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Abstract

We examine dijet production at large rapidity intervals at Tevatron energies by compar-
ing an exact O(a?) calculation with the BFKL approximation, which resums the leading
powers of the rapidity interval y to all orders in a,. We analyze the dependence of the
exact O(a3) calculation on the jet cone-size as a function of y, and use this cross section
to define an “effective rapidity” § which reduces the error that the large-y approxima-
tion induces on the kinematics. Using § in the BFKL resummation, we reexamine jet
production at large transverse momenta and the transverse momentum decorrelation of

the tagging jets. We find less dramatic, but still significant, effects than found previously
using the large-y approximation.
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1 Introduction

The state-of-the-art in jet physics at hadron colliders is described by next-to-leading-
order QCD parton-level calculations. These consist of the O(a?) + O(a?) one-loop
2 — 2 parton scattering, combined together with the O(a?) tree-level 2 — 3 parton
scattering[1]. These perturbative calculations describe the hard part of the scattering,
while the nonperturbative effects are factorized into the parton structure functions. An
advantage of going to next-to-leading order is that it reduces the dependence on the
arbitrary scale associated with this factorization. In addition, the inclusion of a third
final-state parton allows a more detailed description of the jet structure. These next-to-
leading order calculations[2], [3], [4] appear to be in very good agreement with the one-
and two-jet inclusive distributions obtained from the data of the CDF experiment at the

Fermilab Tevatron Collider[5], [6].

Despite these successes, it is possible to imagine kinematic configurations where this
fixed-order analysis 1s inadequate, even though the underlying process is still perturba-
tive in the usual sense. This could occur when the cross section contains logarithms of
large ratios of kinematic invariants. Typical invariants are the -hadron-hadron center-
of-mass energy +/s, the parton-parton center-of-mass energy v/§ = \/TaZpSs, where x4
and rp are the momentum fractions of the partons originating the hard scattering, and
the momentum transfer ¢}, which is of the order of the transverse momentum of the jets
produced in the hard scattering. Large logarithms will appear when /s > @, in the
semihard region of kinematic phase space. We can then avoid complications associated

with the small-z behavior of the structure functions by requiring that the parton mo-



mentum fractions, z4 and zp, are sufficiently large, as originally suggested by Mueller
and Navelet[7]. In this case the large logarithms, In(5/Q?), factorize entirely into the
partonic subprocess cross section. These logarithms, which are of the size of the rapidity
interval in the scattering process, can be resummed by using the techniques of Balitsky,
Fadin, Kuraev, and Lipatov (BFKL)[8]. For jet events with a large rapidity interval, the
amplitudes are dominated by contributions from multiple gluons that uniformly fill the
interval between the two extreme jets. The BFKL theory systematically resums these

leading powers in the rapidity interval, including both real and virtual gluon corrections.

In a previous paper[9] we showed how to analyze dijet production experimentally so
that it most closely resembles the configuration assumed in the BFKL theory. The main
difference from the standard hadronic jet analysis is that the jets are ordered first by
their rapidity rather than by their energy. Thus, we look at all the jets in the event that
are above a transverse rﬁomentum cutoff py,nin, using some jet-definition algorithm, and
rank them by their rapidity. We then tag the two jets with the largest and smallest
rapidity and observe the distributions as a function of these two tagging jets. The cross
section is inclusive so that the distributions are affected by the hadronic activity in
the rapidity interval y between the tagging jets, whether or not these hadrons pass the

jet-selection criteria. We will refer to these hadrons in the rapidity interval as minijets.

In ref. [9] we showed that the exponential enhancement with the rapidity interval y in
dijet production at fixed x4 and zp , which was originally suggested as a signature of the
BFKL minijets by Mueller and Navelet, is highly suppressed by the parton distribution
functions at Tevatron énergies. However, other observables such as the jet transverse

momentum distribution, and the jet-jet correlations in p; and azimuthal angle are signif-



icantly affected by the minijets. For instance, the transverse Iﬁomentum distribution was
considerably enhanced at large p, and large y. This enhancement has been seen in the
CDF data[6], although the data analysis differs somewhat from that needed to compare
directly with the BFKL resummation. In addition, there should be some dependence on
the cutoff p)min, and we shall see here that the p, distributions should differ for the two
tagging jets if they are not symmetrically placed around zero rapidity. Finally, we saw
that the correlation in transverse momentum and azimuthal angle of the tagging jets
is not a leading feature of the expansion in the rapidity interval. Accordingly, it fades

away as the rapidity interval increases. The decorrelation in azimuthal angle has also

been noted by Stirling[10].

For the most part these effects at large y can be easily understood in terms of the
sharing of the total p; by the additional minijets, which the BFKL resummation auto-
matically includes. In a fixed-order calculation the effects arise first at O(a?), where the
introduction of a third final-state parton removes some of the correlations inherent at
lowest order. Thus, it is interesting to compare the BFKL resummation directly with the
O(a?) result. This was done for the case of the phi distribution in ref. [10]. Here we shall
extend this comparison, which can be approached in two different ways. First, one can
truncate the BFKL solution at O(a?) and compare this with the exact O(a?) result. The
truncated O(a?) BFKL cross section is just the large y limit of the complete O(a?) cross
section, and so this comparison will indicate how good the leading log approximation
is at the different experiments. Second, one can compare the full BFKL solution with
its truncation to O(a3). This should give an indication of the size of the contributions

from higher orders in «,. In addition it will help in isolating the distributions which are



sensitive to the resummation effects beyond next-to-leading order.

The remainder of this paper is as follows. In section 2 we discuss the BFKL solution
and its truncation to O(a?). For illustrative purposes we also show how this second
cross section is obtained from the O(a?) tree-level 2 — 3 cross section in the limit of
large y. In section 3 we discuss the infrared singularities that occur at O(a?) in order
to further elucidate the approximations used in the BFKL analysis. We also observe the
dependence on the jet cone-size as a function of y. In section 4 we compare the BFKL
solution truncated to O(a?) with the exact 2 — 3 O(a3) cross section. We isolate the
primary contribution to the discrepancy between the two as arising from approximations
used in the parton distribution functions. In section 5 we introduce an “effective rapidity”
variable to use in the BFKL formula which accounts for this difference. In particular,
the effective rapidity is defined so that the truncation of the BFKL solution to O(a?)
equals the exact 2 — 3 O(a?) cross section. We use this modified BFKL cross section
to study the various dijet distributions, which show less dramatic, but still noticeable,

effects than in ref. [9]. In section 6 we present our conclusions.

2 The minijet resummation and O(a?) cross section
at large rapidities

We are interested in the semi-inclusive production of two jets in hard QCD scattering.
For definiteness we will consider the scattering process papp — ji1j2 + X such as at the
Tevatron, but the same analysis can also be applied to photoproduction at HERA[11].

We describe the two partonic tagging jets by their transverse momenta and rapidities



(P11,y1) and (Par,y2), where we always take y; > y,. For large rapidity intervals,
Y = Y1 — Y2, the cross section for this process can be written

dog 0.0 0 2 0o 2
= T 4T eff\ L 45 eIl TR, 72 192 1. 1
B dgdyndys AT kel 1) G g

where the parton momentum fractions are dominated by the contribution from the two

tagging jets

2 =

zp = i )
and g is the factorization/renormalization scale. In this limit the amplitude is dominated
by gg, qg, and qq scattering diagrams with gluon-exchange in the t-channel. The relative
magnitude of the different subprocesses is fixed by the color.strength of the respective
jet-production vertices, so it suffices to consider only gg scattering and to include the
other subprocesses by means of the effective parton distribution function|12]
C

fenl, 1) = Gz, %) + 5= 2(Qs(, 17) + Q. )] (3)
A4

In (3) the sum is over the quark flavors, C4 = N, = 3 is the Casimir operator of the

adjoint representation and Crp = (N? — 1)/2N, = 4/3 is the one of the fundamental

representation.

The higher-order corrections to the gg subprocess cross section in (1) can be expressed
via the solution of the BFKL equation[8], which is an all-order resummation in «; of the
leading powers of the rapidity interval

dG4g _ Chos

dP%LdP%J_dqﬁ B 47rp:13j_ P%J_ n

2
P2y

o 2
ei”("s_")/ dyve*™)¥ cos (V In pl'L) ) (4)
0

5



with

QCAQ’S

ofn, ) = 294% 1) — Rey(PLEL

i), (5)

and 1 the logarithmic derivative of the Gamma function. Eq. (4) can be expanded order
by order in «; and compared with a fixed-order calculation of dijet production at the
same order of a;, in the large rapidity limit[10]. By expanding the exponential in (4) to
zeroeth order in «; we obtain the tree-level large-y cross section
d&ég) _ 7Ca
dpfldngdqu 2p1,

2 5( L= Pa)é(¢—m). (6)

At O(«,) in the exponential we obtain

dé'(l) 02 az )
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0 T Pay

When p;; # p21 we can integrate out v and sum explicitly over n, by using the integral

representation of the ¢ function

1 _ omz—1
0

1-2
with the Euler constant v = .577215.... We obtain

dsl)  C%a? Caasy
dP%LdP%L‘M 47TP%L P%L P%J_ + P%L + 2p11p21 cos ¢'

(9)

When p;, ~ py, the cross section (7) is dominated by configurations where the third
parton is soft. These infrared singularities are regulated by the BFKL solution, which

includes both real and virtual corrections. To see how this occurs we can integrate (7)



over py, in the interval defined by [p?, — p2 | < ep?,, for ¢ sufficiently small. The
integrals over v and z can be performed, and the series in n can be summed, giving a

finite answer:
dot) 7C%a? 2C 405
s = At b(¢ ) =
p1.d9 2p3,

up to terms of O(e). For sufficiently small € this configuration is indistinguishable from

ylne, (10)

a configuration with only two final state partons. Thus, for |p?, — p3,| < ep?, we can

write the cross section to O(a?) as

do(0+1) 2.2
Ggq 7Cha (1 N 2CAasylne> (1)

— 56 2 2 5 P
dphdphdcﬁ 2pf11.L (le. p2_L) (¢ )

For |p?, — p2,| > ep?, we can use equation (9). Combining these two formulae (11)
and (9), the dependence on the unphysical variable ¢ will vanish in any inclusive process

integrated over a range of momenta, for small enough e.

It is also informative to derive the 2 — 3 cross section (9) by taking the large-rapidity
limit of the O(«s) real corrections to gluon-gluon scattering, computed in the conven-
tional way[13]. First, note that in the large rapidity limit the leading contribution is
given by the gg — ggg subprocess, the diagrams with final-state quarks being sublead-
ing. The squared scattering amplitude for this, summed (averaged) over final (initial)
colors and helicities, is given in ref.[14] as

IM|* = 4(ra;Ca)’ 3 s;; ;

b
1> {4,1,2,3,B] S$A41581252333BSAB

(12)

with i,j = A,1,2,3,B, and with the second sum over the noncyclic permutations of the

set [A,1,2,3,B]. The kinematic invariants are defined here by

n
SAB = S8 = ITAIBS = Z pi’_ij,_Ley'_y’
1,5=1
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sai = — . piipjLe B (13)

i=1
n
. — . . Yi—y
$Bi = — ) piLpjLel TV
j=1

si; = 2piaps o [cosh(y; —y;) — cos(p: — é;)] .

In the large rapidity limit eq. (12) becomes[15]

32

IM|2 = 128 (raSCA)S—.
P%J.P%L P%L

(14)

The large rapidity limit of the phase space for three-particle production is

dlly = 218-% <f[ EZ?;) (27)%6° <2; pu) : (15)

=1

where we have fixed the rapidities of the two gluons at largest and smallest rapidity and y;
is the rapidity of the third gluon. Using the amplitude (14), the phase space (15) and the
appropriate flux factor, we obtain for the dijet production cross section dé,,/dp?, dp2, d¢
the same expression as the one obtained in eq. (9) via the expansion of the BFKL solution.
Note that the overall factor of y in eq. (9) comes from the integration of the rapidity of

the third final-state gluon over the interval spanned by the tagging gluons.

3 Collinear singularities in dijet production

Before entering the details of a comparison between the BFKL resummation and the
complete O(a?) result, it is useful to consider the infrared singularities that occur in the
two approximations to dijet production. These singularities depend on the geometry of

the event and thus are sensitive to how dijet production is defined. In the next-to-leading



order (NLO) approximation the phase space integration over the kinematic variables of
the third (unresolved) parton generates infrared singularities when it becomes soft and
collinear singularities when it becomes collinear either with the initial-state partons or
with the other final-state partons. In contrast, the BFKL apprqximation only contains
the effects of soft gluons. Because of the explicit rapidity-ordering, the unresolved partons
are bound to lie within the rapidity interval defined by the tagging jets, and so can never
become collinear with the initial-state partons?. In addition, in the large rapidity limit
the region of phase space where the third parton becomes collinear with either of the

other final-state partons gives a nonleading contribution.

Let us examine this last point further. First we recall the standard definition of a jet as
consisting of all the partons lying within a circle of radius Rey; = [(ys—y)2+ (¢g — 4)*/?
from the jet axis (ys, ¢s) in the plane defined by rapidity and azimuthal angle (i.e., the
Lego plot). Then we look at the dependence on the jet cone size Eeu of the O(a?)
corrections to dijet production. Namely, we consider in Fig. 1 the contribution of the
three-jet configurations, computed through the 2—3 parton amplitudes, to the cross
section
dé;

dpu_dpu dy3d¢ ’
(16)

da Y1
= d /d ; 2y . p
dy dy dp( dpa, /‘yz ys d)%:xAQ:Bf/A(xA’N )fiss(zB a )

as a function of the jet cone size R, at different values of the rapidity interval y.

figy = @, @, G labels the distribution function of the parton species and flavor i(j) =

20f course, it is always possible for a parton or jet to be produced outside of the rapidity interval of
the tagging jets, but to go undetected because it has too small p;; or too large |y;]. In the context of
the BFKL approximation this jet would be considered part of the evolution of the structure functions,
and would not be included in the calculation of the parton subprocess.



q,q, g inside hadron A(B). We include all parton subprocesses[13], and use the exact
values of the parton momentum fractions

p1LeYt + pare¥? 4 p3je®
N
pree ¥ +pyreV? 4 p3 e

N (17)

As in our previous analysis[9] we set the rapidity boost § = (y; +y2)/2 = 0, since we are

rqa =

IB

mainly interested in the behavior of the parton subprocess, which does not depend on 3.
We fix the transverse momenta of the tagging jets at different values, p;; = 20 GeV and
p21= 50 GeV, in order to ensure that the third parton cannot become soft. Furthermore,
collinear configurations where the distance R between two of the partons on the Lego plot
is smaller than R, are discarded, because the resulting “combined” jet would be back-
to-back with the remaining parton and have the same p, as it. Finally, in the spirit of
the BFKL approximation, we restrict the rapidity of the third parton to lie between the
two tagging jets. Note that this last approximation differs from the full NLO treatment
which includes initial-state collinear radiation and uses the Altarelli-Parisi subtraction to
handle the divergences. Therefore, in this calculation and in all BFKL calculations, the
parton density functions should be treated at leading order (LO) and will have all the
associated LO factorization-scale dependence. In all of our plots we use the LO CTEQ
parton distribution functions{16] with the renormalization and factorization scales set to
the geometric mean of the transverse momenta of the tagging jets u? = p; 1 p21. As Fig.
1 shows, the dependence of the dijet production on the jet cone size R.,; decreases as y
1s increased. At y = 6 the tagging jets are so widely separated in rapidity that there is
almost no dependence on R, at all. This confirms that the phase space region where

two final-state partons are collinear is subleading at large rapidities, as suggested by the

10



BFKL theory.

4 The BFKL and the O(a?) corrections to the p;
distributions o

In section 2 we have shown that the truncated O(a?) BFKL contribution to dijet pro-
duction is the large rapidity limit of the complete O(a?) corrections. Here we want to
see how well this works in practice in the jet-jet p, correlation case examined in ref.[9].
In Fig. 2 we consider the contribution of the three-jet ampliﬁudes to the py corfelation
do/dy dy dpy, dpay, plotted as a function of the transverse momentum p;;, at a fixed
value of po; = 50 GeV and at y = 2 and 6. The customary value for the jet cone size
R.;= 0.7 has been used. As in fig. 1, configurations where the distance R between two
partons on the Lego plot is smaller than R..: are discarded, since-they would be counted
as a two-jet event with p;; = p,;. We go from the exact configurations to the large-y
approximation to them in three steps. The dashed curves are computed through the
exact 2—3 parton amplitudes[13] and kinematics (17); the dotted curves through the
large-y parton amplitudes (14) and the exact kinematics (17); the solid curves through
the large-y parton amplitudes (14) and kinematics (2). As the plots show, the error in
using the large-y approximation grows with the imbalance in transverse momentum of
the tagging jets. While at small y’s the error is distributed between the approximation
on the amplitudes and the one on the parton distribution functions, at large y’s most of
the error comes in using the large-y approximation in the parton distribution functions.

We have also made this comparison for the larger rapidity intervals obtainable at the

11



CERN Large Hadron Collider (LHC) and have found that this discrepancy, although

smaller, is not insignificant.

This discrepancy can be understood by recalling that the rapidity ys of the third jet is
integrated over the full range of the interval from y; to y;. If we neglect its contribution
to the momentum fractions as in (2), this just multiplies the cross section by a factor of
y as in eq. (9). However, eq. (2) can be a bad approximation to the exact kinematics
(17) over much of the integral if ps; is not small. For ys near the extremes, using the
exact kinematics in the parton distribution functions produces a large suppression, so
that the “effective” rapidity range of y; is reduced substantially. The truncated O(a?)
BFKL (solid) curve neglects this effect, and so it overestimates the cross section. Note,
however, that near p;; = ps; the transverse momentum of the third parton is small, so

its contribution to the 2’s in (17) can be safely neglected.

5 An effective rapidity interval

We have just seen in the previous section that the large-y approximation used in the
BFKL resummation seriously overestimates the cross section when the two tagging jets
have unequal energies, even for rapidity intervals as large as y = 6. This occurs because
the large-y cross section (9) assumes that the third (minijet) parton can be produced
anywhere within the rapidity interval [y,, y;] with equal probability, whereas in the full
2 — 3 cross section the probability is highly suppressed by the structure functions when
the third jet strays too far from the center of this interval. In this section we will attempt

to fix this problem by including this suppression effect directly into the BFKL equation.
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The BFKL solution as presented in equation (4) is an all orders resummation in
azy where y is the kinematic rapidity interval defined by the tagging jets. However,
to be completely precise, the rapidity variable which is resummed by BFKL is only
defined up to transformations y — y + X where X is subleading at large rapidities.
This is analogous to a change in the scale @? in the standard o, In(Q?) resummation,
and in the same way that one chooses a physical value of Q? to lessen the effects of
nonleading terms in this resummation, one can choose a more physical rapidity variable
in the BFKL resummation. From the results of the previous section we see that a better
rapidity variable would be one that reflects the range in rapidity spanned by the nﬁnijets,
which is typically less than the kinematic rapidity interval y. Let us define an “effective

rapidity” y(n, pic,p21,9,y) by

A / d¢ cos(ng) (do/dydydp, . dps.dd)
=y —,
/qu cos(ng) (doo/dydydp: 1 dps1 déd)

(18)

where n is the fourier series index of eq. (4). The cross section in the numerator is that
of eq. (16) and is computed using the exact kinematics (17), while the cross section in
the denominator is that of eq. (1) and is computed using the large-y kinematics (2). The
denominator can easily be computed analytically using the large-y solution (9). Note
that ¢ is defined so that if we replace y — ¢ in the BFKL solution (4) and truncate to
O(a?) we recover the exact 2 — 3 cross section. Also note that asymptotically for large
y, the difference y—y is nonleading. Thus, we can use 7 in (4) and obtain a quantitatively

more reliable solution.

In Fig. 3 we plot § as a function of p;; for n = 0, po; = 50 GeV, § = 0, and
y = 2,3.4,5,6 with R.,; = 0.7. For y = 2 and 6 this is just given by the ratio of the

13



dashed curves to the solid curves in Fig. 2, multiplied by y. Near p;; = py,, § approaches
the kinematic rapidity y, especially for large y, but it falls quickly as the two jets move
apart in transverse momentum. Thus, we would expect the effects of the resummation
to be most important near p;; = p,;. We can see this clearly in the jet-jet p, correlation
plot of Fig. 4, where we compare the exact 2 — 3 O(a?) cross section (dashes) with the
BFKL resummation using § (solid). As in Fig. 2 we fix poy = 50 GeV, § = 0, and plot
as a function of p;; for y = 2 and 6, using a jet cone size of R., = 0.7. In this and
in the plots that follow, 7 is fixed at n = 0 by the integration over the azimuthal angle
@. As expected, for y = 2 there is little difference between the two approximations. For
y = 6 the higher orders of the BFKL resummation are very important near p;; = pqy,

but have less of an effect when the jets are mismatched in transverse momentum.

Next, in Fig. 5 we plot the transverse momentum distribution do/dy dj dp,, of jet 1
at y =4 and 6 and § = 0. The dashed curves are computed through the exact Born-level
matrix elements and the solid curves using i in the BFKL resummation and two different
cutoffs for jet 2 transverse momentum, py min= 10 GeV and 20 GeV. The effect of the
radiative corrections is to release the p; distribution from the Born-level requirement
that piy = pyi. At a fixed order of a, and for a given p;, jet 2 and the minijets
try to have p, as small as possible in order to minimize their contribution to the z’s
(17) and thus maximize the value of the parton distribution functions. They are only
constrained by the overall transverse momentum conservation. Eventually when the
number of minijets is very high, or virtually infinite as in the BFKL resummation, the
smallest value of p;; is not fixed any more by transverse momentum conservation but

by the minimum p,; experimentally attainable [9]. This explains the strong sensitivity of

14



the curves in Fig. 5 to the value of pyimin®. The crossing of the curves with paimin = 20
GeV below the Born curves for small values of py; is a further manifestation of this
decorrelation in transverse momentum. For pi; ~ 20 GeV, jet 2 very often radiates
away enough energy so that poy < paimin. Thus, events that would have been kept at
the Born level are now discarded when higher orders are included. Finally, for sake of
comparison, we replot in the dotted curves the p; distribution computed at y = 4 using
y in the BFKL resummation, with py mm= 10 GeV and 20 GeV [9]. We note that, using
the effective rapidity ¢ rather than the kinematic rapidity y in the BFKL resummation,

the enhancement in the p; distribution is considerably reduced. -

To examine further the kinematic effects on dijet production we plot in Fig. 6 the
p. distribution at |§| = 2 and y = 4 as a function of the transverse momentum of
the jets at largest (Jy;| = 4) and smallest (Jy.] = 0) absolute rapidities, which we call
the forward jet and the central jet, respectively. As in Fig. 5 we use two different
cutoffs pimin = 10 GeV and 20 GeV for the transverse rﬁomentum integrated out.
Since we only have changed § with respect to Fig. 5 the contribution of the parton
subprocess to the p, distribution will be the same as in Fig. 5, but the contribution of
the parton distribution functions will change. The dashed curve is computed through
the exact Born-level matrix elements and the dotted and solid: curves using g in the
BFKL resummation. At the Born level the transverse momentum distributions of the
forward and central jets are the same since ps; = p.1, but they become starkly different

when higher orders are included. The dotted curves are the distributions of the forward

30n the other hand, light-cone momentum conservation requires that p;y < v/sexp(—y1), so that
at large rapidity intervals the maximum value of p;; does not appreciably change going from the Born
level to higher order corrections.
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jet. They do not appreciably differ from the Born-level curve because the upper bound
prL < /sexp(—|yys|) from light-cone momentum conservation is very restrictive and
the phase space of the forward jet does not basically change going from LO to higher
order corrections. On the other hand the solid curves, which represent the distributions
of the central jet, show a huge enhancement and very different slopes as compared to
the Born level. To understand this, we have to look at the kinematics of the higher
order corrections. At O(ca?) it is possible to let p., grow by taking the third jet at
small absolute rapidity and almost back-to-back with the central jet, ps; ~ —p., and
ys ~ 0, while taking the forward jet as slim as possible, psy ~ pimin- Then from light-
cone momentum conservation peimae = (v/$ — pimin €xp(|ys|)) /2, which is much bigger
than the Born-level upper bound. This picture generalizes to higher orders with the
transverse momentum of the minijets balancing that of the central jet, while the forward
jet is produced near pj,.i,. In order to test this picture we consider in the dot-dashed
curve the transverse momentum distribution for the Born-level production of two jets in
the central region |§| = 0.5 and y=1. The slope of this curve is similar to that of the
solid curves, suggesting that the p.; distribution is dominated by events with two central
jets and one soft forward jet, where we tag on the forward jet and one of the central
jets. In the BFKL resummation the second hard central jet is presumably replaced by
a succession of minijets. Thus, it is misleading to compare the BFKL resummation to
the Born level (dashed) for the p., distribution, since it is dominated by events with
more than two jets. A better comparison in this case would be between the BFKL

resummation and a NLO calculation.
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6 Conclusions

In this paper we have attempted to better grasp the range of validity of the BFKL
resummation by comparing it with an exact 2 — 3 O(a?) calculation. We saw that the
dependence on the jet cone-size quickly becomes insignificant for rﬁoderate rapidities, just
as is assumed in the BFKL formalism. However, the approximation to the kinematics
in the parton momentum fractions causes a serious error in the BFKL predictions when
the tagging jets are not back-to-back in p; and ¢. In order to account for this error we
introduced an effective rapidity § which restricts the phase space. of the minijets in such
a way that the truncation of the BFKL resummation to O(a2) agrees with the exact

2 — 3 O(a3) calculation.

Using the BFKL resummation with the effective rapidity y we have seen that the
effects on the p; spectrum are not as dramatic as we had predicted previously. The diffi-
culty in detecting these deviations from the Born-level computation are compounded by
renormalization/factorization scale ambiguities, which are at least as problematic here
as at the Born level. Because of the two scales defined by the tagging jets we could
let p?> = Cpi11p21, Cmax(p?,,p3,), or some other choice where C is some constant of
order one. Because of the relatively small deviations of the BEKL resummation with
the effective rapidity § from the Born-level calculation, and the sizeable renormaliza-
tion/factorization scale ambiguities in the BFKL approximation, we expect that a com-
plete NLO calculation could give a more reliable estimate to the raw p, spectra. However,
we do note that much of the uncertainties due to the renormalization/factorization scale

drop out in the ratios of cross sections so that, for instance, the predictions of the ratio of

17



the p1, spectra with different py; ;i cutoffs are probably reliable to ~ 15%. In addition,
the large corrections in the p, correlation and ¢ correlation plots suggest that an NLO
calculation would be inadequate in these cases, and that the BFKL resummation using

the effective rapidity y should do a better job here.
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Fig. 1: Dijet production as a function of the jet cone size Ry, at p1,L. = 20 GeV and
P2, =50 GeV, gy =0and y =2, 3,4, 5 and 6.
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Fig. 2: p, distribution of jet 1 with the jet 2 transverse momentum fixed at 50 GeV,
at ¥y = 0 and at y = 2 and 6. The jet cone size is fixed at 0.7. The dashed curves are
computed through the exact 2—3 parton amplitudes and kinematics; the dotted curves
through the large-y parton amplitudes and the exact kinematics; the solid curves through
the large-y parton amplitudes and kinematics.
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Fig. 3: ¢ as a function of p;; for fixed p; = 50 GeV and n =0,y = 0. The curves from
bottom to top are for y = 2, 3, 4, 5, and 6. The jet cone size is fixed at 0.7. The upper

end of the curve y = 6 is cut off because p;, reaches the kinematic limit.
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Fig 4: p, distribution of jet 1 with the jet 2 transverse momentum fixed at 50 GeV,
at = 0 and at y = 2 and 6. The jet cone size is fixed at 0.7. The dashed curves are
computed through the exact 2—3 parton amplitudes and kinematics; the solid curves

are computed from the full BFKL solution using .
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Fig. 5: p, distribution of jet 1 at § = 0 and y = 4 and 6. The dashed curves are the
exact Born-level p, distributions. The solid curves are the p; distributions computed
using ¥ in the BFKL resummation, with two different cutoffs for jet 2, the upper curve
with paimin= 10 GeV and the lower curve with py; min= 20 GeV. The dotted curves are
the p, distributions at y = 4 only, computed using the kinematic rapidity y in the BFKL
resummation, with py; min= 10 GeV and 20 GeV.
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Fig. 6: p, distribution at |§| = 2 and y = 4. The dashed curve is the exact Born-
level p, distribution. The dotted (solid) curves are the p, distributions of the forward
(central) jet computed using § in the BFKL resummation, with two different cutoffs for
the transverse momentum integrated out, the upper curve with p i, = 10 GeV and

the lower curve with pj.;,, = 20 GeV . The dot-dashed curve is the exact Born-level p,
distribution at |y| = 0.5 and y = 1.
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