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1 Introduction

Over the past decades, there have been several important developments at the theoretical and experimental
frontiers to address the question of neutrino mass generation, which is not explained in the Standard
Model (SM) of particle interactions. A widely adopted approach to explain small neutrino masses is the
so-called seesaw mechanism [1], where the light neutrinos acquire their Majorana masses from dimension-5
operators through electroweak symmetry breaking. The simplest seesaw mechanism can be categorised
into a few different classes, such as the Type-I [2–4], Type-II [5–7] and Type-III [5, 8] seesaw scenarios.
Type-I and Type-II models can further be embedded into a Left-Right Symmetric Model (LRSM) [9–11].
The LRSM contains SM-singlet heavy neutrinos NR, which are introduced as the parity gauge partners of
the corresponding left-handed neutrino fields, and a right-handed gauge boson WR.

The LRSM framework provides a natural set-up for the seesaw mechanism and offers several features
including parity symmetry at high energy, mass generation of the light and heavy neutrinos, explanation of
parity violation in the SM and existence of the right-handed charged current. This model can naturally
explain the small neutrino masses through the Type-I seesaw via the right-handed neutrinos, and the Type-II
seesaw via SU(2)-triplet scalars. Both the Type-I and Type-II contributions can coexist. In the LRSM,
left-handed neutrinos (SM neutrinos) as well as the right-handed neutrinos are considered to be Majorana
particles (i.e. to be their own antiparticles). The LRSM thus features violation of the global lepton number
symmetry of the SM. Hence, the model can be tested by observing lepton-number-violating processes,
such as the Keung–Senjanović process [12], shown in Figure 1.

Searches by the ATLAS [13, 14] and CMS [15–19] collaborations for signatures of LRSMs have considered
the final state containing two charged leptons and two jets and have excluded regions of the (mWR ,mNR)
parameter space for mWR and mNR up to several TeV, where mNR and mWR denote the masses of NR and
WR, respectively.

This search is focused on the regime where the WR is very heavy compared with the NR (mNR/mWR ≤ 0.1),
and investigates an alternative signature for WR → NR` decays, following Ref. [20]. The probed mass
regime enables exploration of a parameter space complementary to the one used in previous searches that
reconstruct the NR decay into a charged lepton and two jets, later referred to as the “resolved topology”. In
the probed mass regime, the heavy neutrinos are produced with large transverse momentum (i.e. are highly
boosted) and their decay products are very collimated. Therefore a large-radius jet (large-R jet) can be
used to reconstruct all or part of the NR. Since jet construction in ATLAS includes the energy deposition
of electrons in the calorimeters but no muons, the analysis strategy is different for the two cases. In the
electron channel, the electron energy deposit is included in the constructed large-R jet originating from
the decay of the NR, and the large-R jet can be considered as a proxy for the NR. In the muon channel,
the four-momentum of the muon is added to the large-R jet to obtain the NR four-momentum. The search
is restricted to the scenarios where both leptons have the same flavour. No constraint on their charge is
enforced, because of the higher probability of charge misidentification for high-pT electrons.

The results obtained in this search are also applicable to other variations of the LRSM that contain a
right-handed gauge boson and neutral leptons, such as inverse seesaw models [21]. Additionally, this search
is also applicable to R-parity-violating supersymmetry [22, 23], where a selectron is resonantly produced
and subsequently decays into an electron and a neutralino, and the latter decays to a lepton and quarks
through a non-zero λ′ coupling. When the neutralino is boosted, its decay products can be reconstructed as
a single large-R jet [24], analogous to the final state probed in this analysis.

2



NR

q̄

q̄

W ∗
R

l
WR

q

q

l

Figure 1: Diagram of the WR decay via NR into charged leptons and quarks. The leptons need to be of the same
flavour, but can be the same or opposite charges. The dashed purple lines indicate that the NR decay products can be
inside a large-R jet.

2 ATLAS detector

The ATLAS detector [25] at the Large Hadron Collider (LHC) is a multipurpose particle detector with a
forward–backward symmetric cylindrical geometry and a near 4π coverage in solid angle.1 It consists
of an inner tracking detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial
magnetic field, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS). The
ID consists of silicon pixel, silicon microstrip, and straw-tube transition-radiation tracking detectors,
covering the pseudorapidity range |η | < 2.5. The calorimeter system covers the pseudorapidity range
|η | < 4.9. Electromagnetic calorimetry is provided by barrel and endcap high-granularity lead and
liquid-argon (LAr) sampling calorimeters, within the region |η | < 3.2. There is an additional thin LAr
presampler covering |η | < 1.8, to correct for energy loss in material upstream of the calorimeters. For
|η | < 2.5, the LAr calorimeters are divided into three layers in depth. Hadronic calorimetry is provided
by a steel/scintillator-tile calorimeter, segmented into three barrel structures within |η | < 1.7, and two
copper/LAr hadronic endcap calorimeters, which cover the region 1.5 < |η | < 3.2. The forward solid angle
up to |η | = 4.9 is covered by copper/LAr and tungsten/LAr calorimeter modules, which are optimised
for energy measurements of electrons/photons and hadrons, respectively. The muon spectrometer is the
outermost layer of the detector, and is designed to measure muons up to |η | of 2.7. It comprises separate
trigger and high-precision tracking chambers that measure the deflection of muons in a magnetic field
generated by superconducting air-core toroids. The muon trigger chambers cover up to |η | of 2.4.

The ATLAS detector selects events using a tiered trigger system [26]. The first level is implemented in
custom electronics and reduces the event rate from the bunch-crossing frequency of 40 MHz to a design

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The angular separation between two objects is
defined as ∆R ≡

√
(∆η)2 + (∆φ)2, where ∆η and ∆φ are the separations in η and φ. The rapidity is defined as y = 1

2 ln E+pz
E−pz

,
where E is the energy and pz is the longitudinal component of the momentum along the beam pipe. The angular separation
between two objects in terms of rapidity is defined as ∆Ry ≡

√
(∆y)2 + (∆φ)2, where ∆y and ∆φ are the separations in y and φ.

Momentum in the transverse plane is denoted by pT.
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value of 100 kHz. The second level is implemented in software, running on a general-purpose processor
farm which processes the events and reduces the rate of recorded events to about 1 kHz.

3 Data and simulation samples

This analysis uses proton–proton (pp) collision data at a centre-of-mass energy
√

s = 13 TeV collected
in 2015, 2016 and 2017 that satisfy a number of data-quality criteria. The amount of data used in this
analysis corresponds to an integrated luminosity of 80 fb−1.

Simulated signal and background events are used to optimise the event selection, to validate the performance
of large-R jets containing an electron, evaluate the Z+jets background contribution, and calculate signal
yields and their systematic uncertainties. Signal events were simulated at leading order (LO) in QCD using
MG5_aMC@NLO 2.2.2 [27], with Pythia 8.186 [28] using the NNPDF23LO [29] parton distribution
function (PDF) set and the A14 set of tuned parameters (tune) [30] for parton showering and hadronisation.
A version of a LRSM model produced with FeynRules [31] was implemented [32] in MG5_aMC@NLO
and further modified by the authors of Refs. [33, 34]. This model assumes the equivalence of left and
right-handed weak gauge couplings, universality of all the right-handed quarks and right-handed leptons,
and the same masses for all three flavours of heavy right-handed neutrinos. Events were generated without
constraints on the charge of leptons, in line with the production of Majorana neutrinos. Signal samples were
generated for different mWR and mNR hypotheses, covering the range of 3–6 TeV for mWR and 150–600 GeV
for mNR . The production cross-sections are scaled to next-to-leading order (NLO) in QCD following
Ref. [35].

The background processes considered are top-quark pairs (tt), Z/W+jets, single top-quark, diboson and
multijet production. Table 1 summarises the generator configurations used to produce the samples. The tt
sample cross-sections are scaled to next-to-next-to-leading order (NNLO) in perturbative QCD, including
soft-gluon resummation to next-to-next-to-leading-log (NNLL) accuracy [36], assuming a top-quark mass
mt = 172.5 GeV [37]. The resummation damping parameter, hdamp in the Powheg model, which controls
the matching of matrix elements to parton showers and regulates the high-pT radiation, was set to 1.5mt .
The single-top-quark and W/Z+jets samples are scaled to the NNLO theoretical cross-sections [38–41].

Table 1: Main features of the Monte Carlo models used to simulate background samples. Top quark refers to both
the tt and single-top processes. ME and PS refer to matrix element and parton shower, while leading order (LO)
and next-to-leading order (NLO) indicate the accuracy of the generators in perturbative QCD (pQCD). For Powheg
+Pythia8, different PDF sets were used in ME and PS.

Process Top quark W+jets Z+jets Diboson Multijet

Generator Powheg [42–45]+Pythia8 Powheg +Pythia8 Sherpa [46] Pythia8
ME order in pQCD NLO NLO NLO LO
Version v2, 8.186 v2, 8.186 2.2.1 8.186
PDF (ME, PS) NNPDF30NLO [47], NNPDF23LO CT10 [48], CTEQ6L1 NNPDF30NNLO NNPDF23LO
PS tune A14 AZNLO [49] Default A14

The MC samples were processed through the full ATLAS detector simulation [50] based on Geant4 [51],
or a faster simulation [52] based on a parameterisation of the calorimeter response and Geant4 for the
other detector systems, and reconstructed and analysed using the same procedure and software as used
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for the data. The signal modelling is found to be consistent between the full and the fast simulation, after
application of dedicated calibration procedures. To simulate the effects of additional collisions in the same
and neighbouring bunch crossings (pile-up), additional minimum-bias events generated using Pythia8 with
the A3 tune [53] and MSTW2008 [54] PDF set were overlaid onto the signal and background simulated
events, with a distribution of the number of collisions matching that of the data. To account for the
differences in particle reconstruction, trigger, identification and isolation efficiencies between simulation
and data, correction factors are derived in dedicated measurements and applied to the simulated events.

4 Event selection and characterisation

The event selection is designed to select signal events, while rejecting background events, based on the
signal topology. The events are selected if they contain exactly two same-flavour leptons (with no charge
requirement) and at least one trimmed large-R jet [55] with large transverse momentum pT > 200 GeV. The
highest-pT (leading) lepton should be back-to-back in azimuth with the large-R jet, while other (subleading)
lepton should be contained in the large-R jet. In Figure 2, the reconstructed pT distributions of the leading
and subleading lepton, as well as of the selected large-R jet, and the candidate NR mass are shown for four
representative signal samples. The leading electron and the large-R jet are balanced in pT, with the maxima
at roughly half of the corresponding mWR values. The leading muon pT shows the same characteristic, but
the pT of the large-R jet is lower and has a broader distribution, as it does not contain the energy from the
subleading muon, and the muon pT resolution for high-pT muons is worse. The reconstructed mass of the
NR in each case is consistent with the expected value. The natural width of the resonance varies with the
mass and is 100 GeV for mWR = 3 TeV. At this mass the width of the reconstructed mass peak is about 150
GeV in the electron channel, and about 350 GeV in the muon channel.

The detailed selection criteria are listed in Table 2 and further discussed below. Events with electrons
and muons are analysed separately. The leading lepton is required to pass a single-lepton trigger. For
data collected in 2015, the lowest pT trigger threshold is 24 GeV and 20 GeV for single-electron and
single-muon triggers, respectively. For 2016 and 2017 data, the threshold is 26 GeV for both.

Electron candidates are reconstructed from an isolated energy deposit in the electromagnetic calorimeter
matched to an ID track, within the fiducial region of transverse energy pT > 26 GeV and |η | < 2.47.
Candidates within the transition region between the barrel and endcap electromagnetic calorimeters,
1.37 < |η | < 1.52, are excluded. Muon candidates are reconstructed by combining tracks found in the
ID with tracks found in the muon spectrometer and are required to satisfy pT > 28 GeV and |η | < 2.5.
Electrons and muons are required to be isolated using criteria based on tracks and calorimeter energy
deposits. For track-based isolation, the discriminating variable is the scalar sum of the pT of tracks coming
from the primary vertex 2 in a variable-size cone around the lepton direction (excluding the track identified
as the lepton), with the cone size given by the maximum of ∆R = 10 GeV/p`T and R0, where p`T is the pT of
the lepton, and R0 is a constant, set to 0.2 for electrons, and 0.3 for muons. For calorimeter-based isolation,
the discriminating variable is the sum of the transverse energies of topological clusters [56] around the
lepton in a cone of size ∆R = 0.2.

The inputs to the jet construction are noise-suppressed three-dimensional topological clusters of energy
deposits in the calorimeters, built from calorimeter cells [56]. They are classified as either electromagnetic

2 Collision vertices are formed from tracks with pT > 400 MeV. If an event contains more than one vertex candidate, the one
with the highest

∑
p2
T of its associated tracks is selected as the primary vertex.
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Table 2: Object selection criteria. The significance of the transverse impact parameter is defined as the transverse
impact parameter d0 divided by its uncertainty, σd0 , of tracks relative to the primary vertex with the highest sum of
track pT. The longitudinal impact parameter z0 is multiplied by sin θ, where θ is the polar angle of the track.

Electron channel Muon channel

Lepton:

pT > 26 GeV > 28 GeV
|η | |η | < 1.37 or 1.52 < |η | < 2.47 < 2.5
Leading lepton quality Medium [61], isolated [61] Medium [62], isolated [62]
Subleading lepton quality Medium, no isolation Medium, no isolation
Transverse impact parameter significance |d0 |/σd0 < 5.0 |d0 |/σd0 < 3.0
Longitudinal impact parameter |z0 | sin θ < 0.5 mm

Trimmed large-R jet:

pT > 200 GeV
|η | < 2.0
Mass > 50 GeV None

or hadronic, based on their shape, depth and energy density. The energy clusters are calibrated to the
hadronic scale. The momenta of the jets are corrected for energy losses in passive material and for the
non-compensating response of the calorimeter [57]. The large-R jets are constructed with the anti-kt
algorithm [58] with a radius parameter of R = 1.0, through its implementation in FastJet [59]. They
are further trimmed [55] to reduce the contamination from soft uncorrelated radiation. In this method,
the original constituents of the jets are reclustered using the kt algorithm [60] with a radius parameter
Rsub = 0.2 in order to produce a collection of subjets. These subjets are discarded if they carry less then a
specific fraction ( fcut = 5%) of the pT of the original jet. The remaining constituents are summed to form
the four-momentum of the final jet.

In the electron channel, the large-R jets are required to have a mass of at least 50 GeV, while no such
requirement is applied in the muon channel. This is because in the former case, the large-R jet includes the
electron, while in the muon channel, the muon is not included in the large-R jet.

Small-radius jets constructed with the anti-kt algorithm using energy clusters calibrated to the electromag-
netic scale with a radius parameter of R = 0.4 are used to check for possible overlap between objects, and
to perform b-tagging (described in Section 5). In the muon channel, the event is discarded if either muon
satisfies ∆Ry(µ, jet) < min(0.4, 0.04 + 10 GeV/pµT), in order to avoid jets formed from energy deposits
associated to high energy muons. In the electron channel, for the leading electron, first all small-radius jets
within ∆Ry = 0.2 of a selected electron are removed. Then the event is discarded if the leading electron
is within ∆Ry = 0.4 of a remaining small-radius jet. This is referred to as the nominal overlap removal
procedure for electrons. A modified procedure, described in Section 5, is applied for the subleading
electron as, unlike muons, electron clusters can overlap with a jet and the signal efficiency drops off if the
standard overlap removal approach is followed.

Further requirements based on the characteristics of the signal are applied:

• ∆Ry between the subleading lepton and the large-R jet is required be less than 1, in order for the
lepton to be inside the jet.
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Table 3: Definition of signal, control and validation regions

Region Range of mreco
WR

Lepton flavour

Signal region (SR) > 2 TeV Same flavour
Control region (CR) < 2 TeV Same flavour
Validation region (VR) All Mixed flavour (leading: muon; subleading: electron)

• ∆φ between the leading lepton and the large-R jet is required to be greater than 2, in order to have a
balanced topology between the NR and the lepton from the WR decay.

• In order to reduce the Z+jets background, events with a dilepton invariant mass of less than 200 GeV
are vetoed, and the ∆φ between the leading and subleading leptons is required to be greater than 1.5.

After applying these requirements, simulation studies show that the background consists mainly of tt and
Z+jets processes (including off-shell Z/γ∗ production), while contributions from W+jets, single-top-quark
and multijet processes are negligible. No requirements on b-tagged jets are applied, as the WR in the signal
can decay to a top and bottom quark pair.

The final discriminating observable used in the analysis is the reconstructed mass of the WR candidate,
mreco
WR

. In the electron channel, the selected large-R jet corresponds to the NR candidate, and therefore the
WR candidate four-momentum is obtained by adding the large-R jet and the leading electron four-momenta.
In the muon channel, the NR candidate four-momentum is obtained by adding the four-momentum of the
selected large-R jet to that of the muon contained in the jet. The WR candidate four-momentum is obtained
by adding the NR candidate four-momentum to that of the leading muon. In both cases, if there is more
than one large-R jet in the event, the large-R jet with the largest mass is used.

Based on the range of mreco
WR

, control and signal regions (CR, SR) are defined as specified in Table 3. The
CR is defined in a region of low reconstructed mreco

WR
corresponding to a parameter space excluded by

previous searches [14]. The background in the SR is evaluated from a combined fit of MC and data events
in the CR (described in Section 6). To test the performance of large-R jets containing electrons, a validation
region (VR) is defined with a selection orthogonal to the CR and the SR. This requires a muon balanced in
pT by a large-R jet with an electron inside. By construction, the VR is dominated by tt̄ events decaying
dileptonically to eµ final states.

In Figure 3, good agreement is observed between data and simulation in the mreco
WR

distributions in the
control regions of the electron and muon channels, as well as in the validation region. In the bottom-right
plot, the selection efficiency times acceptance is shown for different signal samples. The efficiency
decreases for lower mNR and higher mWR values. The largest inefficiency arises from the difficulty of
electron reconstruction close to hadronic activity, which is discussed in the next section. The probability of
producing an off-shell WR increases with the mass. This can result in a less boosted NR, explaining the
drop in signal efficiency for higher mWR values.
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Figure 2: Reconstructed distributions of the transverse momentum of the leading lepton, subleading lepton, the
selected large-R jet, and the NR candidate mass in electron (left column) and muon (right column) channels for
four representative signal samples in the signal region. The indices 1 and 2 indicate leading and subleading lepton,
respectively.
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5 Performance of large-R jets containing electrons

A distinguishing feature of this search is the use of large-R jets containing electrons as a proxy for NR in
the electron channel. Since the large-R jet construction procedure is based on energy clusters calibrated
at the hadronic scale, the effect of a non-negligible fraction of EM clusters in the large-R jet needs to be
investigated. The analysis does not use the kinematic properties of the identified electron inside the large-R
jets to reconstruct the NR or WR invariant masses, but uses the mass of the large-R jet, which includes
the associated electron clusters. The presence of real hadronic activity close to an electron may affect the
reconstruction of the electron.

The jet mass and energy scales, JMS and JES, defined as the average of the ratio of the mass or energy of
the reconstructed and corresponding generator-level large-R jets, are used to study the effect of including
the large EM-cluster of the electron in the jet reconstruction. The matching between detector-level and
generator-level large-R jets is performed with ∆Ry < 0.75. The generator-level jet is obtained by clustering
stable final-state particles (with lifetime greater than 30 ps) except muons and neutrinos using the same jet
algorithm, radius parameter and trimming used at the detector-level. The JMS and JES of the selected
large-R jets for a few representative signal samples are shown in Figure 4 as a function of the ratio of
the energy of the electron to the energy of the large-R jet. This ratio can be considered a proxy for the
electromagnetic energy fraction in the large-R jet. Constant values of JES and JMS within a few percent of
unity indicate that the large-R jet has only a weak dependence on the fraction of electromagnetic energy
inside the jet, and thus no particular additional corrections are required for the signal large-R jets. Typical
numbers for the large-R jet mass resolution (JMR) in signal events are about 4-6% in the electron channel
and about 7-14% in the muon channel, while the large-R jet energy resolution (JER) is about 3-5% GeV in
both channels. As opposed to the muon channel, in the electron channel the large-R jet does contain the
electron as a compact and high energy deposit. This implies a more precise angular distribution of the
energies in the jet and thus a better JMR in the electron channel.
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Figure 4: Large-R jet average JMS (left) and JES (right) as a function of subleading electron energy divided by the
large-R jet energy for signal samples.

In signal events, as almost all selected large-R jets contain activity from both the WR hadronic decay and
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the nearby electron, application of the nominal overlap removal procedure, as described in Section 4, for
the subleading electron results in a large loss of signal efficiency. However, it is observed that removing
events where the electron and the nearest jet are within ∆Ry < 0.04 retains a sizeable fraction of the signal
events and rejects a large fraction of the background events. The discarded events are dominated by the
case where isolated electrons are reconstructed as jets.

A study is performed to check the validity of the electron efficiency correction factors, which account
for potential differences in electron reconstruction, identification and isolation efficiency between data
and simulation and are derived using well-isolated electrons [61]. A sample of tt events decaying into a
mixed-flavour dileptonic final state is chosen. The leading lepton is chosen to be a muon with nominal
isolation requirements, and the subleading lepton is chosen to be an electron with no isolation requirements.
The rest of the selection is the same as the signal selection, except that the events are selected with at least
one b-tagged small-radius jet. The b-tagging is based on a multivariate algorithm [63]. Several observables
based on the long lifetime of b-hadrons and the b- to c-hadron decay topology, are used as algorithm input
to discriminate between b-jets, c-jets and other jets. The b-tagging requirement corresponds to the 70%
efficient working point for b-jets, as determined in simulated tt̄ events, while the rejection rates of τ-jets,
c-jets and light-flavour jets are 55, 12 and 381, respectively [64, 65].

The large-R jet requirements are the same as in the nominal selection. Only the events in which the
electrons and the nearest small-radius jet are within 0.04 < ∆Ry < 0.4 are studied. The distributions of
electron pT and ∆Ry between the electron and the small-radius jet show satisfactory agreement between
data and simulation, as shown in Figure 5. An additional uncertainty of 30% on the electron efficiency for
electrons within 0.04 < ∆Ry < 0.4 is derived from the difference in yields between data and the simulation,
statistical uncertainties as well as the theoretical and b-tagging uncertainties on the simulation.
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both the data and simulation in the ratios.
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6 Background estimation and systematic uncertainty

While the CR is dominated by tt̄ events, the fraction of Z+jets events becomes larger at higher masses
as they have a less steeply falling mass distribution than tt̄ events, as shown in Figure 3. In order to take
this into account in evaluating the background in the SR, which is located at higher masses, a data-driven
approach is used to evaluate the tt̄ contribution in conjunction with a fitted MC prediction of the Z+jets
background. The fit to the data in the CR is extrapolated to the SR.

Different steeply falling functions are tested, motivated by Refs. [66, 67], where they are found to fit steeply
falling distributions like the scalar sum of jet transverse momenta in multijet events or the dijet mass. It
is observed that the functional form A exp (−Bu)/uC describes the data distribution in the CR the best,
while the functional form A′(1 − u)B′(1 + u)(C′u) best describes the Z+jets MC distribution. In both cases,
u = mreco

WR
/
√

s and the choice of fit function is determined by the goodness of fit (based on the χ2 per degree
of freedom) as well as by the best agreement with the yields from the MC background estimate in the CR.
First, the fit parameters A′, B′, and C ′ are determined from Z+jets MC using a reconstructed mreco

WR
range of

400–4000 GeV, then the fit to data is performed using the function A exp (−Bu)/uC + A′(1−u)B′(1+u)(C′u),
to determine the values of the parameters A, B and C. This functional form is fitted in the CR range
of 600–1800 GeV, where the range is chosen depending on the goodness of the fits. The slope of the
background fit is steeper in the muon channel compared to the electron channel.

In the VR the fit performed for reconstructed WR candidate masses 600–1800 GeV is extrapolated into the
region > 2 TeV and the fit prediction is compared to the data yield finding consistency. In order to assess
the systematic uncertainty related to the tt̄ data-driven fit, variations of the data fit range are made, and
the largest change in the SR yield obtained from these variations is taken as the uncertainty. The same is
done for the Z+jets MC fit, and the uncertainty is added in quadrature to the uncertainty derived from
fitting alternative Z+jets MC samples obtained after varying the scale (by factors of two and one half)
and using alternative PDF sets [14]. This uncertainty is larger than the difference yield obtained using
Powheg +Pythia8. The relative uncertainty of the background yield in the SR is about 25% for both
channels. Statistical uncertainties on the fits are estimated using pseudo-experiments built by varying
the input data points within their statistical uncertainties. The resultant background fit, along with the
estimated uncertainty is shown in Figure 6.

7 Systematic uncertainties of the signal yield

Systematic uncertainties affect the shape and normalisation of the mreco
WR

distributions, thereby changing
the signal yield. The dominant uncertainties in the SR are shown in Table 4. They can be classified as
originating from experimental or theoretical sources.

The yields from simulated samples are affected by uncertainties related to the description of the detector
response. The dominant uncertainty is related to the electron and muon identification, which is (4–20)%
in the electron channel (including the additional 30% uncertainty for electrons reconstructed nearby
a small-radius jet) and (4–8)% in the muon channel, depending on the values of mWR and mNR . The
uncertainties related to the electron trigger, reconstruction, and isolation are (4–5)%. The uncertainties
related to the muon trigger and isolation are about 1%. These uncertainties are assessed by comparing data
and simulation samples of Z → `+`− decays [61, 62]. The simulation is used to extrapolate to lepton pT
beyond a few hundred GeV. The other uncertainties such as those related to JES and JMS of the large-R

12



jets are evaluated by comparing the ratio of calorimeter-based to track-based measurements in multijet
events in data and simulation [57, 68, 69]. The uncertainties related to JMR and JER modelling are
evaluated by increasing the nominal resolution by 20% [70] and 2% respectively. These uncertainties are
at sub-percent level. The average number of interactions per bunch crossing is rescaled to improve the
agreement of simulation with data, and the corresponding uncertainty, as large as the correction, has an
effect of 0.5% in the electron channel, and up to 3% in the muon channel, caused by the lack of a large-R
jet mass threshold in the latter case. The uncertainty in the 2015, 2016 and 2017 integrated luminosity is
2%. It is derived from the calibration of the luminosity scale using x–y beam-separation scans, following
a methodology similar to that detailed in Ref. [71], and using the LUCID-2 detector for the baseline
luminosity measurements [72].

The theory uncertainty of the signal yield is evaluated by varying the renormalisation and factorisation
scales by factors of 2 and 0.5, and using alternative PDF sets, CTEQ6L1 [73] and MSTW2008LO [54] via
SysCalc [74]. The dominant effect on the yield comes from the scale variation. The total effect on the
signal yield is at most 10%. The uncertainties on the background yield are described in Section 6.

Table 4: Relative systematic uncertainties of the signal yield in the signal region, in percentage for each source. The
ranges indicate the different signal samples. The systematic uncertainties with sub-percent contributions are not
shown.

Component Electron channel [%] Muon channel [%]

Lepton identification 4–20 4–8
Lepton isolation 4–5 1.0–1.5
Lepton reconstruction 4–5 1–4
Lepton trigger 4–5 0.5
Pile-up < 0.5 2–3
Luminosity 2 2
Theory 10 10

8 Results

Figure 6 shows the mreco
WR

distributions in the SR for the electron and muon channels. In order to search for
the presence of a massive resonance, yields from simulated signal samples and the data-driven background
estimate (corresponding to mreco

WR
> 2 TeV) are fit to the data, separately in the electron and muon channels,

using a single bin covering the entire SR. The integral of the background functional shape in the SR is used
to evaluate the expected background, as shown in Table 5. The statistical analysis is based on a likelihood
fit to data. The likelihood is constructed using a single-bin Poissonian counting-experiment approach
based on the RootStats framework [75, 76]. The uncertainties of the background yield are incorporated as
Gaussian constraints in the likelihood itself in terms of a set of nuisance parameters.

The compatibility of the observed data with the background-only hypothesis is tested by fitting the data
with the background model to obtain the p-value. The significance of an excess can be quantified by the
probability (p-value) that a background-only experiment is more signal-like than observed. The p-values
are given in Table 5. In the electron channel, 8 events are observed, while the expected background is
2.8+0.5
−0.7 events. In the muon channel 4 events are observed, while the expected background is 1.9+0.5

−0.7 events.
The observed significance corresponds to 2.4 σ in the electron channel and 1.2 σ in the muon channel.
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Lower limits on the masses of NR andWR for each of the considered signal scenarios are determined by using
the profiled likelihood test statistic [77] with the CLs method [78, 79]. The inputs to the limit calculations
are the signal cross-sections and the signal efficiencies in the mWR–mNR grid. A linear interpolation between
several benchmark samples in the mWR range 3–6 TeV and in the mNR range 0.1–1.8 TeV is performed.
The results are shown in Figure 7, separately for electron and muon channels. The CLs is computed using
pseudo-experiments. The data statistical uncertainty has a significantly larger impact on the limits than
the systematic uncertainties. The leading systematic uncertainty is the background modelling uncertainty
and, in the case of the WR and NR mass limits, the signal theory uncertainties or the electron identification
uncertainty, depending on the signal mass values.

The excluded region extends to mWR of 4.8 TeV in the electron channel and to 5 TeV in the muon channel,
for mNR of 0.4–0.5 TeV where the search is most sensitive. For mNR of 1.8 TeV the excluded mWR is 4 TeV
in both channels. The limits in the electron channel are weaker compared to those in the muon channel for
low mNR values, as the electron reconstruction and identification efficiency is lower for these WR, NR mass
configurations. For higher mNR values, the worsening muon resolution and reconstruction efficiency result
in weaker limits in the muon channel. The exclusion contour for the resolved topology [14] is overlaid for
both channels in Figure 7, to indicate the complementarity of the present analysis, as lower values of mNR

are excluded.

As the analysis is a single-bin Poissonian counting experiment, the limits on the cross-section are only
sensitive to the efficiencies of each signal, and do not depend significantly on mWR and mNR . The observed
limits on the number of selected signal events are 13.3 events for the electron channel and 8.1 for the muon
channel. The corresponding expected limits are 5.4 events for the electron channel and 4.9 for the muon
channel.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
[GeV]j,e1m

3−10

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s/

20
0 

G
eV Electron channel

-1 = 13 TeV, 80 fbs
ATLAS

RW
, M

RN
Signal: M

[GeV], [GeV]

300, 3000
400, 4000
Data
Z+jets fit
BG fit
BG uncertainties

0 500 1000 1500 2000 2500 3000 3500 4000 4500

[GeV]j,e1m

2−
0

2

S
ig

ni
fic

an
ce 0 500 1000 1500 2000 2500 3000 3500 4000 4500

[GeV]j,mu1, mu2m

4−10

3−10

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s/

20
0 

G
eV Muon channel

-1 = 13 TeV, 80 fbs
ATLAS

RW
, M

RN
Signal: M

[GeV], [GeV]

300, 3000
400, 4000
Data
Z+jets fit
BG fit
BG uncertainties

0 500 1000 1500 2000 2500 3000 3500 4000 4500

[GeV]2µ1, µj,m

4−
2−
0
2

S
ig

ni
fic

an
ce

Figure 6: Comparison of the mreco
WR

distribution between data and the fitted background prediction for the electron (left)
and muon (right) channels. Two signal scenarios considered in this search are overlayed. The dashed brown lines at
2 TeV show the boundary between the CR and SR. The dashed black lines depict the uncertainty on the background
fit. The solid black lines on the data points indicate the Poisson uncertainties. The significance, which indicates the
deviation of data in each bin from the background fit, is computed as the difference between the observed data and fit
values, divided by the square root of the observed data value.
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Table 5: Observed yields and expected background yields in the signal region. The significance and the p-values are
shown for the background-only hypothesis. Expected yields from three representative signal samples are also shown.

Electron Channel Muon Channel

Signal (mWR = 3 TeV,mNR = 150 GeV) 346+48
−75 411+36

−48
Signal (mWR = 3 TeV,mNR = 300 GeV) 471+42

−69 429+29
−40

Signal (mWR = 4 TeV,mNR = 400 GeV) 66+6
−10 57+4

−4
Expected background 2.8+0.5

−0.7 1.9+0.5
−0.7

Observed events 8 4
Significance 2.4σ 1.2σ
p-value 0.0082 0.12
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Figure 7: Observed (black solid line) and expected (red dashed line) 95% CL exclusion contours in the (mWR , mNR )
plane, along with the ±1σ and ±2σ uncertainty bands (green and yellow) around the expected exclusion contour in
the electron (left) and muon (right) channels. The exclusion limits in the resolved topology [14] are shown by the
blue line.

9 Summary

A search for a heavy right-handed WR boson decaying into a boosted right-handed neutrino NR is presented
using 80 fb−1 of

√
s = 13 TeV proton–proton collision data recorded by the ATLAS detector at the LHC.

Both electron and muon final states are analysed for the decay into two same-flavour leptons, WR → NR`,
NR → `+jets. In the electron final state, the analysis makes use of a large-R jet containing an electron
as a proxy for NR, while in the muon channel, the muon four-momentum is added to the large-R jet
four-momentum. The observed mreco

WR
spectrum is consistent with the background prediction and exclusion

limits at 95% confidence level are set on the NR masses as a function of the WR masses. The excluded
region extends to mWR of 4.8 TeV in the electron channel and to 5 TeV in the muon channel, for mNR of
0.4–0.5 TeV. The use of large-R jets results in a significant reduction of the background contribution. Due
to the signal topology, and a higher integrated luminosity this result represents an increase of the exclusion
limits in a complementary parameter space compared with previous results that reconstruct the WR as two
resolved jets.
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