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FLUXON-INDUCED LOSSES IN NIOBIUM THIN-FILM 
CAVITIES REVISITED* 

W. Weingarten†

Abstract 
Long standing data from niobium thin film accelerating 

cavities will be revisited and analysed by a modified Lon-

don model of RF superconductivity. Firstly, the applicabil-

ity of this model is explored using data of the BCS surface 

resistance and its dependence on the RF magnetic field, 

temperature and mean free path. Secondly, the RF losses 

from trapped magnetic flux are analysed with regard to 

their dependence on these same parameters. 

INTRODUCTION 

The two-fluid model of Gorter and Casimir [1] was ex-

tended by London for RF applications [2], many years be-

fore the Bardeen-Cooper-Schrieffer (BCS) theory of super-

conductivity [3] was published. The two-fluid model de-

scribes the Meissner effect [4] and also, though in a quali-

tative way and after some modification, the surface re-

sistance Rs of classical superconductors (“modified Lon-

don model”, cf. eq. 1). 

The surface resistance Rs, or equivalently, the Q-value 

(Rs ~ Q-1), are important parameters for accelerator appli-

cation with respect to cryogenic losses and beam stability 

[5]. Therefore, in this paper, the modified London model 

will be applied to debate the RF field dependence of the Q-

value on trapped magnetic flux of a 1.5 GHz thin niobium 

on a copper substrate cavity (with 1 - 2 μm thick niobium 

film) by using data from Benvenuti et al. [6]. The present 

analysis also constitutes a follow-up of, and a complement 

to, a previously published study [7]. 

The guiding principle of this paper consists in explaining 

available experimental data by minimum physics argu-

ments as basic as reasonably possible. This is why, for in-

stance, in the appendix the lumped electrical circuit model 

is used to derive the surface resistance due to fluxons. 

The paper is organized as such: in the first section the 

modified London model is applied using data of the RF 

field dependent BCS surface resistance versus temperature 

and mean free path. In the second section the relation of the 

surface resistance on trapped magnetic flux will be ana-

lysed, both for the RF field independent and the RF field 

dependent part. The third section deals with the trapped 

magnetic flux induced surface resistance vs. temperature. 

The fourth section provides a side remark on fluxon sensi-

tivity of N-doped cavities. A fifth section presents a critical 

review. 
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THE RF-FIELD DEPENDENCE OF 

THE BCS SURFACE RESISTANCE ON 

TEMPERATURE AND MEAN FREE 

PATH 

As a first test the data on the BCS-surface resistance RBCS 

will be analysed to gain confidence in the modified London 

model approach. We start with eq. 17 of ref. 8: 

𝑅𝐵𝐶𝑆(𝜔,𝑇) = 𝜇0
2𝜔2𝜆3𝜎𝑛

𝛥

𝑘𝐵
𝑙𝑛 (

𝛥

ħ𝜔
)
𝑒−

𝛥
𝑇

𝑇

⏞        

𝑓′(𝑇)

(1+

𝛼𝐵𝑟𝑓 + 𝛽𝐵𝑟𝑓
2 );𝐵𝑐 = 1/√2𝛽 . (1) 

 

The linear term in Brf is suggested by ref. 6 and will be 

justified later in this paper, the quadratic term in Brf follows 

from experimental data [6, 9] and from different analytical 

models [8, 10]. 

  

Table 1: Fit parameters with regard to Fig. 1 

 
λ (l) [nm] σn (RRR) [1/(Ωm)] Δ [K] α [1/(mT)] 

40 1.53∙108 18.9 7.5∙10-3 

 

The symbols are the peak RF magnetic field Brf, the mag-

netic constant μ0, the frequency ω/(2π), the penetration 

depth λ, the electrical conductivity σn of the normal con-

ducting (nc) electrons at low temperature, their tempera-

ture dependence f '(T) in the superconducting (sc) state, the 

Boltzmann constant kB, and the sc energy gap Δ. The (col-

oured) curves as shown in Fig. 1 follow from eq. 1 with the 

fit parameters as of Table 1. The critical magnetic field 

Bc = 183 mT (or β = 1.5∙10-5 (mT)-2, resp.) is kept fix. 

 

Table 2: Standard parameters for niobium 

 

Parameter Symbol Value Unit 

Coherence length ξ0 38 nm 

London penetration depth λL 39 nm 

Electrical conductivity at 

room temperature 

σn 

(300 K) 

7.6∙106 (Ωm)- 1 

Electron mean free path l 2.85∙RRR nm 

Mass of electron me 9.1∙1031 kg 

Flux quantum Φ0 2∙10-15 Vs 
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The intrinsic parameters of niobium that are used for fit-

ting the data of Fig. 1 are the London penetration depth λL 

= 32 nm, the coherence length ξ0 = 33 nm, and the electron 

mean free path l = 57 nm. 

In what follows, the standard parameters as of Table 2 

are used unless otherwise stated. 

 
 

Fig. 1: The BCS-surface resistance RBCS of a thin nio-

bium film cavity as a function of the magnetic peak 

RF field Hrf for different temperatures (from top to 

bottom at 4.23, 3.9, 3.47, 3.07, 2.59, 2.41, and 2.15 

K). Superimposed in coloured lines is a least square fit 

as suggested by eq. 1. The data are taken from ref. 6. 

 

Fig. 2: BCS surface resistance vs. the relative penetra-

tion depth (λ/λL)2 at 4.2 K. The dashed line (dashed 

red) is calculated from eq. 1 with slightly different λL 

and ξ0 as in ref. 6 and superimposed on the data from 

ref. 6 (all in black). 

 

As a second test, the data on RBCS from ref. 6 are shown 

versus the square of the relative penetration depth:  

λrel
2 = (λ/λL)2 = 1+π∙ξ0 /(2∙l), Fig. 2. Superimposed is the re-

sult as derived from eq. 1. Here the relevant parameters are 

the same as for Fig. 1. The characteristic minimum is 

clearly visible at λrel
2 = 3 which corresponds to l = 26 nm. 

THE DEPENDENCE OF THE SUR-

FACE RESISTANCE ON TRAPPED 

MAGNETIC FLUX 

The niobium thin film cavities developed at CERN are 

less sensitive to DC trapped magnetic flux B when cooled 

down compared to cavities made from bulk niobium. The 

small dependence of the magnetically induced surface re-

sistance Rfl on B and Brf can be parametrized as [6] 

 

𝑅𝑓𝑙= (𝑅𝑓𝑙
0 +𝑅𝑓𝑙

1 ⋅ 𝐵𝑟𝑓) ⋅ 𝐵  , (2) 

 

which is composed of the RF-field independent and the 

RF-field dependent fluxon sensitivities Rfl
0 and Rfl

1, resp., 

measured in nΩ/Gauss and nΩ/Gauss/mT, resp. 

The losses from Rfl
0 may be understood by the voltage 

created from the inertia of the sc shielding current density 

j which develops across the nc core of the trapped fluxons, 

as derived in ref. 7 (c.f. appendix). The current flows via 

two parallel impedances, one a resistance, the other an in-

ductance. Nonetheless, ref. 7 merits to be revisited, be-

cause the postulated data for the upper critical field Bc2 of 

niobium are debateable and the RF magnetic field depend-

ent contribution to the surface resistance Rfl
1 is not treated. 

The RF field independent contribution Rfl
0 

In all what follows, the fluxons are considered to move 

freely, their depinning frequency being smaller than the RF 

frequency (1.5 GHz) [11]. This conjecture can be called 

into doubt because of two reasons. First, for small mean 

free paths (l < 30 nm) the depinning frequency may well 

be near and above the GHz region [12]. Second, the depin-

ning frequency may well depend on the specific pinning 

potential [13]. Nevertheless, as the surface defects are 

known as the main sources of pinning [14] and hence not 

uniformly distributed, the following study deals with a 

rigid lattice of pinning sites as originally proposed by Git-

tleman and Rosenblum [11]. The pinning potential then de-

pends on the distance of the fluxons which on its part is 

based on the trapped magnetic field.  

Whether this supposition is justified, was checked by 

evaluating the depinning frequency fd from eq. 3, adopted 

from ref. 11, 

𝑓𝑑 =
𝜌𝑛⋅𝛼

√Φ0∙𝐵⋅𝐵𝑐2
    ,  (3) 

 

with ρn being the electrical resistivity at low temperature, 

ρn = (σn,300K∙RRR)-1, α the maximum Lorentz force the 

fluxon lattice can withstand, α = B∙Jc, and Bc2 the upper 

critical magnetic field of the niobium film. For a quantita-

tive analysis the following numbers are used, apart from 

the standard ones: B = 50 (mGauss), about 10 percent of 

the earth magnetic field; Jc ≈ 2.5∙1010 (A/m2)∙(1 - B[T]/0.4) 

[15]; and Bc2 as depicted in Fig. 3.  
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Fig. 3: Upper critical magnetic field Bc2 of samples of 

niobium thin films (squares) and bulk (dashed lines) 

vs. mean free path (derived from their RRR value). 

The red solid line represents “averaged” thin film data. 

The data for l < 10 nm were not taken into account be-

cause of their critical temperature Tc ≤ 8.9 K much 

smaller than the observed one, 9.13 K ≤ Tc ≤ 9.56 K 

[6]. 

 

The depinning frequency fd vs. the mean free path l is 

shown in Fig. 4, top. The trapped-flux surface resistance Rs 

is normalized to the one of the freely moving fluxon lattice 

and is shown vs. the RF frequency in Fig. 4, bottom. Rs 

follows the relation Rs/Rs(f » fd) = f2/(f2 + fd
2) [11]. Hence 

the supposition of freely moving fluxons is justified for the 

RF frequency of 1.5 GHz, even in the extreme of a very 

short mean free path of 5 nm (corresponding to fd = 77 

MHz). This statement is in accordance with studies of 

Janjušević and co-authors [16], who find that 160-nm nio-

bium films have a depinning frequency below 1 GHz (with 

RRR = 40), which is supposed to be true as well for thicker 

films (with 7 < RRR < 29 [17]), such as the 1- 2 μm thick 

niobium films as investigated in this study. 

However, according to ref. 12, the depinning frequency 

is by more than one to two orders of magnitude larger than 

depicted in Fig. 4, top. The reason is the fixed and deep 

pinning potential as used in their study in contrast to the 

rigid lattice approach chosen in the present study. A sharper 

criterion cannot be given at present except whether the 

model is capable of representing the data or not. 

There are two contributions to the RF field independent 

surface resistance Rfl
0. The first contribution is attributed 

to fluxons directly exposed to the RF shielding current den-

sity j = (jx, 0, 0). 

As outlined in the appendix,  

 

𝑅𝑓𝑙
0 = 𝑐 ∙ (𝜔𝜇0)

3 2⁄ (2𝜎𝑛)
1 2⁄ 𝜆2

1

𝐵𝑐2
    . (4) 

 

The correction factor c (62.5 %) takes into account the 

ratio of the magnetic flux component perpendicular to the 

cavity surface with regard to the overall magnetic flux 

across the cavity silhouette. 

 

 

 
 

  
 

Fig. 4: Depinning frequency fd vs. mean free path l 

(top), surface resistance Rs from trapped flux, normal-

ized to the one of the freely moving fluxon lattice 

(when f » fd) vs. the RF frequency f (bottom). 

 

The second contribution is attributed to fluxons (indi-

rectly) exposed to an inductive current. It is well known 

that an RF current density j = (jx, 0, 0) flowing perpendic-

ular to a static magnetic field B = (0, By, 0) will create the 

Lorentz force density on the fluxon F = (0, 0, Fz) = j x B 

that will move it with the velocity v = η-1∙F (c.f. Fig. 5 and 

Table 3). 

 

 

 
 

Fig. 5: Geometry as referred to in the text (the letters 

indicate to which axis the corresponding vectors are 

parallel; they do not indicate their direction) 
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The moving fluxon induces an electric field 

E = (Ex, 0, 0) = B x v that will create a current density 

j1 = (j1x, 0, 0) = (E1x/ρn, 0, 0). 

The current j1 acts on the nc electrons in a similar way as 

the current j, but in quadrature. Hence j1 contributes iden-

tically to the fluxon induced surface resistance Rfl
0. The 

reason is that the force F is in phase with j, as is the velocity 

v. But by induction, v induces an electric field E1 in quad-

rature to j. As consequence from Fig. 5, the different power 

dissipations P and P1 due to j and j1 (or equivalently I and 

I1 respectively), may be added: P = ½ R (I + i∙I1)∙(I - i∙I1) = 

½ R I2 + ½ R I1
2 + ½ i∙R∙I∙I1 - ½ i∙R∙I∙I1 = P+P1. This is also 

true for the respective surface resistances Rs = E/(λ∙j) = 

E1/(λ∙j1). Hence Rfl
0 is composed of twice the value of eq. 

4. 

 

Table 3: Used symbols and their definition [18] 

 

Physical quantity  Symbol Unit 

Shielding current density j = E/ρn 
1) A/m2 

Magnetic induction B Vs/m2 

Lorentz force density F = j x B N/m3 

Fluxon velocity v = η-1 F 2) m/s 

Electric field from mov-

ing fluxons 

E = B x v = η-1 B x (j 

x B) = ρff j 
3) 

V/m 

Electric field from Lo-
rentz force density 

E = j x B/(n⸱e) 4) V/m 

Hall resistivity ρyx = Ey/jx = R∙B 5) Ωm 
1) ρn is the normal state resistivity at low temperature; 2) η is 

the drag coefficient; 3) ρff  ≈ (B/Bc2) ρn [19]; 
4) n is the normal state electron density; 5) R = 1/(n⸱e) is the 

Hall coefficient 

 

 

The fluxon sensitivity Rfl
0 is equivalent to the DC result 

for the “ideal” material as outlined by Gittleman and Ros-

enblum [11]. However, their fluxon sensitivity Rs’ is too 

large as to represent the data of ref. 6. 

In order to make use of eq. 4, data of Bc2 for representa-

tive thin films similar to those grown on the cavity surface 

are collected from the literature (Table 4). 

These data are plotted in Fig. 3 in conjunction with data 

on bulk niobium samples [20, 21] (dashed lines). The by-

eye-averaged line of thin film data is used in the following 

analyses (marked as “average”). Whereas the data between 

l = 3 and 4 nm are disregarded because of a too small film 

thickness, a constant value is assumed below l = 30 nm as 

average of the data from refs. 7, 20, and 24. 

Applying the average data (Fig. 3) to eq. 4 results in the 

red dashed curve of the trapped fluxon sensitivity Rfl
0 as of 

Fig. 6. The relevant parameters are those mentioned under-

neath Table 1. 

The agreement with the published data of ref. 6 is satisfac-

tory except for l < 17 nm (λrel
2 > 4), very probably because 

of the uncertain Bc2 in this range. The trend of the curve is 

well represented. It should be noted that this curve was ob-

tained by taking into account the variation of the trapped 

flux density across the cavity surface. For the static mag-

netic field parallel to the cavity axis, the average flux den-

sity is 62.5 % as compared to a fictitious maximum flux 

density when all surface were exposed to the perpendicular 

component of the static magnetic field [22]. This correction 

shifts the curve slightly down and will be applied in what 

follows, too. Principally unknown is the trapping effi-

ciency, but from experiment it is known to be close to one 

[23]. 

 

Table 4: Data of Bc2 for niobium thin films 

 

Film 

thickness 

[µm] 

Bc2, 4.2 

K 

[kGauss] 

RRR Mean free 

path 

l [nm] = 2.85 
∙RRR 

Refer-

ence 

5 20 15 43 
adopted 

from 

ref. 7 
 

3.7 21 6.7 19  

3 15 13 37 

3 26 9 26 

1.6 – 1.8 28 12 34 

1.5 8.5 11.5 33 
[24] 

1.5 5.5 29 83 

0.1 36*) 1.1 3.2 

[25] 0.1 8*) 22.8 65 

0.1 34*) 1.4 3.9 
*) Numbers were extrapolated to 4.2 K 

 

 

 

 
 

Fig. 6: Trapped fluxon sensitivity Rfl
0 vs. the square of 

the relative penetration depth (λ/λL)2. The dashed line 

(red) is calculated from eq. 4 (but multiplied by factor 

2, as explained in the text) using the “averaged” data 

for Bc2 and is superimposed on the data from ref. 6. 

 

A different check of the model is provided by the de-

pendence of the fluxon sensitivity Rfl
0 on the RF frequency 

f = ω/2π. The data are obtained from Calatroni and Vaglio 

[26] and reproduced and supplemented in Table 5 and in 

Fig. 7. 

The first four lines are measured for bulk niobium, while 

the two bottom lines for niobium films on copper. 
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Table 5: Magnetic flux sensitivities Rfl
0 and Rfl

1 as 

measured by several authors. 

 

Reference 
Frequency 

[MHz] 
Rfl

0 [nΩ/G] Rfl
1 [nΩ/G/mT] 

Piosczyk [27] 91/160/290 3.5/9.5/28 0.35/0.55/0.9 

Arnolds-Mayer 

[28] 
500 150 5 

Checchin [12] 
650/1300/2

600/3900 

700/1000/150

0/19001) 
1.6/2.6/6.1/7.4 

Benvenuti [29] 1500 155 2.8 

Miyasaki [30] 101 3.2 0.32 

Benvenuti [29] 1500 3.32)/56 0.912)/4.5 
1) Data taken from the original paper ref. 12  

2) Thin niobium film on oxidized copper 

 
Although the data on Rfl

0 were collected for a variety of 

experimental conditions, niobium metals, processing tech-

niques, and in different laboratories, etc., they are not in 

contradiction with the expected frequency dependence 

(~ ω3/2) of Rfl
0, c.f. eq. 4. 

 

 
 

Fig. 7: Frequency dependence of the fluxon sensitivi-

ties Rfl
0 and Rfl

1 (full dots: bulk niobium; open dots: 

niobium film). Their dependence on the frequency 

suggest ω3/2 and ω2/3, resp., which is discussed in the 

text. The open squares fall out of the data collection 

and represent niobium film on oxidised copper cavi-

ties, known to have lower values Rfl
0 and Rfl

1 [29]. 

The RF field dependent contribution Rfl
1 

The RF field dependent part of the fluxon sensitivity Rfl
1 

is actually under study by different authors [26, 30]. This 

part is observed in niobium bulk cavities [31] as well as in 

those that have undergone N-doping treatment [32]. 

 

The role of the anomalous skin effect 

The skin effect is created by surface currents in the metal 

which short-circuit the electric field parallel to the surface.  

The domain of the anomalous skin effect is situated at 

sufficiently low temperatures and sufficiently high fre-

quencies, where the mean free path l of the electrons gets 

larger than the penetration depth [33]. Only electrons 

whose mean free path l ranges within a surface layer where 

a non-vanishing electric field is present (the effective pen-

etration depth δeff) contribute to the current which shields 

the external RF field. The others are “invisible” to the elec-

tric field (Fig. 8) [34]. 

 
Fig. 8: Only electrons within the effective penetration 

depth contribute to shielding the external RF field. 

 

Hence the effective density of the electrons is reduced 

by the factor α∙δeff/l with α ≈ 1. The effective conductivity 

is, therefore, given by σeff = α∙δeff/l∙σn. Introducing this into 

the formula for the skin depth, δ =√[2/(µ0∙σn∙ω)], one ob-

tains 

𝛿𝑒𝑓𝑓 = (
2∙𝑙

𝛼∙𝜇0∙𝜎𝑛∙𝜔
)
1 3⁄

  ,  (5) 

 

𝜎𝑒𝑓𝑓 = (
2

𝜇0∙𝜔
)
1 3⁄

(
𝛼∙𝜎𝑛

𝑙
)
2 3⁄

  .  (6) 

 

Similarly, the effective surface resistance is 

Rs,eff = 1/(σeff∙δeff), which exhibits the characteristic fre-

quency dependence (~ ω2/3) of the surface resistance in the 

anomalous limit. The observed frequency dependence of 

Rfl
1 (~ ω2/3) as of Fig. 7 already points to the anomalous 

skin effect as being relevant for Rfl
1. 

Anyhow, it appears strange that the anomalous skin ef-

fect may play a role in the present analysis. However, the 

conditions for the anomalous skin effect are considered as 

being satisfied: the mean free path is large (l > λ)  and the 

current carrying layer is very small (< ξ) as given by the 

fluxon width. 

The role of the Hall effect 

It is observed that there exists a different electric field, 

the Hall field E2 = (0, E2y, 0), cf. Fig. 5, created by the Lo-

rentz force density F2 = (0, F2y, 0) = j x Brf = (jx, 0, 0) x 

(0, 0, Brf,z) and concentrated in the vicinity of the fluxon. 

The electron feels the force eE2 = F2/n = j x Brf /n, n being 

the electron density. This force creates the current j2 = (0, 

j2y, 0) with j2y = σyx∙Ex = Ex/(Brf,z∙R) = n∙e/Brf,z∙ρn∙jx, R = 

1/(ne) being the Hall coefficient (cf. Table 3). The RF 

losses per volume are then P = < E2∙ j2 > = ½∙ρn∙jx
2. With 

jx = Hrf/λ there follows for the power loss per square meter 

p: 

 

𝑝 = 𝑃 ∙ 𝜆 =
1

2
∙
𝜌𝑛

𝜆
𝐻𝑟𝑓
2

  . 
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With the surface fraction of fluxons B/Bc2 (cf. appendix), 

one obtains 

 

𝑝 =
1

2
∙
𝜌𝑛

𝜆
𝐻𝑟𝑓
2 ∙

𝐵

𝐵𝑐2
=
1

2
∙ 𝑅𝑓𝑙

1 ∙ 𝐻𝑟𝑓
2 ∙ 𝐵𝑟𝑓 ∙ 𝐵   , 

 

resulting in 

𝑅𝑓𝑙
1 =

𝜌𝑛

𝜆∙𝐵𝑟𝑓 ∙𝐵𝑐2
 .   (7) 

 

Eq. 7 is now evaluated under similar parameters as for 

eq. 4, however with two distinctions. The first distinction 

is governed by the anomalous skin effect with the mean 

free path l > λ (small λrel). The reason is that the driving 

electric field is localized near the moving fluxon. Therefore 

the electrons are exposed only partially to the electric field, 

a condition similar to the anomalous skin effect. 

 Hence the replacements ρn → 1/σeff and λ → δeff from 

eqs. 5 and 6 are inserted in eq. 7. 

For the second distinction (l < λ, big λrel, therefore ρn = 

1/σn is used in eq. 7) follows as such: 

 

𝑅𝑓𝑙
1 =

𝜌𝑛

𝜆∙𝐵𝑟𝑓 ∙𝐵𝑐2
=

1

𝜎𝑛∙𝜆∙𝐵𝑟𝑓 ∙𝐵𝑐2
=

𝑚

𝑛∙𝑒2∙𝜏∙𝜆∙𝐵𝑟𝑓∙𝐵𝑐2
=

1

𝑛∙𝑒∙𝜏∙𝜆∙𝜔𝑐⏟    
𝑙

∙𝐵𝑐2
=

1

𝑛∙𝑒∙𝑙∙𝐵𝑐2
     (8) 

 

(cyclotron frequency ωc = e∙Brf/m, electrical conductivity 

σn = ne2τ/m, effective electron mass m, electron density n, 

electric charge e, collision time τ). The mean free path 

l ≈ τ∙λ∙ωc represents the typical length the electron can go 

without being scattered. 

 

 
 

Fig. 9: Trapped fluxon sensitivity Rfl
1 vs. the square of 

the relative penetration depth (λ/λL)2. The dashed line 

(red) is the combination of the two continuous lines 

(blue and green), as calculated from eqs. 7 and 8, and 

superimposed on the data from ref. 6. 

 

Disordered niobium [35] or niobium alloys are con-

sidered to establish the fluxon pinning centres. Under 

this assumption 17 % of the standard value of σn is kept 

fixed to fit the data for both distinctions. This provision  

indicates that the pinning centres are depleted from 

electrons. The result of the fit is shown in Fig. 9. There, 

the two distinctions are marked as a dashed line (left: l > λ; 

right: l < λ). The left branch with l > λ shows the character-

istic frequency dependence of Rfl
1, as characteristic for the 

anomalous skin effect for bulk niobium (~ ω2/3), in accord-

ance with Fig. 7. 

 

Combination of Rfl
0 and Rfl

1 

As a check of the results obtained so far, Fig. 10, 

adopted from ref. 6, displays the combined fluxon sen-

sitivity of eq. 2. The red line is superimposed by fitting  

these data with the parameters Rfl
0 = 4.7 nΩ/G and 

Rfl
1 = 1.0 nΩ/G/mT. These numbers are consistent with 

Figs. 6 and 9. 
 

 
 

Fig. 10: Combined fluxon sensitivity vs. the RF mag-

netic field at an external magnetic field 3.52 Gauss 

(adopted from ref. 6). 
 
The computed data from eqs. 4, 7 and 8 (Figs. 6 and 9, 

dashed lines) are correlated as shown in Fig. 11. 

 

 
Fig. 11: Correlation of Rfl

1 vs. Rfl
0 (data adopted from 

ref. 6). The data points for Rfl
0 > 100 nΩ/G represent 

bulk cavities and are not representative. 
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THE DEPENDENCE OF THE 

TRAPPED MAGNETIC FLUX IN-

DUCED SURFACE RESISTANCE ON 

THE TEMPERATURE 

Eqs. 4, 7 and 8 show that the fluxon sensitivity depends 

on λ(T) and Bc2(T). For the penetration depth λ the standard 

relation is used, 

 

𝜆 = 𝜆𝐿 ∙
√1+

𝜋𝜉0
2𝑙

√1−(
𝑇

𝑇𝑐
′
)
4
   ,   (9) 

 

with the free parameter Tc’ allowing for disordered niobium 

or niobium alloys as mentioned before. For Bc2(T) the rela-

tion Bc2 [T] = 4∙(1-T [K]/9.25) as presented in Fig. 4 of ref. 

36 is applied, though with the caveat that Bc2(T) for the pre-

sent data is unknown. 

The data to be analysed are shown in Fig. 12, which dis-

plays the ratio r = Rfl(T)/Rfl (1.7 K), as defined in ref. 6. 

According to ref. 6 this graph is quite universal and inde-

pendent of the specific choice of Brf and B. The ratio r was 

measured at identical values of Brf and B and then displayed 

as a function of the temperature. The dashed line in Fig. 12 

was computed by means of eqs. 4 and 7 with the usual pa-

rameters as of the graph in Fig. 3 with RRR = 20 and Brf = 

5 mT and with Tc’ = 4.65 K. The critical temperature Tc’ is 

untypical for ordinary niobium and points indeed to disor-

dered or contaminated niobium. 

The analysis allows concluding that Fig. 12 reflects 

mainly the relatively strong dependence on the temperature 

T of Rfl
0 because the penetration depth λ as of eq. 9 is sup-

posed to increase steeply above about Tc’ ≈ 4.5 K. The de-

pendence on T of Rfl
1, on the contrary, is weak up to 4.2 K 

consequent to the relatively weak dependence of Bc2 on T. 

 

Fig. 12: Increase of the ratio r of the fluxon sensitivity 

vs. temperature. The dashed line (red) is calculated 

from eqs. 3 and 7 and superimposed on the data from 

ref. 6. 

ACCESSORY REMARK 

Other experimental results are worth debating in the con-

text of this paper in order to illustrate the lumped circuit 

model approach. These experiments concern the effect of 

nitrogen doping on the trapped magnetic flux sensitivity of 

niobium cavities [31, 37, 38]. Instead of identifying a min-

imum for the fluxon sensitivity Rfl
0 vs. the mean free path 

(Fig. 6), these authors observe a maximum such as shown 

in Fig. 13. A detailed analysis of this apparent contradiction 

lies beyond the scope of the paper. Although the peak in the 

fluxon sensitivity is explained by well-established flux-

pinning models [39, 40], a short and simple comment re-

ferring to this shall be given in what follows and in the ap-

pendix. 

Applying eq. A-10 and minimizing the mean square de-

viation between data and fit one obtains typically a dashed 

red dashed curve as in Fig. 13. In this specific case the fit 

parameters are collected in Table 6. 

 

Table 6: Numerical values concerning Fig. 13. 

 
Name Value4) Unit Ratio 

B 1) 5∙10-5  Vs/m2 - 

σn (6.2±1.3)∙106 1/Ωm 0.8 

Jc 
2) 2.4∙1010 A/m2 10 

n (7.1±0.6)∙1027 m-3 0.13 

Bc2(0) 
3) 8400±600 Gauss 2 

λL 87±14 nm 2 

ξ0 59±5 nm 1.6 
1) average earth magnetic field 

2) Standard critical current density for Nb: 

Jc = 2.5∙109 (A/m2) [41] 
3) Bc2(ρn) = Bc2(0) + m∙ρn; with Bc2(0) = 4040 Gauss [41] and 

m =1.5∙103 [Gauss/μΩcm] as average number [42, 43] 
4) Errors added after proof, except for Jc, for which the error 

is unreasonably large 

 

 
Fig. 13: Trapped fluxon sensitivity Rfl

0 for niobium cav-

ities at 1.3 GHz (adopted from ref. 37). The superimposed 

dashed line (in red) results from eq. A-10 by using the 

data set of Table 6. 
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Inspecting Table 6, the last column provides the ratio be-

tween the actual fit parameter and its actual standard value. 

One may conclude that N-doped niobium has a smaller 

than standard electron concentration n (as already met for 

thin film cavities) and larger critical current density Jc as 

the most striking differences compared to standard nio-

bium. 

 

The shape of the graph of Fig. 13 resembles much that 

of ref. 38, Fig. 2 therein. The authors interpret the region  

left of the maximum as “pinning regime” and that right of 

it as “flux flow regime”. 

 

 

 
Fig. 14: Comparison of the three force terms (per unit 

fluxon length and unit velocity) as of eq. A-5 and related 

to Fig. 13; the RF frequency is 1.3 GHz. 

 

Fig. 14 shows the juxtaposition of the various relevant 

force terms concordant with the numbers in Table 6. The 

mass term is irrelevant for a mean free path below a few 

nanometres, where the viscous (η) and pinning terms (k/ω) 

are dominant. However, above a mean free path of about 

10 nm the mass (M∙ω) and viscous terms are the dominant 

contributors. 

The depinning frequency is usually defined for frequen-

cies below 1 GHz, which is fully justified because of the 

small mass term. But the notion of depinning as originally 

proposed in ref. 11 makes it difficult to explain a resonance 

peak as in Fig. 13. Therefore, in the appendix, the resonant 

peak is proposed to originate from oscillating fluxons near 

the resonant frequency ω0 = √(k/M), close to where the pin-

ning and mass terms intersect in Fig. 14. The idea of oscil-

lating fluxons was already suggested before [39] in an anal-

ysis supposing strong pinning. The idea was not followed 

up in view of the large resonant frequency usually not ap-

plied for accelerator application. 

REVIEW 

Admittedly the preceding analysis is based on a few de-

ficiencies, such as the scarce knowledge of Bc2 for thin 

films. In addition, the actual trapping efficiency of the 

magnetic flux is unknown though considered as fairly com-

plete from similar other experiments. In spite of these frag-

mentary information, the most interesting outcome from 

this (lumped circuit based) analysis is the fact that the ob-

served RF losses, for niobium thin film cavities, can be best 

described by  

• fluxons with local critical temperature around 

Tc’ ≈ 4.5 K and a reduced electron density (~ 17 %), 

compared to standard niobium, 

• localized RF losses originating inside and in close vi-

cinity of these fluxons, 

• created by the moving fluxons and the local Hall field 

directed perpendicular to the current carrying surface, 

and 

• the anomalous skin effect (for mean free paths larger 

than the penetration depth) due to the ineffectiveness of 

the shielding current along the fluxons. 

That the RF losses are concentrated around, and domi-

nated by, the fluxons is not surprising, because the surface 

resistance from different cavity wall areas is additive and 

hence naturally dominated by the lossiest areas. The asso-

ciated local critical temperature Tc’ may hint on dirty 

and/or disordered niobium rich with dislocations, or on dis-

solved oxygen near the solubility limit. It is evident that the 

external static magnetic field will preferentially be trapped 

precisely there. 

As to N-doped cavities, the lumped circuit based ap-

proach provides the following result. The observed peak in 

the fluxon sensitivity Rfl
0 may be caused by a resonant ab-

sorption from the exchange of current and charge inside the 

fluxons probably trapped near disorderd niobium.  

CONCLUSION 

In this paper a modified London model of RF supercon-

ductivity allows quantifying the RF losses in sc niobium 

thin film cavities originating from trapped fluxons, consid-

ered as being depinned and hence mobile at the RF fre-

quency under study (1.5 GHz). 

The RF losses from trapped fluxons consist of two con-

tributions, those directly exposed to the RF shielding cur-

rent and those indirectly exposed to the RF inductive cur-

rent. The directly exposed fluxons experience RF losses 

similar to nc defects across the current path. The indirectly 

exposed fluxons contribute to the RF losses in two ways. 

Firstly, they create a current in quadrature but parallel to 

the shielding current and hence give rise to the same addi-

tive surface resistance as the latter. Secondly, they create 

an RF Hall current perpendicular to the surface and con-

fined within the small penetration depth, also dissipating 

energy in the fluxons. A model in accordance with these 

explanations corroborates the experimental facts of ref. 6: 

the surface resistance for both species of current increases 

linearly with the fluxon density, and that due to the Hall 

current increases linearly with the RF field amplitude. The 

minimum surface resistance from trapped fluxons is asso-

ciated with RRR about 9 to18. 
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APPENDIX 

Rfl
0 for conventional (non N-treated) niobium 

cavities  
The lumped-circuit model of Fig. 15 shows an induct-

ance L and a resistance R in parallel subject to the total cur-

rent I. The inductance describes the sc electrons, the inertia 

of which give rise to a voltage V. The resistance describes 

the nc ones present in the fluxon, subject to the voltage V.  

Applying Kirchhoff’s node rule at point “A”,  

 

𝐼 = 𝐼1 + 𝐼2 = 𝑉 (
1

𝑅
+

1

𝑖𝜔𝐿
)  ,  (A-1) 

 

the complex impedance from the fluxon becomes 

 

𝑍 =
𝑉

𝐼
=

1

(1
𝑅
−
𝑖

𝜔𝐿
)
 ,     

the real part of which is 

 

𝑅𝑒(𝑍) =
𝑅

1+(
𝑅

𝜔𝐿
)
2 ,     

 

which coincides with the resistance term in eq. A.1 in ref. 

7. 

     

 
 

Fig. 15: Lumped circuit model representation of the 

current flow around a fluxon. 

 

From the replacements (c.f. ref. 7 and Figs. 15 and 16) 

 

𝑅 →
1

𝜎𝑛𝛿
;  𝐿 → 𝜇0𝜆;  𝐼 →

𝐵𝑟𝑓 ∙𝑤

𝜇0
 ; 𝑅𝑒(𝑍) → 𝑅𝑓𝑙 

 
and, as 2∙σn∙ω∙µ0∙λ2 « 1 as well as 

 

𝛿 = √
2

𝜎𝑛 ∙ 𝜔 ∙ 𝜇0
 

one arrives at 

𝑅𝑓𝑙 = (𝜔𝜇0)
3 2⁄
(2∙ 𝜎𝑛)

1 2⁄ 𝜆2 ,   

 
showing clearly the dependence of Rfl on frequency 

(~ ω3/2). 

 

 

 
 

Fig. 16: Schematic current path around a fluxon: the 

current path is shown in plan view. The square of 

width w shows a quarter of the perturbed region of 

current due to the presence of the fluxon of diameter 

2∙ξ. The current penetrates the paper plane perpendic-

ularly a distance δ into the fluxon, yet the current pen-

etrates the sc metal in the vicinity of the fluxon to a 

distance of λ. 

 

The total average power loss P per cavity surface con-

sists of the losses of an individual fluxon summed over the 

number N of fluxons with individual area w2, 

 

𝑃 =
1

2
∙ ∑ 𝑤2𝑅𝑓𝑙

𝑁
𝑖=1 (

𝐵𝑟𝑓

𝜇0
)
2

=
1

2
∙ 𝑁𝑤2𝑅𝑓𝑙 (

𝐵𝑟𝑓

𝜇0
)
2

.  

 

As the magnetic flux Φ from the ambient magnetic field 

B across the cavity area A, Φ = A ∙ B, is (nearly) completely 

trapped upon cool down, the flux Φ is redistributed in the 

form of fluxons. Their number N is defined by Φ = 

Bc2∙N∙w2. Hence the dissipated power p per area A 

 

𝑝 =
𝑃

𝐴
=
1

2
∙
𝐵

𝐵𝑐2
∙ 𝑅𝑓𝑙⏟    
𝑅𝑠

∙ (
𝐵𝑟𝑓

𝜇0
)
2

=
1

2
∙
𝑅𝑓𝑙

𝐵𝑐2⏟
𝑅𝑓𝑙
0

∙ 𝐵 ∙ (
𝐵𝑟𝑓

𝜇0
)
2

 ,  

 

defining the fluxon sensitivity Rfl
0 to  

 

𝑅𝑓𝑙
0 = 𝑐 ∙ (𝜔𝜇0)

3 2⁄ (2 ∙ 𝜎𝑛)
1 2⁄ 𝜆2

1

𝐵𝑐2
 .  (A-2) 

 

By including the correction factor c (62.5 %) for the cav-

ity surface being only partially exposed to the perpendicu-

lar component of the external magnetic field eq. 4 is repro-

duced. 
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Rfl
0 for N-doped niobium cavities 

 
 

Fig. 17: Lumped circuit model representation of the cur-

rent flow around a fluxon including a capacitance. 

 

The supposition is made that in Fig. 15 a capacitance is 

added to account for possible polarisation charges in the N-

doped niobium considered as a disordered composite [44] 

whose components have different electrical conductivities, 

Fif. 17. It is well known that such polarisation charges ap-

pear, by force of continuity of the RF current, in conductors 

with variable electrical conductivity or cross section. 

Therefore, eq. A-1 is complemented by a capacitance C, 

 

(
1

𝑖𝜔𝐿
+ 𝑖𝜔𝐶 +

1

𝑅
) 𝑉(𝑡) = 𝐼(𝑡)  . (A-3) 

 

It is instructive to modify this equation as follows. The 

impedance is 

 

𝑍 =
𝑉

𝐼
=

1

1
𝑖𝜔𝐿

+ 𝑖𝜔𝐶 +
1
𝑅

 

with the real part 

 

𝑅𝑒(𝑍) =
𝑅

[(𝜔𝐶−
1

𝜔𝐿
)∙𝑅]

2
+1

  . 

 

 

By inserting lumped circuit elements such as the reso-

nant frequency ω0 = 1/√(L∙C) and the factor of merit Q = 

ω0∙R∙C the real part of the impedance is rewritten as 

 

𝑅𝑒(𝑍) =
𝑅

[(
𝜔

𝜔0
−
𝜔0
𝜔
)∙𝑄]

2
+1

 .  (A-4) 

 

The damped oscillator equation A-3 has its equivalent in 

the equation of motion for the fluxon (eq. 2 in ref. 45), 

  

(
𝑘

𝑖𝜔
+ 𝑖𝜔𝑀 + 𝜂) 𝑥̇ = 𝐽0 ∙ Φ0 .  (A-5) 

     

All these quantities are defined in Table 7. 

By induction, a moving fluxon lattice of width w exposed 

to the trapped magnetic field B is subject to the voltage 

 

𝑉 = 𝑤𝑥̇𝐵 , 

 

such that eq. A-5 is modified to 

 

(
𝑘

𝑖𝜔
+ 𝑖𝜔𝑀 + 𝜂) 𝑉 = 𝐽0Φ0𝑤𝐵 = 𝐼Φ0𝐵 𝜆⁄   (A-6) 

 

with the total current I = J0∙w∙λ. 

 

Table 7: Definition of relevant parameters. 

 

Name Definition 

Elastic constant per unit fluxon 

length (J/m3) 𝑘 =
2𝜋

𝑑
∙
𝛼 ∙Φ0
𝐵

 

Mass per unit fluxon length (kg/m) 𝑀 = 2 ∙ 𝜋 ∙ 𝑛 ∙𝑚 ∙ 𝜉2 

Flow viscosity per unit length (Js/m3) 𝜂 =
Φ0 ∙ 𝐵𝑐2
𝜌

 

Maximum Lorentz force the fluxon 

lattice can withstand (N/m3) 
𝛼 = 𝐵 ∙ 𝐽𝑐 

Trapped magnetic field (Vs/m2) 𝐵 =
Φ0
𝑑2

 

𝑥:̇ fluxon velocity (m/s)  

d: fluxon distance (m) 

Bc2: upper critical magnetic field (Vs/m2) 

Jc: critical current density (A/m2) 

J0: RF current density (A/m2) 
ρ: electrical resistivity (Ωm) 

n: electron density (m-3) 

m: electron mass (kg) 

ξ: coherence length (m) 

Φ0: flux quantum (Vs) 

 

Comparing eqs. A-3 and A-6 results in these definitions: 

 

𝐿 =
Φ0∙𝐵

𝑘∙𝜆
 ; 𝑅 =

Φ0∙𝐵

𝜂∙𝜆
 ; 𝐶 =

𝑀∙𝜆

Φ0∙𝐵
 . (A-7) 

   

The fluxon sensitivity is 

 

𝑅𝑓𝑙
0 = 𝑐 ∙

𝑅

1+(𝜔𝐶𝑅−
𝑅

𝜔𝐿
)
2 ∙

1

𝐵𝑐2
 .  (A-8) 

 

With the resonant frequency ω0, the factor of merit Q, 

𝜔0 =
1

√𝐿∙𝐶
= √

𝑘

𝑀
 , 𝑄 = 𝜔0𝑅𝐶 =

√𝑘𝑀

𝜂
 , (A-9) 

 

and with R as in eq. A-7, follows for the fluxon sensitivity 

  

𝑅𝑓𝑙
0 = 𝑐 ∙

𝑅

1+[(
𝜔

𝜔0
−
𝜔0
𝜔
)∙𝑄]

2 ∙
1

𝐵𝑐2
 .  (A-10) 

 

It should be noted that the resonant frequency ω0 and the 

depinning frequency fd (eq. 3) are defined differently. Eq. 

3 can be transformed to 

 

𝜔𝑑 = 2𝜋𝑓𝑑 =
𝑘

𝜂
  . 

 

This same result could also be obtained from eq. A-8 

through setting by supposition M = 0 (or equivalently C = 

0) and replacing R and L as in eq. A-7: 
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𝑅𝑓𝑙
0 (𝜔𝑑)

𝑅𝑓𝑙
0 (𝜔→∞)

=
1

2
=

1

1+(
𝑅

𝜔𝑑𝐿
)
2 ,    

 

𝜔𝑑 =
𝑅

𝐿
→

𝑘

𝜂
 . 

 

REFERENCES 

[1] C. J. Gorter and H. G. B. Casimir. Phys. Z. 35 (1934) 

963; Z. Tech. Phys. 15 (1934) 539. 

[2] H. London, Nature 133 (1934) 497. 

[3] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 

108 (1957) 1175. 

[4] W. Meissner and R. Ochsenfeld, Naturwiss. 21 (1933) 

787. 

[5] D. Boussard and T. Linnecar, Proc. 1999 Cryogenic 

Engineering and International Cryogenic Materials Con-

ference (CEC-ICMC'99), 12-16 July 1999, Montreal, 

Canada. 

[6] C. Benvenuti, S. Calatroni, I.E. Campisi, P. Darriulat, 

M.A. Peck, R. Russo, A.-M. Valente, Physica C 316 

(1999) 153. 

[7] W. Weingarten, Physica C 339 (2000) 231-236. 

[8] W. Weingarten, Phys. Rev. STAB 14 (2011) 101002. 

[9] M. A. Golosovsky, H. J. Snortland, and M. R. Beasley, 

Phys. Rev. B51 (1995) 6462. 

[10] A. Gurevich, Physica C 441 (2006) 38. 

[11] J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 16 

(1966) 734. 

[12] M. Checchin, M. Martinello, A. Grassellino, S. Ader-

hold, S. K. Chandrasekaran, O. S. Melnychuk, S. Posen, 

A. Romanenko, and D. A. Sergatskov, Appl. Phys. Lett. 

112 (2018) 072601. 

[13] S. Calatroni and R. Vaglio, IEEE Trans. Appl. Super-

cond. 27 (2017) 9700501.  

[14] A. Pautrat, J. Scola, C. Goupil, Ch. Simon, C. Villard, 

B. Domengès, Y. Simon, C. Guilpin, and L. Méchin, Phys. 

Rev. B 69 (2004) 224504. 

[15] H. P. Huebener, R. T. Kampwirth, R. L. Martin, T. W. 

Barbee, Jr., R. B. Zubeck, Journ. Low Temp. Phys. 19 

(1975) 247. 

[16] D. Janjušević, M. S. Grbić, M. Požek, A. Dulčić, D. 

Paar, B. Nebendahl, T. Wagner, Phys. Rev. B 74 (2006) 

104501. 

[17] M. A. Peck, thesis, Technische Universität und 

Atominstitut der Österreichischen Universitäten (1999) p. 

143.  

[18]  E. H. Brandt, Proc. 2nd Int. Workshop on Thin Films 

and New Ideas for Pushing the Limits of RF Superconduc-

tivity, INFN Laboratori Nazionali di Legano, Italy, 9 – 12 

Oct. 2006. 

 

 

 

 

 

The following conclusion holds: for the mean free path 

interval under study and the numbers as listed in Table 6, 

the resonant frequencies ω0 are 5 - 40 times larger com-

pared to the depinning frequencies ωd. 

 

 

 

 

[19] Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. 

Rev. 139, A1163 (1965). 

[20] C. C. Koch, J. O. Scarbrough, D. M. Kroeger, Phys. 

Rev. B 9 (1974) 888. 

[21] N. Tsuda and T. Suzuki, J. Phys. Chem. Solids 28 

(1967) 2487. 

[22] W. Weingarten, Proc. 1995 Workshop on RF Super-

conductivity, ed. B. Bonin, Gif-sur-Yvette, France, 17-20 

Oct. 1995, p. 129. 

[23] P. Darriulat, C. Durand, P. Janot, N. Rensing, and W. 

Weingarten, P. Bosland, J. Gobin, and J. Martignac, ibid. 

ref. 22, p. 467. 

[24] J. Halbritter, Journ. Appl. Phys. 97 (2005) 083904;  

M. A. Peck, Ph.D. thesis TU Wien, 1999.  

[25] C. Peroz and C. Villard, unpublished, arXiv:cond-

mat/0504104v1 [cond-mat.supr-con] 5 Apr 2005. 

[26] S. Calatroni and R. Vaglio, Phys. Rev. STAB 22 

(2019) 022001. 

[27] B. Piosczyk, P. Kneisel, O. Stoltz, and J. Halbritter, 

IEEE Trans. Nucl. Sci. 20 (1973) 108.  

[28] G. Arnolds-Mayer and W. Weingarten, IEEE Trans. 

Magn. 23 (1987)1620. 

[29] C. Benvenuti, S. Calatroni, P. Darriulat, M. A. Peck, 

and A.-M. Valente, Physica C 351 (2001) 429. 

[30] A. Miyazaki and W. Venturini Delsolaro, unpublished, 

arXiv:1812.04658. 

[31] M. Martinello, A. Grassellino, M. Checchin, A. Rom-

anenko, O. Melnychuk, D. A. Sergatskov, S. Posen, and J. 

F. Zasadzinski, Appl. Phys. Lett. 109 (2016) 062601. 

[32] A. Grassellino, A. Romanenko, D. Sergatskov, O. 

Melnychuk, Y. Trenikhina, A. Crawford, A. Rowe, M. 

Wong, T. Khabiboulline and F. Barkov, Supercond. Sci. 

Technol. 26 (2013) 102001. 

[33] R. G. Chambers, Nature 165 (1950) 239. 

[34] G. Busch, H. Schade, Lectures on solid state physics, 

Pergamon Press, Oxford, UK, 1976. 

Note added in proof: As this section can easily be mis-

understood, the following clarification may be helpful. 

The common criterion for the anomalous skin effect is 

the very large mean free path length l compared to the pen-

etration depth λ. This is not the case in the present analysis. 

Nevertheless, the anomalous skin effect is postulated here 

in the sense that the electric field perpendicular to the sur-

face (cf. E2 in Fig. 5) is confined within a volume around 

the fluxon of lateral width of the order of the coherence 

length ξ. This means that ξ and not λ serves as criterion for 

https://www.google.fr/search?hl=de&tbo=p&tbm=bks&q=inauthor:%22Georg+Busch%22
https://www.google.fr/search?hl=de&tbo=p&tbm=bks&q=inauthor:%22Horst+Schade%22


12 

 

 

the anomalous skin effect. Then the corresponding condi-

tion l/ξ = 1+l/ξ0 > 1 is generally fulfilled (ξ0 is the intrinsic 

coherence length). 

[35] C. Camerlingo, P. Scardi, C. Tosello, R. Vaglio, Phys. 

Rev. B31 (1985) 3121. 

[36] J. J. Hauser and H. C. Theuerer, Phys. Rev. 134 

(1964) A198. 

[37] D. Gonnella, J. Kaufman and M. Liepe, Journ. Appl. 

Phys. 119 (2016) 073904. 

[38] M. Checchin, M. Martinello, A. Grassellino, A. 

Romanenko and J. F. Zasadzinski, Supercond. Sci. Tech-

nol. 30 (2017) 034003. 

[39] M. Checchin, M. Martinello, A. Grassellino, A. Rom-

anenko, J.F. Zasadzinski, Proceedings of SRF2015, Whis-

tler, BC, Canada, MOP P020, p. 129. 

[40] A. Gurevich and G. Ciovati, Phys. Rev. B 87 (2013) 

054502. 

[41] D. K. Finnemore, T. F. Stromberg, C. A. Swenson, 

Phys. Rev. 149 (1966) 231. 

 

[42] W. DeSorbo, Phys. Rev. 132 (1963) 107. 

[43] V. R. Karasik, I. Yu. Shebalin, Soviet Physics JETP 30 

(1970) 1068. 

[44] W. Weingarten, IEEE Trans. Appl. Supercond. 28 

(2018) 3500504. 

Note added in proof: The model as of ref. 44 was dis-

missed as incorrect in a contribution to the SRF conference 

2019, Dresden, Germany, by J. T. Maniscalco, M. Ge, P. N. 

Koufalis, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, 

and N. Sitaraman. Their criticism is based on the model’s 

dependence of the increase of Q vs. RF field at small mean 

free paths which was said to contradict experimental re-

sults. However, the model has not been worked out for such 

small mean free paths. In extending it into this range, the 

apparent contradiction disappears. 

[45] J. I. Gittleman and B. Rosenblum, Journ. Appl. Phys. 

39 (1968) 2617. 


