002673327 001__ 2673327
002673327 003__ SzGeCERN
002673327 005__ 20190504202225.0
002673327 0247_ $$2DOI$$9JACoW$$a10.18429/JACoW-SRF2017-TUPB014
002673327 0248_ $$aoai:inspirehep.net:1669442$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002673327 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1669442$$d2019-05-03T15:36:50Z$$h2019-05-04T04:00:14Z$$mmarcxml
002673327 035__ $$9Inspire$$a1669442
002673327 041__ $$aeng
002673327 100__ $$aShipman, [email protected]$$uLancaster U. (main)$$uCockcroft Inst. Accel. Sci. Tech.$$uCERN$$vUMAN, Manchester, United Kingdom
002673327 245__ $$9JACoW$$aIn-situ Bulk Residual Resistivity Ratio Measurement on Double Quarter Wave Crab Cavities
002673327 260__ $$c2018
002673327 300__ $$a5 p
002673327 520__ $$9JACoW$$aA four wire measurement was used to measure the bulk RRR on two DQW Crab Cavities. The measurement procedure is explained and the values obtained for each cavity are compared together with the values obtained from Niobium samples of the same stock from which the cavities were manufactured. Measurement errors and carefully analysed and further improvements to the measurement procedure are suggested.
002673327 540__ $$aCC-BY-3.0$$bJACoW$$uhttp://creativecommons.org/licenses/by/3.0/
002673327 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002673327 6531_ $$2JACoW$$acavity
002673327 6531_ $$2JACoW$$aion
002673327 6531_ $$2JACoW$$aniobium
002673327 6531_ $$2JACoW$$aluminosity
002673327 6531_ $$2JACoW$$acryomodule
002673327 690C_ $$aCERN
002673327 700__ $$aBen-Zvi, [email protected]$$uBrookhaven Natl. Lab.
002673327 700__ $$aBurt, [email protected]$$uLancaster U. (main)
002673327 700__ $$aCastilla, [email protected]$$uCERN
002673327 700__ $$aHernández-Chahín, [email protected]$$uCERN$$uUnlisted, MX$$vCERN, Geneva, Switzerland
002673327 700__ $$aMacpherson, Alick$$iINSPIRE-00103609$$jJACoW-00004784$$uCERN
002673327 700__ $$aMitchell, [email protected]$$uLancaster U. (main)$$uCockcroft Inst. Accel. Sci. Tech.$$uCERN
002673327 773__ $$cTUPB014$$qSRF2017$$wC17-07-17.5$$y2018
002673327 8564_ $$81479214$$s825808$$uhttps://cds.cern.ch/record/2673327/files/tupb014.pdf
002673327 960__ $$a13
002673327 962__ $$b2306019$$kTUPB014$$nlanzhou20170717
002673327 980__ $$aARTICLE
002673327 980__ $$aConferencePaper
002673327 999C6 $$a0-0-1-1-0-0-1$$t2018-04-23 21:57:42$$vtmp65euHL.pdf$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44
002673327 999C5 $$hO. Brüning and L. Rossi$$mThe High Luminosity Large Hadron Collider,Singapore: Publishing$$o1$$pWorld Scientific$$y2015
002673327 999C5 $$hO. Brüning et al.$$mLHC Design Report,Geneva, Switzerland:$$o2$$rCERN-2004
002673327 999C5 $$0267381$$hR. Palmer$$mCalifornia, U.S.A Rep Dec$$o3$$pSLAC$$rSLAC-PUB-4707$$tEnergy scaling, crab crossing and the pair problem$$y1988
002673327 999C5 $$9CURATOR$$hS. Verdú-Andres et al.$$min International Particle Accelerator Conference. (IPAC), Richmond, VA, USA, May, paper MOBD2, pp. 64-66$$o4$$rCERN-ACC-2015-0183$$tDesign and prototyping of HL-LHC double quarter wave crab cavities for SPS test$$y2015
002673327 999C5 $$9CURATOR$$hS. Silva and J. Delayen$$o5$$sPhys.Rev.ST Accel.Beams,16,12004$$tDesign evolution and properties of superconducting parallel-bar rf-dipole deflecting and crabbing cavities$$y2013
002673327 999C5 $$hB. Hall$$mPh.D. thesis, Eng. Dept., University of Lancaster, UK$$o6$$tDesigning the Four Rod Crab Cavity for the High-Luminosity LHC upgrade$$y2012
002673327 999C5 $$hH. Park$$mpresented at International Review of the Crab Cavity Performance for HiLumi, Geneva, Switzerland, Apr., unpublished$$o7$$tUSLARP Crab Cavity Test Results$$y2017
002673327 999C5 $$hA. Castilla$$mpresented at International Review of the Crab Cavity Performance for HiLumi, Geneva, Switzerland, Apr., unpublished$$o8$$tCERN Cavity Results$$y2017
002673327 999C5 $$0487562$$hH. Padamsee$$min New York, NY, USA: pp. 57-76$$o9$$pWiley$$tSuperconductivity essentials$$tRF superconductivity for accelerators$$y1998
002673327 999C5 $$hW. Jones and N. March$$mTheoretical Solid State Physics. London, UK: -$$o10$$pWiley$$pInterscience$$y1973
002673327 999C5 $$hG. Wiedemann and R. Franz$$m1853$$o11$$sAnnalen Phys.,165,497$$tUeber die WärmeLeitungsfähigkeit der Metalle
002673327 999C5 $$hH. Safa$$min Advances in Cryogenic Engineering, P Kittel. Boston, MA, USA: pp. 71-76$$o12$$pSpringer$$tInfluence of the RRR of Niobium on the RF Properties of Superconducting Cavities$$y1998
002673327 999C5 $$01313798$$9CURATOR$$hS. Pattalwar et al.$$min International Particle Accelerator Conference. (IPAC), Dresden, Germany, May, paper WEPRI045, pp. 2580-2582$$o13$$tKey design features of the crab-cavity cryomodule for HI-LUMI LHC$$y2014
002673327 999C5 $$9CURATOR$$hY. Jung$$mM, Hyun and M. Joung Journal of the Korean Phys. Soc., vol. 67 (8), p. 1319, Oct$$o14$$sJ.Korean Phys.Soc.,67,1319$$tRRR characteristics for SRF cavities$$y2015
002673327 999C5 $$9CURATOR$$mLakeshore$$o15$$uhttp://www.lakeshore.com/products/Cryogenic-Temperature-Sensors
002673327 999C5 $$9CURATOR$$mJ. Vogt, O. Kugeler and J. Knobloch, “Impact of cool-down conditions at Tc on the superconducting rf cavity quality factor”, Phys. Rev. ST Accel. Beams, vol. 16, p. 102002, Oct. 2013.$$o16$$sPhys.Rev.ST Accel.Beams,16,102002