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Recently the calculation of holographic free energy for mass-deformed ABJM model (mABJM) with N = 2
supersymmetry and SU (3) × U (1) global symmetry was tackled by Bobev et al. [1]. We solve the 
associated BPS equations, requiring IR regularity, using a perturbative method proposed by one of us 
in [2]. In particular, we provide an analytic proof of a crucial conjecture made in [1] based on numerical 
solutions: that the R-charge values of three chiral multiplets in mABJM should be independent of the IR 
values of a hypermultiplet scalar, which is holographically dual to the superpotential mass term.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and summary

Supersymmetric localization techniques enable us to compute 
some BPS quantities exactly for supersymmetric gauge field theo-
ries in appropriately chosen backgrounds. See e.g. [3–7] and also 
[8] for a review and more complete list of references. Such ana-
lytic results can be of course used to check various string dualities. 
In particular, we are here interested in verifying AdS/CFT corre-
spondence [9] with a broken conformal invariance by relevant de-
formations. More specifically, on gauge field theory side one can 
compute quantities such as the partition function and Wilson loops 
when the field theory is put on the sphere. Then on the gravity 
side, one takes the relevant 10/11 dimensional supergravity in Eu-
clidean signature and solve the BPS equations when the modes 
whose dual operators we consider are turned on. We look for so-
lutions which asymptote to Euclidean AdS, i.e. hyperbolic space 
in the UV (when the sphere becomes large) and regular in the 
IR (when the sphere collapses to a point). Then one substitutes 
the solution to the supergravity action and performs holographic 
renormalization to obtain the partition function on gravity side. 
The result is supposed to match the large-N limit of the localiza-
tion formula of the dual field theory.
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This program proved particularly fruitful for the case of D = 3
gauge theories and their AdS4 duals. The localization formula suc-
cessfully reproduces not only the N3/2 scaling of the degrees of 
freedom in the strongly coupled limit, but also the coefficient 
which is related to the volume of the internal space [10–14], for 
theories living on M2-branes. One also finds a nice agreement for 
M5-branes wrapped on 3-cycles [15,16] which exhibit N3 scaling, 
and D2-branes in massive IIA theory [17] which exhibit N5/3 scal-
ing for free energy. For the gravity side analysis, we sometimes 
deal with, instead of 10/11 dimensional supergravity, their consis-
tently truncated version down to four dimensions. Such theories 
typically contain a number of scalar fields with a potential func-
tion whose critical points provide AdS vacua. Physically speaking, 
non-trivial values of the scalar fields at a critical point imply that 
the dual field theory is at the fixed point of the renormalization 
group flow triggered by the field theory operators which are dual 
to the relevant scalar fields.

In this paper we are interested in a non-trivial supersymmet-
ric critical point of N = 8, D = 4, S O (8) gauged supergravity with 
SU (3) × U (1) unbroken symmetry [18]. This solution is 1/4-BPS, 
so the dual theory should be an N = 2 field theory. Here the 
dual of the trivial vacuum is of course the celebrated ABJM theory 
[19] with a gauge group SU (N) × SU (N) and four chiral multi-
plets A1, A2, B1, B2 in bi-fundamental representation. It is argued 
that the SU (3) × U (1) vacuum is dual to a fixed point one obtains 
after one of the chiral multiple, A1 to be specific, is given a super-
potential mass and integrated out [20], thus deserving the name 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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of mABJM theory [21]. According to the localization formula, the 
free energy of this theory on S3, with R-charge assignments (also 
known as real masses) �A2 , �B1 , �B2 to the three remaining chiral 
multiplets, should be

F = 4
√

2π

3
N3/2

√
�A2�B1�B2 . (1)

It is certainly of interest to check whether (1) can be repro-
duced on the gravity side as well. This problem was tackled re-
cently in [1], where the authors constructed the BPS equations 
and studied numerical solutions thereof. When one tries to per-
form holographic renormalization and compute the free energy, a 
crucial information needed is how the UV parameters (which are 
vevs and sources of real mass terms, according to AdS/CFT dictio-
nary) are constrained by IR regularity. For the holographic proof 
of (1) according to [1], one needs to show that �’s from the UV 
expansion are independent of the IR value of a specific complex 
scalar, which is part of a hypermultiplet and dual to the superpo-
tential mass term. In this paper we provide an analytic test of this 
statement, while [1] essentially relies on numerical solutions.

We use a perturbative approach, which was proposed by one of 
us recently in [2], to solve a non-conformal holography problem in 
this article. Calculation of the holographic free energy as a function 
of mass parameters and comparing the result to localization result 
is an interesting problem. There already exist results on N = 2∗
[22] and N = 1∗ mass deformations [23] of N = 4, D = 4 super 
Yang-Mills theory, mass deformed ABJM theory [24], and mass-
deformation [25,26] of Brandhuber-Oz theory [27,28]. The power 
of our perturbative method was illustrated using representative ex-
amples in four, five, and six-dimensional AdS vacua and their mass 
deformations in [2], and in particular we managed to obtain the 
holographic free energy for AdS6 problem analytically, while previ-
ously only numerical results were available in [26]. More recently 
we re-visited the N = 1∗ problem in [29] and succeeded in cal-
culating the coefficients of the leading quartic order terms in the 
universal part of the holographic free energy, illustrating again the 
power of our perturbative prescription.

In this article we apply our perturbative method to the BPS 
equations for mABJM model, constructed in [1]. There is a cru-
cial difference here though, compared to previous works [2,29]. 
Since we have to deal with a renormalization group flow between 
ABJM and mABJM, the unperturbed zeroth-order solution would 
be a non-trivial domain wall solution in supergravity. Due to non-
trivial scalar fields, explicit solutions are rare or quite complicated 
in general. Luckily however, the authors of [1] reported an ex-
plicit solution where the scalar fields take certain IR values, which 
are different from the mABJM vacuum at conformality. We choose 
this flow solution as a zeroth order solution for our perturbative 
approach. We verify the central claim of [1] on the relationship 
between UV parameters when we impose IR regularity, up to third 
order in our perturbative method. In particular, this amounts to 
showing that (1) indeed holds, also in holography.

The plan of this article is as follows. Sec.2 provides a short re-
view of mABJM theory and its gravity dual. In Sec.3 we review the 
BPS equations and the holographic computation done in [1]. Sec.3 
is the main part where we construct perturbatively the solutions 
of the BPS equations. In Sec.4 we conclude with discussions.

2. Review of mABJM theory and its gravity dual

The field theory description of M2-branes in flat background is 
given by the ABJM model [19]. It is a Chern-Simons-matter theory 
in D = 3 with a quiver structure and gauge group SU (N) × SU (N). 
The Chern-Simons level assignment is (k, −k), which leads to the 
orbifolding of the vacuum moduli space into R8/Zk . For generic 
integer values of k the supersymmetry is N = 6, while for spe-
cial cases of k = 1, 2 maximal supersymmetry N = 8 is restored. 
Readers are also reminded of the property that ABJM theory 
has four bi-fundamental chiral multiplets, A1, A2 in (N, N̄) and 
B1, B2 in (N̄, N) representation, interacting via a superpotential 
W = 4π

k Tr(A1 B1 A2 B2 − A1 B2 A2 B1). Since in this paper we are 
interested in comparing with the gravity dual AdS4 × S7, from this 
point we restrict ourselves to k = 1.

Using supersymmetric localization [4], one can reduce the path 
integral on S3 to ordinary integrals. Taking the large-N limit and 
using saddle point approximation, the free energy (logarithm of 
the partition function) is obtained as a function of the R-charge 
assignments of four bi-fundamental chiral multiplets. The result is 
[11–14]

F = 4
√

2π

3
N3/2

√
�A1�A2�B1�B2 . (2)

Note that, due to R-symmetry conservation of the quartic superpo-
tential, we have a constraint

�A1 + �A2 + �B1 + �B2 = 2 . (3)

At the true conformal point the free energy should be maxi-
mized [5,14], giving F = √

2π N3/2/3 when the R-charges are all 
1/2. According to AdS/CFT, this quantity is expected to match the 
renormalized gravitational action evaluated for AdS4 × S7, and in-
deed it does. On the other hand, it has been known for a long time 
that the maximally supersymmetric S O (8)-gauged supergravity in 
D = 4 has a N = 2 vacuum with SU (3) × U (1) supersymmetry 
[18]. Readers are referred to e.g. Table 1 in [30] for a list of super-
symmetric and non-supersymmetric vacua. We easily see from the 
data there, that the ratio of the cosmological constants between 
the SU (3) × U (1) vacuum and the trivial vacuum is 

√
27/16.

Keeping this number in mind, let us now consider adding a 
superpotential mass term to one of the chiral multiplets (for A1, 
to be specific). For k = 1, the spectrum of ABJM model includes 
monopole operators T (±1) which are in (N, N̄) and its conju-
gate representations respectively. One can thus add e.g. Wmass =
m
2 Tr(T (−1) A1)

2 which is gauge invariant, while keeping N = 2 su-
persymmetry. Assuming that the renormalization group flow trig-
gered by this mass deformation hits a fixed point, the R-charges 
should satisfy

�A2 + �B1 + �B2 = 1, �A1 = 1. (4)

Since the calculation of large-N free energy apparently does not 
depend on superpotential, we now have (1), whose extremized 
value being F = 4

√
6π N3/2/27. We note that the ratio of free en-

ergy between ABJM and mABJM is again 
√

27/16. Having the same 
unbroken global symmetry and free energy, it is natural to conjec-
ture that the supergravity vacuum in question is the large-N dual 
of mABJM theory. One can also find more non-trivial comparison 
between the supergravity fluctuation modes around the solution 
with SU (3) × U (1) symmetry and dual operators in [31,32].

3. BPS equations and the holographic free energy

3.1. BPS equations in conformal metric

The lagrangian in Euclidean signature which contain the dual 
scalar fields of R-charge assignments and a SU (3)-invariant super-
potential mass term is constructed in [1]. In can be expressed as 
follows,
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L = −1

2
R +

3∑
i=1

gμν∂μzi∂ν z̃i

(1 − zi z̃i)
2

+ gμν∂μz∂ν z̃

(1 − zz̃)2
+ 1

2L2
P. (5)

Recall that a complex scalar and its conjugate in Minkowski sig-
nature should be treated as independent when we switch to Eu-
clidean signature. In principle they can be both complex, but for 
the solutions we consider here, we may consider them as real 
quantities. It is important to remember that zi and z̃i are not
SU (3) triplets. Instead, i = 1, 2, 3 label three Cartan generators of 
SU (4). On the other hand, z, ̃z, from a hypermultiplet, are dual to 
a quadratic mass term which induces the symmetry breaking of 
SU (4) to SU (3).

The scalar potential P is given in terms of superpotential 
W(zi, z) and its conjugate W̃(z̃i, ̃z), as follows

P = 1

2

(
3∑

i=1

(1 − zi z̃i)
2∇ziW∇z̃i

W̃

+ 4X(1 − X)2∂XW∂XW̃ − 3WW̃
)

. (6)

Here the covariant derivative is defined as ∇ζ := ∂ζ + 1
2 ∂ζ (K ), X :=

zz̃. The superpotential and the Kähler potential are given as

W = eK/2 1

1 − X
(2(z1z2z3 − 1) + X(1 − z1)(1 − z2)(1 − z3)),

(7)

eK/2 = 1

(1 − z1 z̃1)1/2(1 − z2 z̃2)1/2(1 − z3 z̃3)1/2
. (8)

The theory at hand has two AdS vacua, which in M-theory set-
ting correspond to the N = 8 and a N = 2 solutions respectively. 
At vacuum 1, all scalars vanish and P = −6, which implies the ra-
dius of AdS (or hyperbolic space H4 to be precise) is L. At vacuum 
2, which we call Warner vacuum, scalars take non-trivial values as 
follows and the supersymmetry is broken to N = 2.

zi = z̃i = √
3 − 2, zz̃ = 1/3 . (9)

Then the scalar potential gives P = −9
√

3/2, implying the radius 
of AdS is now (16/27)1/4 L.

In this paper we choose conformal gauge for the metric, which 
is useful for our perturbative prescription as advocated in [2].

ds2 = e2A
(

dr2

r2
+ ds2

S3

)
. (10)

The BPS equations are found from the Killing spinor equations, and 
are given as follows.

z′
j = −2

r
(1 − z j z̃ j)

2 ∂XW
W̃∂XW −W∂XW̃

∇z̃ j
W̃, (11)

z̃′
j = −2

r
(1 − z j z̃ j)

2 ∂XW̃
W̃∂XW −W∂XW̃

∇z jW, (12)

X ′

X
= −8

r

∂XW̃∂XW
W̃∂XW −W∂XW̃

. (13)

According to the derivation in [1], the BPS conditions require z
z̃

should be constant. It is why we only have an equation for X = zz̃
here. The above equations are enough to determine all scalar fields, 
and they are substituted into either a differential condition

(A′)2 = 1

r2
+ 1

4r2
e2AWW̃, (14)
or an algebraic one

e2A = 16∂XW̃∂XW
(W∂XW̃ − W̃∂XW)2

, (15)

to determine the metric. One can check that the above equations 
are all consistent with each other, although it might look at first 
they are over-constrained.

When one turns off z and z̃, we are going back to the ABJM 
model with general R-charge assignments. Explicit solutions are 
found in [24],

zi = ci f (r), z̃i = c̃i f (r), (16)

where the coefficients are related through ci = c̃1c̃2c̃3/c̃i , and

f (r) = 1 − c̃1c̃2c̃3 − r2

1 − c̃1c̃2c̃3(1 + r2)
. (17)

We note that this is a useful example to illustrate the power of the 
perturbative method [2], which we employ in this paper.

3.2. Study of BPS solutions through UV and IR expansions

We consider solutions which approach the trivial vacuum in 
the UV and become mABJM with arbitrary R-charge assignments in 
the IR. In terms of AdS/CFT correspondence, the R-charges of chiral 
multiplets in mABJM can be extracted from the leading order ex-
pansion coefficients of scalars in the following way. In the metric 
convention of (10), UV is at r → 1. In terms of the Fefferman-
Graham coordinate ρ which is related to r as r = 1 − 2e−ρ + · · · , 
UV is at ρ → ∞, and the expansion for scalar fields gives that the 
leading terms are

zi = aie
−ρ + bie

−2ρ + · · · , z̃i = ãie
−ρ + b̃ie

−2ρ + · · · , (18)

z = ae−ρ + be−2ρ + · · · , z̃ = ãe−ρ + b̃e−2ρ + · · · . (19)

Then the R-charge values are given as �A2 := �1, �B1 := �2,

�B2 := �3 and

�i = (ai − ãi)/4. (20)

One can show that the BPS equations enforce the condition ∑3
i=1 �i = 1, when z, ̃z are non-vanishing.
One finds that the above UV expansion coefficients should be 

related in a certain way, when one demands regularity at IR, i.e.
r = 0. It is also where the warp factor e2A vanishes and the sphere 
collapses. The IR is then characterized by the values of the scalar 
fields.

ci := zi(0), c̃i := z̃i(0), x0 := z(0)z̃(0) . (21)

One can show, from the analysis of BPS equations near r = 0 [1],

ci = 2c̃ j c̃k − x0(1 − c̃ j)(1 − c̃k)

2 − x0(1 − c̃ j)(1 − c̃k)
, (i jk)−cyclic, (22)

and also

2(c̃1c̃2c̃3 − 1) + (1 − c̃1)(1 − c̃2)(1 − c̃3) = 0 . (23)

It is clear that regular solutions are parametrized by three con-
stants: c̃i satisfying (23), and x0.

In the holographic computation [1], it is crucial to identify the 
UV parameters ai, ̃ai as functions of IR parameters, c̃i, x0. Based on 
numerically constructed regular solutions, the authors of [1] con-
jectured that
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ai(c̃, x0) = a(0)
i (c̃) + f (c̃, x0),

ãi(c̃, x0) = ã(0)
i (c̃) + f (c̃, x0). (24)

In particular, it means �i should be independent of x0. On the 
other hand, x0 = 0 is a special case where the problem reduces 
to pure ABJM, and exact solutions are available. It then follows 
that the relation for pure ABJM case, which can be derived from 
explicit solutions in (16) and (17), must hold more generally for 
x0 �= 0 case as well. Summarizing,

�i = (1 + c̃ j)(1 + c̃k)

(1 − c̃ j)(1 − c̃k)
, (i jk)−cyclic, (25)

constitutes the holographic proof of (1). We confirm that this is 
indeed the case, using our perturbative method, in Sec.4.

4. Perturbative analysis

4.1. Why UV should be ABJM

Before we present a perturbative version of solutions which are 
ABJM at UV and mABJM in IR, let us try to answer a natural ques-
tion: what if we try to construct solutions whose UV is at Warner 
vacuum (9), and IR is mABJM with an arbitrary R-charge assign-
ments.

For simplicity let us consider the symmetric sector where we 
set ζ := z1 = z2 = z3 and ζ̃ := z̃1 = z̃2 = z̃3 = ζ̃ . The simplified BPS 
equations and the algebraic constraint can be found in the next 
subsection, and up to the first order we substitute

ζ(r) = √
3 − 2 + ζ1(r)ε + · · · , (26)

ζ̃ (r) = √
3 − 2 + ζ̃1(r)ε + · · · , (27)

X(r) = 1/3 + X1(r)ε + · · · . (28)

It turns out ζ1, ̃ζ1 are given in terms of X1 in the following way,

ζ1(r) = 3

8r

(
3 − 2

√
3
)(

1 − r2
)

X ′
1(r),

ζ̃1(r) = 3r

8

(
3 − 2

√
3
)(

1 − r2
)

X ′
1(r). (29)

And after eliminating ζ1, ̃ζ1, we find X1 should satisfy a second-
order homogeneous differential equations with the following func-
tions as two linearly independent solutions.(

1 − r2
) 1

2 ±
√

17
2

2 F1

(
1 ± √

17

2
,

1 ± √
17

2
;1 ± √

17;1 − r2

)
(30)

Then it is easy to see that it is impossible to require X1(r = 0) = 0
and make X1(r = 1) finite at the same time. In more physical 
terms, at the Warner vacuum the superpotential mass operator 
cannot be treated as small.

4.2. Solutions for symmetric subsector

Let us now study the symmetric sector in more detail. The BPS 
equations simplify and give

rζ ′ = −1

3
(1 + 4ζ + ζ 2)

2(ζ − ζ̃ 2) + X(1 − ζ )(1 − ζ̃ )2

(1 − X)(ζ − ζ̃ )(1 − ζ̃ )
, (31)

rζ̃ ′ = −1

3
(1 + 4ζ̃ + ζ̃ 2)

2(ζ̃ − ζ 2) + X(1 − ζ̃ )(1 − ζ )2

(1 − X)(ζ − ζ̃ )(1 − ζ )
, (32)

r
X ′

X
= −4

3

(1 + 4ζ + ζ 2)(1 + 4ζ̃ + ζ̃ 2)

(ζ − ζ̃ )(1 − ζ ζ̃ )
, (33)
For the warp factor, we have

(
r A′)2 = 1 − e2A

(
X(ζ − 1)3 − 2ζ 3 + 2

)(
X(ζ̃ − 1)3 − 2ζ̃ 3 + 2

)
4(X − 1)2(ζ ζ̃ − 1)3

,

(34)

or equivalently the algebraic constraint

e2A = −4(ζ 2 + 4ζ + 1)(ζ̃ 2 + 4ζ̃ + 1)(ζ ζ̃ − 1)

9(ζ − 1)(ζ̃ − 1)(ζ − ζ̃ )2
. (35)

Since we have autonomous equations, we may eliminate r and 
consider only their ratios. Explicit solutions are still not available 
in general, but the authors of [1] found an explicit solution.

ζ̃ (ζ ) = −ζ, X(ζ ) = − 4ζ 2

(1 − ζ 2)2
. (36)

Note that we always require at UV ζ = ζ̃ = X = 0, because we 
want asymptotically AdS solutions. For this particular solution at 
hand, at IR ζ̃ = −ζ = −2 + √

3, X = −1/3. Requiring regularity at 
IR, it was found in [1] that in terms of x0 ≡ X(r = 0), general solu-
tions should satisfy

ζ0 ≡ ζ(r = 0) = 9x2
0 − 12x0 + 1

(3x0 − √
3 − 2)2

, ζ̃0 ≡ ζ̃ (r = 0) = −2 + √
3.

(37)

We treat this particular configuration (36) at x0 = −1/3 as our 
reference solution, around which we perform a perturbative analy-
sis. For that purpose, we exploit the re-parametrization invariance 
and introduce a new independent variable t , which is related to r
as dr/r = j(t)dt . We define t so that for the unperturbed solution 
ζ = −t , and write general solutions as follows

ζ(t) = −t +
∞∑

n=1

ζn(t)ε
n, (38)

ζ̃ (t) = +t +
∞∑

n=1

ζ̃n(t)ε
n, (39)

X(t) = −4t2

(1 − t2)2
+

∞∑
n=1

Xn(t)ε
n, (40)

e2A =
∞∑

n=0

wn(t)ε
n, (41)

j(t) =
∞∑

n=0

jn(t)ε
n. (42)

Note that now the range of the new coordinate variable t is 
−2 + √

3 ≤ t ≤ 0 at O(ε0). Namely t I R = −2 + √
3, tU V = 0. As we 

consider general solutions with ε �= 0 we will keep tU V = 0 while 
t I R will receive corrections. We define in t0 := −2 + √

3 for later 
convenience.

Substituting the expansion into the equations, we first consider 
O(ε0) and obtain

j0(t) = 3
(
t2 + 1

)2(
1 − t2

) (
t4 − 14t2 + 1

) , (43)

w0(t) = (t2 + 1)(t4 − 14t2 + 1)

9t2(1 − t2)
. (44)
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Note that the warp factor is now called w and it satisfies w(tU V ) =
∞ and w(t I R) = 0, as it should.

As we turn to higher orders, we fix the re-parametrization 
gauge and set Xn(t) = 0, n ≥ 1. Then at first order we discover 
j1, w1 are given as certain linear combinations of ζ1, ̃ζ1. We also 
have a coupled first-order differential equations for ζ1, ̃ζ1, which 
can be explicitly solved

ζ1(t) =
(√

3 + 3
)

t(1 + t)

3
((√

3 − 2
)

t − 1
) , (45)

ζ̃1(t) =
(√

3 + 3
)

t(1 − t)

3
(

t + √
3 − 2

) . (46)

Note that the UV boundary condition ζ(tU V ) = ζ̃ (tU V ) = 0 is satis-
fied. Substituting the above result into the expressions for j1, w1, 
we obtain

j1 =
(

2
√

3 + 3
)(

t2 + 1
)2

(
t2 + 6

√
3t − 1

)
(
t4 − 14t2 + 1

)2
, (47)

w1 =
2
(

3 + 2
√

3
)(

t2 + 1
)(

t4 + 3
√

3t3 − 8t2 − 3
√

3t + 1
)

27t2
(
t2 − 1

) .

(48)

We can push explicit integration to next order O(ε2). Again 
ζ2, ̃ζ2 satisfy coupled first-order differential equations. The homo-
geneous part is the same as the one for ζ2, ̃ζ2, but this time we 
have additionally an inhomogeneous part expressed in terms of 
ζ1, ̃ζ1. Solutions with the right UV boundary condition are given as 
follows

ζ2(t) = −
(2 +√

3)t(t + 1)
((

19
√

3 + 33
)

t2+
(

4
√

3+4
)

t−13
√

3−23
)

6
(

t + √
3 − 2

)(
t + √

3 + 2
)2

−
(

7 + 4
√

3
)

t(1 − t2)

3
(

t − √
3 + 2

)(
t + √

3 + 2
) log

[
2(1 − t2)

1 − 2
√

3t − t2

]
, (49)

ζ̃2(t) =
(3

√
3 + 5)

(
3t − √

3 − 2
)(

t − √
3 + 2

)
t(1 − t)

6
(

t + √
3 − 2

)2 (
t + √

3 + 2
)

+
(

7 + 4
√

3
)

t(1 − t2)

3
(

t − √
3 − 2

)(
t + √

3 − 2
) log

[
2(1 − t2)

1 − 2
√

3t − t2

]
.

(50)

One might be alarmed by the logarithms in the result, which is 
usually a signal for conformal anomaly in even dimensions. How-
ever, the logarithms above and in higher order results do not cause 
log terms in UV t = 0 obviously, and has nothing to do with con-
formal anomaly. On the determination of ζ2, ̃ζ2, to be more specific 
one of the integration constants are fixed by regularity of ζ2 at IR, 
and the other constant is fixed by our choice ζ̃2(t0) = 0. It is then 
straightforward to write down the next-order functions ζ3, ̃ζ3 in 
an integral form. Because the result is quite lengthy with a lot of 
polylogarithms, we will not present the O(ε3) solutions explicitly 
here. Knowing ζ ′

3, ̃ζ
′
3 explicitly is nonetheless useful in the follow-

ing analysis.
Now let us try to extract the crucial information on this holo-

graphic problem. The IR value of t should be determined through 
Fig. 1. Plot of f (x0) using Eq.(54), truncated to cubic order in (x0 + 1/3).

the requirement ζ̃ (t = t I R) = −2 + √
3. There should be a series 

expansion for t I R in terms of ε . It turns out

tI R = √
3 − 2 − ε −

(
3

2
+ 2√

3

)
ε2 −

(
11

6
+ √

3

)
ε3 +O(ε4).

(51)

Inverting it and recalling X(t I R) = x0, we have

x0 = −1

3
− 4

9

(
3 + 2

√
3
)
ε −

(
73

9
+ 14√

3

)
ε2

−
(

317

9
+ 61√

3

)
ε3 +O(ε4). (52)

In order to determine as := a1 = a2 = a3, ̃as := ã1 = ã2 = ã3, and 
f (x0), we need to analyze the UV (near t = 0) behavior. Let us first 
confirm that as − ãs = 4/3: namely, it is independent of ε . In [1]
it was derived from the UV expansion of the BPS equations, so for 
us it is a quick consistency test. This can be seen without know-
ing the perturbative results wn, ζn, ̃ζn explicitly. Note that as, ̃a are 
just given by the UV limits (near t = 0) of the right-hand-side ex-
pressions in Eq.(31) and Eq.(32). Since ζ, ̃ζ ∼ O(t) and X ∼ O(t2), 
we easily see that

as = lim
t→0

4ζ

3(ζ − ζ̃ )
, ãs = lim

t→0

4ζ̃

3(ζ − ζ̃ )
. (53)

Then obviously as − ãs = 4/3, as desired. This argument can be 
easily generalized to non-symmetric case.

Calculating f (x0) ≡ as − 2/3 + 2
√

3/9 requires doing the inte-
gration for ζ3, ̃ζ3 explicitly, which we did not manage to accom-
plish. Using numerical integration, we find1

f (x0) = 2
√

3
9 −

√
3

2 (x0 + 1/3) − 9
√

3
32 (x0 + 1/3)2

− 0.621072954165398 (x0 + 1/3)3 +O
(
(x0 + 1/3)4

)
.

(54)

Fig. 1 is a plot of the truncated cubic expression from the above 
expression. When we compare it with Figure 4 of [1], we find a 
reasonably good agreement roughly in the range of −0.45 � r �
0.25. As a consistency check we may evaluate f (0), which should 
be zero, from the above expression. We obtain 0.019 instead.

1 It is tempting to conjecture 0.62107... divided by 
√

3, 1.7573, is a rational num-
ber, but it seems unlikely.
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4.3. Non-symmetric solutions

We use basically the same strategy also to construct general 
solutions. In particular we use a new holographic coordinate t
defined through dr/r = j(t)dt , and using the gauge freedom fix 
X(t) = −4t2/(1 − t2)2. Our ε expansion is now

zi(t) = −t +
∞∑

n=1

zi,n(t)ε
n, z̃i(t) = +t +

∞∑
n=1

z̃i,n(t)ε
n, (55)

and

e2A =
∞∑

n=0

Wn(t)ε
n, j(t) =

∞∑
n=0

Jn(t)ε
n. (56)

It is obvious that J0(t) = j0(t) and W0(t) = w0(t): the same 
as the symmetric solution. At O(ε) the solutions are essentially 
the same as the symmetric case and all zi,1 (z̃i,1) have the same 
profile. Namely, we have

zi,1 = εiζ1(t), z̃i,1 = εi ζ̃1(t). (57)

We now absorb ε into εi , which are treated as small expansion 
parameters. Introducing three parameters here is obviously consis-
tent with the fact that general solutions are parametrized by c̃i, x0. 
In terms of our perturbative solutions, c̃i, x0 are functions of εi . For 
the rest of O(ε) functions,

J1(t) = ε1 + ε2 + ε3

3
j1(t), W1(t) = ε1 + ε2 + ε3

3
w1(t). (58)

At the next order O(ε2), we find due to symmetry reasons the 
solutions should take the following form:

zi,2 = ε2
i A(t) + εi(ε1 + ε2 + ε3)B(t) + ε1ε2ε3

εi
C(t), (59)

z̃i,2 = ε2
i Ã(t) + εi(ε1 + ε2 + ε3)B̃(t) + ε1ε2ε3

εi
C̃(t). (60)

The component functions are found to be

A = −
(

87
√

3+151
)

t(t+1)
(

47t2 + 51
√

3t−48t + 10
√

3 − 26
)

423
(

t + √
3 − 2

)(
t + √

3 + 2
)2

−
(

7 + 4
√

3
)

t(t2 − 1)

9
(

t − √
3 + 2

)(
t + √

3 + 2
) log

[
2
(
1 − t2

)
1 − 2

√
3t − t2

]
, (61)

B = −
(

11
√

3 + 19
)

t(t + 1)
(

t2 − 2
√

3t − 1
)

18
(

t + √
3 − 2

)(
t + √

3 + 2
)2

+
(

7 + 4
√

3
)

t(t2 − 1)

9
(

t − √
3 + 2

)(
t + √

3 + 2
) log

[
2
(
1 − t2

)
1 − 2

√
3t − t2

]
, (62)

C = −
(

3
√

3 + 5
)(

t − √
3 − 2

)
t(t + 1)

9
(

t + √
3 − 2

)(
t + √

3 + 2
)

+
(

7 + 4
√

3
)

t(t2 − 1)

9
(

t − √
3 + 2

)(
t + √

3 + 2
) log

[
2
(
1 − t2

)
1 − 2

√
3t − t2

]
, (63)

and
Ã = −
(t − 1)t

(
2t2 − 3

√
3t + 3t − √

3 + 1
)

9
(

t + √
3 − 2

)2 (√
3t − 2t − 1

)
+

(
7 + 4

√
3
)

t(t2 − 1)

9
(

t − √
3 − 2

)(
t + √

3 − 2
) log

[
2
(
1 − t2

)
1 − 2

√
3t − t2

]
, (64)

B̃ = −
(

3
√

3 + 5
)

(t − 1)t
(

t2 − 2
√

3t − 1
)

18
(

t + √
3 − 2

)2 (
t + √

3 + 2
)

−
(

7 + 4
√

3
)

t(t2 − 1)

9
(

t − √
3 − 2

)(
t + √

3 − 2
) log

[
2
(
1 − t2

)
1 − 2

√
3t − t2

]
, (65)

C̃ = −
(

11
√

3 + 19
)(

t − √
3 + 2

)
(t − 1)t

9
(

t + √
3 − 2

)(
t + √

3 + 2
)

−
(

7 + 4
√

3
)

t(t2 − 1)

9
(

t − √
3 − 2

)(
t + √

3 − 2
) log

[
2
(
1 − t2

)
1 − 2

√
3t − t2

]
. (66)

It is also straightforward to calculate the warp factor at O(ε2),

W2(t) = −
(

5 + 3
√

3
)(

t2 +1
)(

2
(

t4 −
(

7−√
3
)

t2 + 1
)

+ 9
(

1 + √
3
)

t
(
t2 − 1

))
162t2

(
t2 − 1

)
×

(
ε2

1 + ε2
2 + ε2

3

)
−

2
(

7 + 4
√

3
)(

t2 + 1
)(

t6 + 6
√

3t5 + 11t4 − 8
√

3t3 − 11t2 + 6
√

3t − 1
)

81t2
(
t2 − 1

)(
t2 + 2

√
3t − 1

)
× (ε1ε2 + ε3ε2 + ε1ε3)

+
2
(

7 + 4
√

3
)(

t2 + 1
) (

t4 − 8t2 + 1
)

81t2(1 − t2)

× log

[
2(1 − t2)

1 − 2
√

3t − t2

]
(ε1ε2 + ε3ε2 + ε1ε3) . (67)

Since t I R is where the warp factor e2A vanishes, one obtains

tI R = √
3 − 2 − 1

3
(ε1 + ε2 + ε3)

− 1

108

(
15 + 8

√
3
)

(ε1 + ε2 + ε3)
2 − 1

12

(
ε2

1 + ε2
2 + ε2

3

)
− 1

324

(
23 + 13

√
3
)

(ε1 + ε2 + ε3)
3 + 1

27

(
9 + 5

√
3
)
ε1ε2ε3

− 1

324

(
27 + 11

√
3
)(

ε3
1 + ε3

2 + ε3
3

)
+O(ε4). (68)

Now we can calculate the IR values of the fields by substituting 
t I R above into the perturbative solutions of scalar fields. First the 
hypermultiplet scalar X at IR is

x0 = −1

3
− 4

27

(
3 + 2

√
3
)

(ε1 + ε2 + ε3)

− 10

81

(
7 + 4

√
3
)

(ε1 + ε2 + ε3)
2

− 1

27

(
3 + 2

√
3
)(

ε2
1 + ε2

2 + ε2
3

)
− 2

729

(
480 + 277

√
3
)

(ε1 + ε2 + ε3)
3

+ 1 (
115 + 66

√
3
)
ε1ε2ε3
81
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− 1

243

(
88 + 51

√
3
)(

ε3
1 + ε3

2 + ε3
3

)
+O(ε4). (69)

And the vector multiplet scalars zi, ̃zi give

ci = −√
3 + 2 + 1

3
εi + 1

3
(ε1 + ε2 + ε3) + 1

18

(
3 + 4

√
3
) ε1ε2ε3

εi

+ 5

18
ε2

i + 1

27

(
3 + 4

√
3
)
εi (ε1 + ε2 + ε3)

+ 2

27

(
3 + √

3
)

(ε1 + ε2 + ε3)
2 + 1

108

(
19 + 8

√
3
)
ε3

i

− 1

972

(
62 + 53

√
3
)(

ε3
1 + ε3

2 + ε3
3

)
+ 5

324

(
21 + 13

√
3
)
ε2

i (ε1 + ε2 + ε3)

− 1

108

(
20 + 13

√
3
)
εi (ε1 + ε2 + ε3)

2

+ 1

972

(
212 + 125

√
3
)

(ε1 + ε2 + ε3)
3

− 1

162

(
41 + 20

√
3
)
ε1ε2ε3 +O(ε4),

c̃i = √
3 − 2 + εi − 1

3
(ε1 + ε2 + ε3) + 1

6

ε1ε2ε3

εi
− 1

6
ε2

i

+ 2

9

(
3 + √

3
)
εi (ε1 + ε2 + ε3)

− 8

108

(
3 + √

3
)

(ε1 + ε2 + ε3)
2 + 1

36

(
9 + 4

√
3
)
ε3

i

− 1

324

(
20 + 7

√
3
)(

ε3
1 + ε3

2 + ε3
3

)
− 1

36

(
11 + 5

√
3
)
ε2

i (ε1 + ε2 + ε3)

+ 1

108

(
40 + 21

√
3
)
εi (ε1 + ε2 + ε3)

2

− 1

324

(
30 + 17

√
3
)

(ε1 + ε2 + ε3)
3

+ 1

54

(
1 + 2

√
3
)
ε1ε2ε3 +O(ε4). (70)

We have verified the constraints (22) and (23) are indeed satisfied 
by our results.

We can also calculate the UV parameters, and in particular we 
need ai, ̃ai in order to calculate �i = (ai − ãi)/4. It turns out that 
this time we were only able to evaluate some of cubic order coef-
ficients numerically, and

ai(ε) = 2

3
+ 2

27

(
3
(

3 + √
3
)
εi +

(
3 + 2

√
3
)

(ε1 + ε2 + ε3)
)

+ 4

81

(
5 + 2

√
3
)
ε2

i + 1

81

(
8 + 5

√
3
)(

ε2
1 + ε2

2 + ε2
3

)
+ 1

81

(
73 + 43

√
3
)
εi (ε1 + ε2 + ε3)

+ 2

81

(
71 + 41

√
3
) ε1ε2ε3

εi

+ 1.35876ε3
i − 1.8564

(
ε3

1 + ε3
2 + ε3

3

)
+ 5.47781ε2

i (ε1 + ε2 + ε3)

− 3.58893εi (ε1 + ε2 + ε3)
2 + 1.7595 (ε1 + ε2 + ε3)

3

+ 2.97386ε1ε2ε3 +O(ε4), (71)

ãi(ε) = −2 + 2 (
3
(

9 + 5
√

3
)
εi −

(
3 + 2

√
3
)

(ε1 + ε2 + ε3)
)

We
(i jk

ai(

and

f (x

Let
wh
ind

5. 

mA
rep
unp
non
hav
vid
(1)
ana
ble

Ack

ticu
on 
and
por
201
the
NR
3 27
− 2

81

(
1 + √

3
)
ε2

i − 1

81

(
8 + 5

√
3
)(

ε2
1 + ε2

2 + ε2
3

)
+ 1

81

(
143 + 83

√
3
)

(ε1 + ε2 + ε3) εi

+ 2

81

(
1 + √

3
) ε1ε2ε3

εi

+ 2.62989ε3
i − 0.387987

(
ε3

1 + ε3
2 + ε3

3

)
− 3.03674ε2

i (ε1 + ε2 + ε3)

+ 3.07307εi (ε1 + ε2 + ε3)
2

+ 0.484888 (ε1 + ε2 + ε3)
3 − 2.7025ε1ε2ε3 +O(ε4).

(72)

 are now ready to check the central claim in [1], i.e. for 
)-cyclic,

ε) = 4c̃ j c̃k

1 − c̃1c̃2c̃3
+ f (x0, c̃), ãi(ε) = 4c̃i

1 − c̃1c̃2c̃3
+ f (x0, c̃),

(73)

0, c̃) = 2
√

3

9
− 9

√
3

32
(x0 + 1/3)2 − 0.621963(x0 + 1/3)3

−
3∏

i=1

(
c̃i − √

3 + 2
)

[0.480881

+0.200891(x0 + 1/3)

3∑
i=1

(c̃i − √
3 + 2)−1

]

+O(ε4). (74)

 us comment here that the above expression reduces to (54)
en ε1 = ε2 = ε3 as it should, and the above formula is in fact 
ependent of c̃i up to O(ε2), since the second line is O(ε3).

Discussions

In this paper we applied our perturbative prescription [2,29] to 
BJM theory and confirmed the conjecture of [1]. The analysis 
orted here is a rather non-trivial extension of [2,29], where the 
erturbed solutions were pure AdS, while we perturb around a 
-trivial flow solution which connects two distinct vacua. We 
e illustrated that our method is still effective and have pro-
ed analytic confirmation of the holographic free energy formula 
. We plan to tackle other problems with our method to obtain 
lytic expression for the free energy of other quantities accessi-
 via localization technique and holography.
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