. (15), we obtain an algebraic system of equations for the R̂ij(s). In order to

demonstrate the result, we truncate the expansion at the first term, R̂(σ′, s, σ) = R̂00(s) ≡ R̂(s). We arrive at a

fairly simple equation for the factorized kernel, R̂:

R̂(s)− R̂†(s) = i R̂†(s)Σ(s) R̂(s), (19)

where Σ(s) is given by,

Σ ≡ K†(τ − τ †)K +K†τ †DτK, K K + K K (20)

with the correction function K(s, σ),

K ≡ (1 + Lτ) 1. K = + L (21)

In the latter equations, we explicitly include a factor 1 in the last term to keep the integral short-hand notations from
Eq. (8) consistent.

The structure of the unitarity equation (19) is the same as that of the two-body unitarity in Eq. (4). The two-body
phase-space factor is replaced by the function Σ(s), which averages rescattering contributions over the three-body
phase space. As we saw before, the structure (1 + Lτ) 1 corresponds to an infinite number of successive attachments
of the long-range kernel on the left of source 1. Therefore, K(s, σ) represents the source function corrected by the
final state interaction. We identify the two contributions in Eq. (20) as a direct coupling of the particles paired into
the isobar term (the first term) as well as the recoupling term (second term), where the isobar on the right is formed
by including the bachelor particle from the left. As anticipated from the general unitarity principle, the term Σ(s)
that determines the imaginary part of the amplitude is equal to an integral of the resonance decay amplitude squared
over the Dalitz plot. In case the subchannel interaction is described by a single resonance, the first term in Eq. (20)
is an intensity of the three symmetric resonance bands, one for every subchannel, while the second term gives the
interference contribution that arises from the band overlaps.

The algebraic unitary equation is straightforward to satisfy, e.g. in K-matrix models [49]. In order to keep only
those singularities that are demanded by unitarity on the first sheet of the scattering amplitude, a common dispersive
construction can be employed [50]:

R̂−1(s) = X−1(s)− iΣ̃(s)/2, Σ̃(s) =
s

πi

∫ ∞
9m2

π

Σ(s′)
s′(s′ − s)

ds′, (22)

where Σ̃(s) represents the dressed isobar-bachelor-loop integral (the self-energy function) that encodes the infinite
series of rescattering processes between the three particles, and X (s) is an arbitrary function that incorporates the
underlying QCD dynamics. The latter is commonly parametrized by a sum of pole terms and polynomial components.
By construction, X (s) must be real in the physical region. Our factorized model excludes other cross-channel processes,
such as two-pion exchanges, or the presence of 3-body resonances in the t-channel. However, those exchanges produce
distant left-hand singularities and we suppose that the effect of them can be incorporated effectively via left-hand

singularities of the function R̂(s), i.e. included in X , analogously to the customary techniques used in analyses of
two-body reactions.

As one can deduce from Eq. (20), the function K enters in combinations such as t(σ)K(s, σ), therefore it enters
solely to modify the two-body scattering amplitude. Those corrections becomes small in the narrow-resonance limit.
For practical applications, we can identify several approximations:

3 An alternative form of the factorization ansatz is R̂(σ′, s, σ) = kf (σ′)R̂(s)ki(σ), where ki(σ) and kf (σ) are arbitrary functions without
the right-hand cut. Factorization of the residues at the resonance pole would motivate such a model.
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• An approximate-three-body-unitarity approach as employed in Ref. [51], which neglects the effects of final-state
interactions. In this case, the model for the self-energy function is

Σapprox = 1 (τ − τ †) 1 + 1 τ †Dτ 1, + (23)

where the first term involves an integral over the isobar mass according to Eq. (8), and the second term contains
two integrals. This model still includes a genuine three-body effect: the isobar recoupling. However, the
corrections to the lineshape of the isobar are omitted.

• The quasi-two-body approximation proposed in Ref. [52] arises when also the recoupling terms are dropped.
The function Σqtb(s),

Σqtb(s) = 1 (τ − τ †) 1 =

∫ (
√
s−mπ)

2

4m2
π

ρs(σ)
t†(σ)ρ(σ)t(σ)

2π
dσ

stable−−−−→
isobar

ρs(m
2
R), (24)

is approximately equal to the two-body phase space calculated for the nominal mass of the subchannel resonance,
mR above the isobar-bachelor threshold. Σqtb(s) continues smoothly to the region below the threshold and
vanishes at the three-pion threshold.

IV. CONNECTING TO KHURI-TREIMAN

We have shown that the requirement of three-body unitarity results in the necessity of the inital- and final-state
interactions. The latter was accomplished by attaching the structure (1+Lτ) on both sides of the resonance amplitude.
The Khuri-Treiman approach investigates the same final-state interaction phenomena, but within the context of a
production amplitude. In this section we demonstrate that the KT framework can be brought to a form that matches
the general model outlined in section II, with a specific ladder operator L0, generated from a non-trivial kernel B0.
Moreover, the KT amplitude has well-defined analytic properties due to the usage of dispersive integrals. This makes
the approach very convenient once the resonance amplitude is continued to the unphysical sheets and the properties
of the resonance poles are extracted. Factorization has been implemented customarily by giving an s-dependence to
the subtraction constants in the KT equations [53].

Experimentally, 3→3 scattering cannot be observed. Nevertheless, three-particle interactions appear implicitly in
the context of production reactions: in decays of heavy hadrons (1→ 3 process), 2→ 3 scattering (e.g. pp̄ and e+e−

annihilation processes), as well as embedded in 2 → 4 kinematics (e.g. the diffractive production off a fixed target).
To present the KT framework, we consider a general production reaction, where the 3π-state is produced from a state
|source〉. The T -matrix element for the production is parametrized as

= F (s, σ1, σ2, σ3) (25)

=

3∑
i=1

F(σi, s)t(σi) =
∑
3

where we follow the same level of simplification as before, confining ourselves to a system of three identical particles
with mass mπ. We write the production amplitude F as a sum of three partial-wave series, which are truncated to
the S-wave in all subchannels. Furthermore, we introduce the amputated amplitude F(σi, s), similarly as in Eq. (3).

The dynamics of the production amplitude is controlled by three-body unitarity. A derivation of the constraint
for F proceeds in a similar way to that for the 3→3 amplitude derived in Appendix A. The KT model, in contrast,
employs two-body unitarity, which is valid in the scattering domain. By means of analytic continuation, the condition
is extended to the decay region [33, 36]. The KT constraint and the relevant three-body-unitarity conditions for F
read:

Three-body unitarity : F(σ+, s+)−F(σ−, s−) = DτF + T †(τ − τ †)F + T †τ †DτF , (26)

Khuri-Treiman model : F(σ+, s+)−F(σ−, s+) = DτF , (27)

where the subscripts of the energy variables, s and σ indicate the sign of the small imaginary part added to these
variables, which places the values above or below the unitarity cut in the corresponding variable. The expectation value
of the T † operator sandwiched between the source state and the three-particle state is replaced by F† = F(s−, σ−),
according to the relation established in Ref. [57]. The s-dependence in Eq. (27) is parametric, however a small positive
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imaginary part is required to continue into the decay region. Precisely, the s+ prescription was established by checking
consistency of the dispersive framework with perturbation theory [36]. Applying the Cauchy theorem to Eq. (27), one
establishes a relation between the amplitude F(σi, s) and the cross-channel projections [38]:

F(σ, s+) = Ĉ(σ, s) +
1

2πi

∫ ∞
4m2

π

dσ′

(σ′ − σ)

2i

λ
1/2
s+ (σ′)

1

8π

∫ σ+(σ′,s+)

σ−(σ′,s+)

dσ′′ t(σ′′)F(σ′′, s)︸ ︷︷ ︸
=DτF

, (28)

where Ĉ(σ, s) stands for the subtraction coefficients and is often parametrized by a polynomial in σ. Its s-dependence
is not controlled by the KT formalism. It is important to note that since the dispersive integral in σ′ goes beyond
the physical domain 4m2

π < σ′ < (
√
s−mπ)2, the integration limits σ±(σ′, s) require an analytic continuation of the

expression t(σ′′)F(σ′′, s) into the complex σ′′-plane. The solution of Eq. (28) is fully determined by a specific source

term Ĉ, and can be obtained via an iterative strategy starting from the zero-order perturbation F (0) = Ĉ [58–61].
The algebraic analysis of Eq. (28) is convenient in the form of a so-called single-variable representation (SVR),

which is obtained once the order of the integrals over σ′ and σ′′ is swapped. The integral over σ′′ can be pulled to
the front, leading to a modification of the integration limits as shown in Ref. [34, 38, 62]. The SVR becomes

F(σ, s) = Ĉ(σ, s) +

∫ (
√
s−mπ)

2

−∞

dσ′′

2π
B0(σ, s, σ′′)τ(σ′′)F(σ′′, s). + , (29)

where τ(σ′′) = t(σ′′)ρs(σ′′)/3. We use the symbol B0(σ, s, σ′′) to denote a function known as the Aitchison-Pasquier
kernel [34, 38]. This kernel and its analytic structure are rather complicated, but they have been discussed in detail in
Refs. [34, 37–39, 63]. It was shown that B0 can be written as a sum of the S-wave projection of the one-pion-exchange
diagram, i.e. E =

∫
dz/(m2

π − u(s, σ, σ′, z)), where u(s, σ, σ′, z) = m2
π + σ′ − (s + m2

π − σ)(s + σ′ − m2
π)/(2s) +

λ
1/2
s (σ)λ

1/2
s (σ′) z/(2s), and an extra term E23. Using the analytic form of B0, it can be shown that the extra terms

do not contribute to the discontinuity in s, such that the condition B0 − B†0 = D holds [34]. Therefore, B0 is a valid
model for B in Eq. (10). It generates a specific ladder amplitude for the 3→3 interaction, L0(σ′, s, σ), which is defined
by the integral equation L0 = B0 + L0τB0. We use the same short-hand notations, understanding the lower limit of
the integral in Eq. (29) to be −∞. The validity of the function L0 as a 3→3 model was discussed in Ref. [34, 38]. A
known issue of the kernel B0 has been pointed in Ref. [34], namely that the time-reversal symmetry of the generated
ladder diagram is explicitly broken by the presence of the term E23(σ′, s, σ). As can be shown analytically, this term
is not symmetric under permutation of σ and σ′ [39]. However, the scale of the violation, i.e. how strongly the term
E23 contributes compared to the symmetric term E , is unclear. It should be addressed in numerical studies.

The solution of the Eq. (29) can be expressed through L0 as seen by applying iterations,

F = Ĉ + L0τ Ĉ = (1 + L0τ)Ĉ. + L (30)

The result recovers our ansatz Eq. (14) for the resonance part of the model and justifies the interpretation of the
structure (1 +Lτ) as the final-state interaction. In practical applications of the KT framework, Eq. (28) is used. The

total invariant mass s is fixed and the function Ĉ is parametrized by a polynomial in σ analogously to Eq. (18). Hence,
the solution of the Eq. (28) is a linear combination of functions Ki = (1 + Lτ)σi with the exact same polynomial

coefficients (in our simplification, Ĉ = c0 and therefore only K ≡ K0 appears). As we found in Sec. III, the function
K is the only reflection of the long-range interactions that enters the resonance properties via the self-energy loop
(see Σ(s) in Eq. (20)). Due to the specific long-range kernel B0, the KT framework is not a universal approach.
Nevertheless, since it includes the dominant one-pion-exchange component, it should cover the most important effects
of the long-range interaction. Extensive practical studies of the KT framework were performed in Ref. [64]. For
the three-pion system with quantum numbers IG(JPC) = 0−(1−−) and P -wave subchannel interaction (ρ meson),
significant effects of final-state interactions were found for the energy of the system close to the ω and φ mesons. It was
demonstrated that the importance of low-energy rescattering decreases (K → 1) as the total energy becomes large,
e.g.
√
s → mJ/ψ. Using the KT-framework, we develop a good intuition and obtain a useful pictorial interpretation

of the complicated three-body dynamics.

V. CONCLUSIONS AND OUTLOOK

We have outlined the construction of general unitary models for the analysis of 3→ 3 processes based on the idea
of a separate description of long- and short-range forces. At first, the long-range interactions have been introduced in
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terms of the ladder amplitude L, which is a solution of the BS-type integral equation and iterates the kernel function
B to all orders. The function B has been only restricted by the condition B − B† = D, which is well satisfied by e.g.
a one-pion-exchange process. Due to the recursive construction, the ladder amplitude, L satisfies the three-particle
unitarity constraint by itself. This amplitude has been extended additively by an a priori unknown function R, that
is used to parametrize the remaining short-range interactions. Unitarity of the total amplitude, T = L+R, implies
a particular requirement on the function R. We have shown how the unitarity constraint can be respected by a

general ansatz for R introducing the resonance kernel R̂, dressed by the initial- and final-state interaction operators
constructed from L. This dressing establishes all relevant normal threshold singularities in the two-body sub-energy

variables such that the resonance kernel R̂ is supposed to have only three-particle-threshold singularity in the overall

energy variable. Therefore, it is possible to write a very general solution for the resonance kernel R̂, in the form of
the integral K-matrix parametrization.

We have imposed a factorization ansatz for the resonance kernel R̂, that has led to a simplification of the unitarity
requirement. This results in an algebraic equation in a form which is similar to the conventional two-body-unitary
condition. Therefore, all common techniques used for the two-body reaction become applicable. Under factorization,
the long-range interaction and the induced final-state rescattering are packed into the dressed isobar-bachelor loop
function (the resonance self-energy function). When the two-particle interaction is described by a narrow resonance,
the formalism resembles the known quasi-two-body unitarity approach [52].

We have investigated how the known Khuri-Treiman formalism gives a specific model for the long-range kernel B.
Due to the usage of the dispersive Khuri-Treiman approach, we obtain the advantage that the amplitude has a known
and simple analytic structure. Furthermore, we have argued that the Khuri-Treiman formalism serves as a convenient
tool to study the strength of rescattering corrections. As follows from our derivation, the rescattering corrections
provide the only ingredient which is needed to evaluate the resonance self-energy function.

Our model is a proposal suitable for studies of the three-particle resonances. Using the relation of the scattering
amplitude and the production amplitude, the model can be applied to more complicated hadronic reactions, as for
example the process π p→ 3π p [5, 54], or in hadronic tau decays, τ → 3π ντ [51, 65].

The present work just illustrates the basic ideas in the rather artificial context of a restriction to S-waves only.
Thus, in the next step the formalism should be extended for an arbitrary value of the total angular momentum. The
system of three pions also requires a consistent isospin treatment. An extension of this work to the coupled-channel
problem is needed for further investigation of the 3π−KK̄π coupled system suggested to be responsible for the exotic
candidate a1(1420) [6, 15, 66]. We have left aside the problem of time-reversal symmetry violations in KT, which
needs to be addressed in the practical cases.
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Appendix A: Derivation of the three-body-unitarity equations

A spinless-particle state |p〉 has the customary relativistic normalization〈
p′
∣∣p〉 = 2E(2π)3δ3(p′ − p) ≡ δ̃p′p. (A1)

We define a state of two identical particles that explicitly incorporates permutation properties:

|p1p2〉 =
|p1〉 |p2〉+ |p2〉 |p1〉

2
. (A2)

A state of three identical particles is defined by summing over all possible permutations of the particle-momenta

|p1p2p3〉 =
1

3!
(|p1〉 |p2〉 |p3〉+ symm.)

=
1

3

∑
a

|pa1〉 |pa2pa3〉 =
1

3

∑
a

|a〉 , (A3)
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where we introduced a compact notation for the state |a〉 = |pa1〉 |pa2pa3〉, symmetrized over the momenta pa2 , pa3 ,
i.e. |1〉 = |p1〉 |p2p3〉, and the definition of the other states |2〉 and |3〉 follow from the circular permutation. The state
|p1p2p3〉 belongs to the direct product of three Hilbert spaces, one for every particle, V1 ⊗ V2 ⊗ V3 [67] The particles
in the state cannot be distinguished by their momentum, however they belong to different subspaces, VQ, Q = 1, 2, 3.
The subspace index is often omitted in the equations to simplify notations.

The identity operator is defined on the basis of symmetrized states as,

I =

∫
(d̃p) |p1p2p3〉 〈p1p2p3| , (d̃p) =

d3p1
2E1(2π)3

d3p2
2E2(2π)3

d3p3
2E3(2π)3

, (A4)

where we use a short notation for the product of integrals over the 3-momenta. Using the decomposition given in
Eq. (A3) we can cast the expression for the identity operator in the symmetrized there-particle Hilbert space into the
following convenient form

I =
1

9

∑
a,b

∫
(d̃p) |a〉 〈b|

=
1

3

∫
(d̃p) |1〉 〈1|+ 2

3

∫
(d̃p) |2〉 〈3| , (A5)

The integral is fully symmetric under permutation of particle indices. Therefore, we were able to gather terms which
mix bachelor indices and those which do not. For instance, the term

∫
(d̃p) |1〉 〈1| translates to

∫
(d̃p) |2〉 〈2| by

interchanging the integration variables p1 ↔ p2 and using the symmetry of the state in Eq. (A2) as follows,

|p1〉 |p2p3〉
p1↔p2−−−−→ |p2〉 |p1p3〉 = |p2〉 |p3p1〉 .

The Lorentz-invariant scattering matrix element M is defined as the expectation value of the transition operator T

〈p′1p′2p′3|T |p1p2p3〉 = (2π)4δ4

(
3∑
i=1

p′i −
3∑
i=1

pi

)
M, (A6)

where the initial (final) particle momenta are denoted by pi (p′i), i = 1, 2, 3.
The unitarity condition for the S-matrix, i.e. S†S = I, transforms to a relation for the transition operator T :

T − T † = iT †T . This constraint for operators in the abstract Hilbert space leads to a constraint on the matrix
elements by calculating the expectation-value with initial and final three-particle states

〈p′1p′2p′3|T − T † |p1p2p3〉 = i

∫
(d̃p′′) 〈p′1p′2p′3|T † |p′′1p′′2p′′3〉 〈p′′1p′′2p′′3 |T |p1p2p3〉 ,

where we inserted the resolution of the identity from Eq. (A4). The same equation holds for the states with reduced
symmetry |a〉. Using Eq. (A5) and Eq. (A3), we get

〈b′|T − T † |a〉 =
i

3

∫
(d̃p′′) 〈b′|T † |1′′〉 〈1′′|T |a〉+

2i

3

∫
(d̃p′′) 〈b′|T † |2′′〉 〈3′′|T |a〉 . (A7)

We split the interaction operator T using the connectedness principle of analytic S-matrix theory [1], into the

(fully) connected interaction Tc and the (partially) disconnected interaction Td by writing T = Tc +
∑3
Q=1 T

Q
d , where

TQd = IQ ⊗ T with IQ being identity in the subspace VQ, and T is an interaction operator that acts in the remaining
two-particle subspace. The disconnected piece Td is a part of the scattering in Eq. (A6) where only two particles
interact while the remaining bachelor particle propagates through. When sandwiched with the symmetrized states,
the disconnected part obtains a factor of 3 that indicates three possible ways to choose the non-interacting bachelor
particle. We obtain

〈p′1p′2p′3|
3∑

Q=1

TQd |p1p2p3〉 =
1

3

∑
a,b

〈b′|Td |a〉 =
1

3

∑
a,b

〈
p′b2p

′
b3

∣∣T |pa2pa3〉 δ̃a1,b′1 . (A8)

where the bachelor state is conserved as indicated by the delta function δ̃a1,b′1 (cf. Eq. (A1)). Using the con-
nectedness, Eq. (A7) is decomposed further. The left-hand side is separate an additive way, since it is only lin-
ear in T (as well as T †). Due to the product T †T , the right-hand side leads to different topologies of the types
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~p1

~p2

~p3~p2 + ~p3

~p3

~p2

~p1

~p ∗
2

~p ∗
3

θ23

φ23

θ1

φ1

zrf

xrf

yrf zh23

xh23

yh23

Reference Frame

β23

Figure 1: Definition of angles that parametrize three-body kinematics with respect to the given reference frame (see xrf , yrf ,
zrf) and helicity frame of the (23)-particles pair (see xh23 , yh23 , zh23).

“disconnected-disconnected”, “disconnected-connected” and “connected-connected” (see also Ref. [12, 21]). A part
of the “disconnected-disconnected” terms contains the spectator delta function and can be matched with the dis-
connected terms on the left-hand side. The remaining terms match the left-hand-side expression for the connected
amplitude.

〈b|Td − T †d |a〉 = i

∫
(d̃p′′) 〈b|T †d |1

′′〉 〈1′′|Td |a〉 , (A9)

〈b|Tc − T †c |a〉 = i

∫
(d̃p′′)

[1
3
〈b|T †c |1′′〉 〈1′′|Tc |a〉+

2

3
〈b|T †c |2′′〉 〈3′′|Tc |a〉 (A10)

+ 〈b|T †d |1
′′〉 〈1′′|Tc |a〉+ 2 〈b|T †d |2

′′〉 〈3′′|Tc |a〉
+ 〈b|T †c |1′′〉 〈1′′|Td |a〉+ 2 〈b|T †c |2′′〉 〈3′′|Td |a〉

+ 6 〈b|T †d |2
′′〉 〈3′′|Td |a〉

]
.

We remark a similar equation can be found in Ref. [21] (see Eq. (3.9)).
We define the partial-wave state |q1lλ〉 of two particles by projecting the symmetrized state from Eq. (A2) using

angular basis functions DJ
λλ′(Ω) [68, 69]:

|q1lλ〉 =
√

2l + 1

∫
dΩ23

4π
Dl
λ0(Ω23) |p2p3〉 ⇔ |p2p3〉 =

∑
lλ

√
2l + 1Dl

λ0(Ω23) |q1lλ〉 . (A11)

The spherical angles Ω23 = (θ23, φ23) are defined by the direction of the momentum ~p2 in the rest frame of the
pair (23), i.e. the frame with index h23 as shown in Fig. 1. We stress that zh23

is chosen such that spin projection
λ is conserved and becomes helicity when the state |q1lλ〉 is boosted from the h23 frame to the production frame.
The total momentum of this pair is denoted as q1. The partial-wave-projected two-particle state is referred to as the
isobar. The projection of the isobar-bachelor states to the total angular momentum is done analogously. In order
to define spherical angles, we consider a fixed reference system in the three-pion center-of-mass frame. Often in the
practical applications, the reference system can be aligned with final state particles such that some angles vanish.
However, consideration of the general case when this system does not reply on the three-pion orientation does not
complexify the equations. 4

|P, jmlλ〉1 =
√

2j + 1

∫
dΩ1

4π
Dj
mλ(Ω1) |p1〉 |q1lλ〉 ⇔ |p1〉 |q1lλ〉 =

∑
jm

√
2j + 1Dj

mλ(Ω1) |P, jmlλ〉1 , (A12)

4 The general case is realized when the reference frame is fixed by external kinematics, e.g. Gottfried-Jackson frame [70] for the diffractive
production.
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where the index 1 of the state |P, jmlλ〉1 indicates the choose of the subchannel in which the partial-wave projection
is performed. The total momentum of the three-particle system is P = p1 + p2 + p3, j and m are the total orbital
momentum and it’s projection to the zrf axis. Angles Ω1 are the spherical angles of the vector ~q1 = ~p2 + ~p3 in the
reference system as shown in Fig. 1.

Up to this point, the derivation is general and does not invoke any model-assumptions. For simplicity, we assume
in the following that the interaction is only significant in the S-wave, j = l = 0. The two-particle S-wave scattering
amplitude is denoted by t, i.e.

〈q′00|Td |q00〉 = (2π)4δ4(q′ − q) t(σ),

where σ is the two-particle invariant mass squared: σ = q2. The expectation value of the disconnected operator reads
from Eq. (A8) and Eq. (A11),

〈1′|Td |1〉 = (2π)4δ4(q′1 − q1)δ̃p′1p1 t(σ1). (A13)

Substituting Eq. (A13) into Eq. (A9), we obtain the standard two-body-unitarity relation

t(σ)− t†(σ) = it†(σ)ρ(σ)t(σ)θ(σ − 4m2
π). (A14)

The phase space, ρ(σ) is obtained by simplifying integrals on the right-hand side of Eq. (A9) as follows

ρ(σ)θ(σ − 4m2
π) =

∫
(d̃p′′)(2π)4δ4(q′′1 − q1)δ̃p′′1 p1

=

∫
d3p′′1

2E′′1 (2π)3
d3p′′2

2E′′2 (2π)3
d3p′′3

2E′′3 (2π)3
(2π)4δ4(q′′1 − q1) 2E1(2π)3δ3(p′′1 − p1)

=

∫
d3p′′2

2E′′2 (2π)3
d3p′′3

2E′′3 (2π)3
(2π)4δ4(q′′1 − q1) =

1

8π

2|~p ∗2 |√
σ
θ(σ − 4m2

π)

=
1

8π

√
1− 4m2

π

σ
θ(σ − 4m2

π).

The resulting expression is the two-body phase space [46, 71], calculated at the center-of-mass frame of the pair

(23) with |~p ∗2 | being the break-up momentum |~p ∗2 | =
√
σ/(4m2

π)− 1. The general unitarity equation, Eq. (A10) is
transformed to a condition for the partial-wave-projected amplitude, once we replace |a〉 and 〈b| in the initial and the
final states by the projected states |P, 0000〉a and b 〈P ′, 0000|, introduced in Eq. (A12). When replacing we can drop
the subchannel index of the in- and out- states |P, 0000〉 consistently at both sides due to the freedom in the choose
of a and b. The partial-wave-projected connected isobar amplitude is defined by

〈P ′, 0000|Tc |P, 0000〉 = (2π)4δ4(P ′ − P )T (σ′, s, σ), (A15)

and depends at most on three invariant variables:5 s is the total invariant mass square of the three-particle system;
the variables σ and σ′ denote the squared masses of the isobars in the initial and final states, respectively.

In order to proceed with the unitarity equation for the fully projected states |P, 0000〉, the structures on the right
side of Eq. (A10) have to be expressed through already introduced amplitudes T (σ′, s, σ) and t(σ). It reads,

〈1′′|Tc |P, 0000〉 = (2π)4δ4(P ′′ − P )T (σ′′1 , s, σ). (A16)

〈1′′|Td |P, 0000〉 = (2π)4δ4(P ′′ − P ) (2π)δ(σ′′1 − σ)
t(σ)

ρs(σ)
, (A17)

where there is no angular dependence on the right-side of equations since only S-wave interaction is considered. To
obtain the last equation, we related the states on the both sides to the |qlλ〉 using Eq. (A11) and Eq. (A12) and
exploring a property of δ-function,

2Eq1(2π)3δ3(p′′1 − p1) = (4π)δ(Ω′′1 − Ω1) (2π)δ(σ′′1 − σ1)
1

ρs(σ1)
.

5 By counting degrees of freedom one finds that the 3→ 3 scattering amplitude depends on 8 kinematic variables. The partial-wave
projections to the two-particle subchannels, given in Eq. (A11) for the initial and the final states, replace four continuous angular
variables by the discrete indices lλ and l′λ′. The partial-wave projection to the total angular momentum states defined in Eq. (A12)
becomes equivalent to the single integration over the scattering angle between the isobar directions on the initial and final state due to
the choice of the reference-frame that assigns the discrete index j to the amplitude. The remaining partial-wave amplitude depends on
three variables as introduced in Eq. (A15).
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The integrals
∫

(d̃p′′) in Eq. (A10) are combined with the δ4-functions in Eq. (A15) and yield the standard three-
body phase space, dΦ3.

dΦ3 =
d3p′′1

2E′′1 (2π)3
d3p′′2

2E′′2 (2π)3
d3p′′3

2E′′3 (2π)3
(2π)4δ4(P ′′ − P ) (A18)

=
dσ′′1
2π

ρ(σ′′1 )ρs(σ
′′
1 )

dΩ1

4π

dΩ23

4π
θ+(φ(σ2, s, σ3)) (A19)

=
dσ′′2dσ′′3

2π(8π)2s

dΩ2

4π

dφ31
2π

θ+(φ(σ2, s, σ3)), (A20)

where λ
1/2
s (σ(σ2, s, σ3)) = λ1/2(s, σ,m2

π), ρs(σ) = λ
1/2
s (σ)/(8πs) and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is

the Källén function. We introduced a function θ+(φ(σ2, s, σ3)) that restricts the variable ranges to physical domain
of the three-body phase space.

θ+(φ(σ2, s, σ3)) ≡ θ(φ(σ2, s, σ3)) θ(s− 9m2
π)θ(σ2 − 4m2

π)θ(σ3 − 4m2
π) (A21)

with φ being the Kibble function, φ(σ2, s, σ3) = σ2σ3(3m2
π + s − σ2 − σ3) −m2

π(s −m2
π)2. The Heaviside functions

θ(σi − 4m2
π), i = 2, 3 cut off the scattering domains on the Mandelstam plane for which φ is still positive. For the

terms that arise from the insertion of |1′′〉 〈1′′| on the right-hand side of Eq. (A10), both amplitudes T † and T depend
on the same variable σ1, therefore four of five integrals in the phase space can be solved using the representation in
Eq. (A19). For the terms from the |2′′〉 〈3′′|-intermediate state, the form of the phase space given in Eq. (A20) is more
appropriate. In this case, three angular integrals can be solved analytically.

The resulting three-body-unitarity equation in the partial-wave-projected form reads:

T (σ′, s, σ)− T †(σ′, s, σ) =
i

3

∫ (
√
s−mπ)

2

4m2
π

dσ′′

2π
T †(σ′, s, σ′′)ρ(σ′′)ρs(σ

′′)T (σ′′, s, σ) (A22a)

+
2i

3

1

(8π)2

∫∫
φ(σ′′2 ,s,σ

′′
3 )>0

dσ′′2dσ′′3
2πs

T †(σ′, s, σ′′2 )T (σ′′3 , s, σ) (A22b)

+ i t†(σ′)ρ(σ′)T (σ′, s, σ) + 2i
t†(σ′)

λ
1/2
s (σ′)

1

8π

∫ σ+(σ′,s)

σ−(σ′,s)

dσ′3T (σ′3, s, σ) (A22c)

+ i T †(σ′, s, σ)ρ(σ)t(σ) + 2i
t(σ)

λ
1/2
s (σ)

1

8π

∫ σ+(σ,s)

σ−(σ,s)

dσ2T
†(σ′, s, σ2) (A22d)

+ 6i
2πs t†(σ′)t(σ)

λ
1/2
s (σ′)λ1/2s (σ)

θ+(φ(σ′, s, σ)), (A22e)

It is convenient to define an amputated amplitude T (σ′, s, σ) for which we remove the last two-body interaction
t(σ) from both sides.

T (σ′, s, σ) = t(σ′)T (σ′, s, σ)t(σ).

The function T (σ′, s, σ) still has dependencies on all variables, however the unitarity equation for T is simpler. The
left-hand side of Eq. (A22) admits the following terms grouping,

T (σ′, s, σ)− T †(σ′, s, σ) =
[
t(σ′)− t†(σ′)

]
T (σ′, s, σ)t(σ)+

+ t†(σ′)
[
T (σ′, s, σ)− T †(σ′, s, σ)

]
t(σ)

+ t†(σ′)T †(σ′, s, σ)
[
t(σ)− t†(σ)

]
. (A23)

The differences in the first and third line can be exactly matched to the first terms in Eq. (A22c) and Eq. (A22d) due
to the unitarity of the amplitude t in Eq. (A14). The unitarity equation for the amputated amplitude reads:

T (σ′, s, σ)− T †(σ′, s, σ) =
i

3

∫ (
√
s−mπ)

2

4m2
π

dσ′′

2π
T †(σ′, s, σ′′) t(σ′′)t†(σ′′) ρ(σ′′)ρs(σ

′′) T (σ′′, s, σ) (A24)

+
2i

3

1

(8π)2

∫∫
φ(σ′′2 ,s,σ

′′
3 )>0

dσ′′2dσ′′3
2πs

T †(σ′, s, σ′′2 ) t†(σ′′2 )t(σ′′3 )T (σ′′3 , s, σ)
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+ 2i
1

λ
1/2
s (σ′)

1

8π

∫ σ+(σ′,s)

σ−(σ′,s)

dσ′3 t(σ
′
3)T (σ′3, s, σ)

+ 2i
1

λ
1/2
s (σ)

1

8π

∫ σ+(σ,s)

σ−(σ,s)

dσ2 t
†(σ2)T †(σ′, s, σ2)

+ 6i
2πs

λ
1/2
s (σ′)λ1/2s (σ)

θ+(φ(σ′, s, σ)),

where σ±(s, σ) = (s + 3m2
π − σ)/2 ± λ1/2s (σ)λ1/2(σ)/(2σ). The last term contains the Heaviside function for which

a non-zero domain in σ, σ′ variables corresponds to a Dalitz plot region for a decay of system of invariant mass
√
s,√

s > 3mπ, to three particles of mass mπ. Since σ±(s, σ) are exactly the borders of this physical region, we insert the
Heaviside function θ+(φ(σ′, s, σ)) under the integrals and unify all integration ranges to [4m2

π, (
√
s−mπ)2].

T (σ′, s, σ)− T †(σ′, s, σ) =

∫ (
√
s−mπ)

2

4m2
π

dσ′′

2π
T †(σ′, s, σ′′) (τ(σ′′)− τ †(σ′′)) T (σ′′, s, σ) (A25)

+

∫∫ (
√
s−mπ)

2

4m2
π

dσ′′2
2π

dσ′′3
2π
T †(σ′, s, σ′′2 )τ †(σ′′2 )D(σ′′2 , s, σ

′′
3 )τ(σ′′3 )T (σ′′3 , s, σ)

+

∫ (
√
s−mπ)

2

4m2
π

dσ′3
2π
D(σ′, s, σ3)τ(σ′3)T (σ′3, s, σ)

+

∫ (
√
s−mπ)

2

4m2
π

dσ2
2π
T †(σ′, s, σ2)τ †(σ2)D(σ2, s, σ)

+D(σ′, s, σ),

where τ(σ) = t(σ)ρs(σ)/3, and D(σ′, s, σ) = 2πi× 6s/(λ
1/2
s (σ)λ

1/2
s (σ′))θ+(φ(σ′, s, σ)).
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