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1 Introduction

The AdS/CFT correspondence [1] relates conformal field theories (CFTs) in d dimensions

to gravitational theories in Anti de Sitter spacetimes in d + 1 dimensions (AdSd+1). This

duality was originally discovered in the context of string theory by considering D-brane

constructions, which relate particular CFTs that arise in the low energy limit of brane

theories to string theory in AdS. When the gravitational dual is described by weakly

coupled Einstein gravity, the CFTs are pushed into some extreme corners of theory space,

with a large number of degrees of freedom and a strong coupling.

A more modern approach to the subject is to consider the strongest form of the

AdS/CFT correspondence which states that every conformal field theory can be viewed as

giving rise to a theory of quantum gravity in AdS. Typically, however, the bulk dual will

be highly curved and quantum. One then tries to answer the following questions: what

makes a CFT holographic? What are necessary and sufficient conditions that a CFT must

satisfy in order to have a weakly coupled Einstein gravity dual? How does the bulk emerge

from the CFT? These questions have mostly been tackled following two main frameworks.

The first is the conformal bootstrap, originally conceived in [2–4] and revived and mod-

ernized in [5]. Here the idea is to use the analytic properties of CFT correlation functions

to determine the physics of the dual gravitational theory. The second is that of quantum

information theory where one might try to derive Einstein’s equations from CFT entangle-

ment, see e.g. [6–10]. The current work discussed in this note will follow the first approach

to the problem, even though the full power of the bootstrap will not be exploited.

The implementation of the conformal bootstrap in this context was originally intro-

duced by Heemskerk, Penedones, Polchinski and Sully [11]. They showed that there was an

equivalence between the number of solutions to the crossing equations and bulk effective

Lagrangians in AdS. Furthermore, they conjectured that the locality of the bulk theory

was encoded in the dimension of the lowest single-trace operator with spin greater than

two. Since then, much evidence has been gathered in favour of this conjecture, as well

as a more quantitative understanding of the effect of the gap, see e.g. [12–17]. There has

also been a great amount of progress by bootstrapping partition functions in the large N

limit [18–35].

The statement that the bulk theory should be weakly coupled is really a statement

about the three-point function of the CFT stress-tensor, suitably normalized.

〈TTT 〉
〈TT 〉3/2

= ∼
√
GN (1.1)
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In two dimensions, there is a single tensor structure for the stress-tensor three-point

function, and the normalized three-point function scales as c−1/2, where c is the cen-

tral charge. 2d CFTs with a weakly-coupled gravity dual should therefore have a large

central charge. In higher dimensions, there are multiple tensor structures for the stress-

tensor three-point function. Concretely, in d ≥ 4 dimensions, we have three independent

structures:

〈TTT 〉 = t0 [〈TTT 〉0 + t2 〈TTT 〉2 + t4 〈TTT 〉4] (1.2)

where the 〈TTT 〉i are known tensor structures given in [36]. The index i labels the irre-

ducible representations appearing in the three-point function in terms of its spin. The ti’s

are theory-dependent structure constants and one would expect them all to be large for

the gravitational theory to be weakly coupled.

On the other hand, a generic bulk effective Lagrangian will be

Sbulk =
1

16πGN

∫ √
|g|dd+1x

(
− 2Λ +R+

α1

Λ
R2 +

α2

Λ2
R3

)
+ · · · (1.3)

where Λ is dimensionful and α1 and α2 are dimensionless constants. The . . . represent

terms suppressed by powers of GN . The statement made above about the largeness of

the ti’s translates to the fact that we expect a hierarchy of scales that separates Λ from

GN while keeping α1 and α2 order one. The reason we could isolate just these terms in

the effective action is that we can use field redefinitions to codify the information of the

three-point functions discussed above in just these terms.

An immediate concern that arises from these expressions is that they seem to violate the

logic of effective field theory where we expect all higher derivative terms to be suppressed

by the cutoff scale GN and not the IR scale Λ. This amounts to a large amount of fine

tuning. But since holography allows this as a consequence of the large N limit there is no

obvious contradiction.

Eventually, causality considerations in the gravitational theory showed that only a

finite, order one, range for the dimensionless constants α1 and α2 was allowed. This was

first observed in [37, 38] and complete bounds were obtained in [39, 40]. It turns out these

bounds follow directly from an exact calculation in CFT at finite N performed in [41]

where bounds on the central charges were obtained by assuming a form of the averaged

null energy condition in the context of a gedanken collider experiment. We review these

results briefly in the following subsection.

Still, after these results were understood, it remained surprising that the effective field

theory results could be violated by the possibility of finite values for α1 and α2. This

puzzle was beautifully resolved in [17] where a careful study of micro-causality in high

energy scattering processes in the bulk of AdS showed that in a theory with a large gap α1

and α2 must effectively vanish. In this work, an argument was presented that deviations

from this result are constrained by the dimension (∆gap) of the lightest operator with spin

J > 2 in the dual CFT. In particular,

|α1| .
1

∆2
gap

. (1.4)
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For example, one cannot have a CFT that is dual to Gauss-Bonnet gravity with a large

correction to the Einstein-Hilbert action where all other higher derivative corrections are

small. Through (1.2), this implies the vanishing of t2 and t4. It is known that these

coefficients are related to values of central charges. The result is that holographic CFTs

(i.e. large N, large gap) must satisfy in d = 4:

a = c , (1.5)

where a and c are the anomaly coefficients. This result was later proven using CFT

techniques in [13]. The argument is technically quite involved, it requires an understanding

of the Regge limit and rests ultimately on the chaos bound [42].

The goal of this paper is to derive this result by simpler arguments in a large N CFT

by assuming that there is a large gap to the higher spin operators. We will make heavy use

of the averaged null energy operator, discussed in the next subsection, and its commutation

relations, see [43, 44]. We hope this approach will open simpler ways to access the question

of possible deviations from a = c in terms of ∆gap and sheds light on the sub-algebra of

light-ray operators in general and their universal properties.

The averaged null energy operator. The averaged null energy operator (which we

will call the ANEC operator) is defined to be

E(x+, ~x⊥) =

∫
dx−T−−(x+, x−, ~x⊥) , (1.6)

where x± are null directions. It is an example of a larger class of non-local CFT operators

known as light-ray operators, see [45, 46] and [44, 47] for more recent developments. This

operator has remarkable properties, in particular its expectation value is positive for any

state in the Hilbert space

〈ψ| E |ψ〉 ≥ 0 . (1.7)

This inequality is known as the averaged null energy condition (ANEC) and is an aston-

ishing property of quantum field theory. It has recently been proven in [48, 49] by different

methods. Interestingly, the two proofs originate again from either quantum information

theory or the bootstrap. Positivity of the ANEC operator was assumed to derive bounds

on the anomaly coefficients in any 4d conformal field theory in [41]. One simply evaluates

the one-point function of an ANEC operator in a state created by the stress-tensor. The

bounds read
31

18
≥ a

c
≥ 1

3
. (1.8)

These bounds are usually referred to as the conformal collider bounds as they were first

suggested in [41] in the context of the gedanken collider experiment. They were first proven

in [50] by Lorentzian bootstrap techniques [51, 52]. The saturation of these bounds implies

that the CFT is actually free, see [53].

Now that the ANEC has been proven to be true the bounds (1.8) follow trivially as

a particular instance of a much more general statement. One could generate many more

inequalities using these type of techniques. For example, bounds on the OPE coefficients

of other operators, e.g 〈TTO〉, were obtained in [54].
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Once defined, the ANEC operator can be used to compute higher point correlation

functions of the type

〈ψ| E1 . . . Ek |ψ〉 , (1.9)

which is a k + 2-point correlation function in the CFT. Notice that, if inserted at the

same light-like coordinate x+ but at different transverse positions ~x⊥, these operators are

space-like separated and, therefore, should commute [43, 44]. However, this argument is in

fact too quick since the two ANEC operators still touch at infinity, as can be seen on the

Penrose diagram of Minkowski space. One could even perform a conformal transformation

to map the point where they touch to a finite distance, making the concern more manifest.

Nevertheless, while the null integral of generic operators may be problematic, one can show

that the commutator still vanishes for ANEC operators (see [55] for an in-depth discussion

of the issue).

Quite trivially, the product of commuting positive operators is also positive. This

signals that once the ANEC is satisfied no further information in terms of bounds should

be accessible from the higher point correlation functions.

These operators were related in [41] by a conformal transformation to light-ray op-

erators inserted at the conformal boundary of Minkowski space. In this context their

interpretation corresponds to the insertion of a detector that measures the integrated en-

ergy deposited in a calorimeter in the celestial sphere in a sort of collider experiment.

Because of the properties of the ANEC operators, these energy operators are also known

to be positive and commuting.1

The energy operators can be obtained by sending the ANEC operator to the boundary

of space-time as:

E(ni) ∼ lim
r→∞

r2

∫
dx−n T−−(x+

n = 2r, x−n , 0) (1.10)

where ni is a unit vector in space transforming under SO(3). We have picked here a

coordinate system x±n = t ± nixi in order to take the limit in a simple way. Given this

connection we will be a bit careless in the rest of this work and refer to these operators as

energy or ANEC operators indistinctively.

Higher point correlators of these operators can also be studied. In this work, we will

study such correlation functions for generic CFTs at large N , and pay particular attention

to the situation where there is a large gap for the single-trace higher spin operators. To do

so, we will develop the OPE between an ANEC operator and a local operator. When there

is a large gap, the only single-trace operator that will appear in the OPE between E and

O is the local operator O itself. In such a case, the ANEC operator acts as a differential

operator which takes a relatively simple form.

We will show that the OPE expansion can be resummed to obtain an exact expression

at finite distance between the ANEC operator and the local operator insertion. This

will allow us to compute the conformal collider higher point correlation functions for a

large N CFT. We will see that consistency of the commutator of energy operators E or,

1In this context, the concern about commutation arises from a possible contribution coming from the

point of future infinity in the Penrose diagram.

– 5 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
2

equivalently, demanding that their product remains positive singles out the dual AdS bulk

theory to be Einstein Gravity.

From the point of view of the large N CFT what we observe is that the range of

allowed central charges (1.8) is drastically reduced. By looking at commutators or higher

point functions of energy correlators, we deduce

1 ≥ a

c
≥ 1. (1.11)

Concretely we show:

Result 1: 〈T | [E1, E2] |T 〉 = 0 =⇒ a = c

Result 2: 〈T |E1 . . . En |T 〉 ≥ 0 =⇒ |a− c| ≤ δn , (1.12)

where δn are strictly decreasing. We will also derive equivalent properties for the coupling

to currents. From a bulk point of view, we are deriving minimal Einstein-gravity couplings

by assuming the large gap condition.

The result (1.11) was obtained, as mentioned above, first in [13] by different methods.

We expect our discussion to be somewhat simpler and also allow for applications of this

techniques to other problems. A direct application, which we do not exploit in this work,

is the possibility, within our formalism, to compute arbitrary higher point correlators of

ANEC operators at finite distances in large N CFTs.

Ultimately, what allows these computations is that, as a consequence of the large N

limit and the large gap, higher dimensional CFTs acquire, as far as the ANEC operators

go, a structure reminiscent of that found in 2d CFTs, where the Virasoro algebra fixes all

correlation functions. Interesting examples where similar structures have been uncovered

in higher dimensional CFTs include: infinite dimensional algebras in supersymmetric the-

ories [56, 57], BMS algebras for light-ray operators [44] and affine Kac-Moody algebras for

theories with higher form symmetries [58]. We hope our formalism will provide a tool to

further study these results.

The paper is organized as follows: in section 2, we start by performing a warm up

calculation in 2d CFTs, from which we draw analogies to higher dimensions. In section

3, we compute the OPE between local operators and the ANEC operator and use it to

obtain an expression for the energy operator in terms of a differential operator. In section

4, we compute higher-point functions of the ANEC operators and derive constraints on the

central charges of the CFT. We show the holographic dual theory must be Einstein gravity

minimally coupled to other light fields. We conclude in section 5 with a discussion.

Note added: while this paper was in preparation, we learned about [55] which contains

some overlap with the results discussed here.

2 A 2d warmup

We start by considering the ANEC operator in two dimensions. As we will see this example

is somewhat trivial, but it will nevertheless illustrate some important properties that will

– 6 –
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carry over to higher dimensions. In two dimensions, the ANEC operator is simply

E =

∫
dz T (z) , (2.1)

where T (z) is the holomorphic stress-tensor. Let us start by considering the three-point

function

〈T (z1)ET (z3)〉 . (2.2)

The local three-point function is given by

〈T (z1)T (z2)T (z3)〉 =
c

z2
12z

2
13z

2
23

, (2.3)

where zij = zi − zj . We can easily integrate this expression to obtain2

〈T (z1)ET (z3)〉 = 2πi
2c

z5
13

. (2.4)

However, there is a quicker way to arrive at this answer. In two dimensions, the ANEC

operator is simply a differential operator

E =

∫
dz T (z) ∼ ∂z , (2.5)

which follows from the Laurent expansion of the stress-tensor. Thus, we have

〈T (z1)ET (z3)〉 = −2πi∂z1 〈T (z1)T (z3)〉 = 2πi
2c

z5
13

, (2.6)

in agreement with the previous calculation. Having understood this, one can easily compute

a k-point function of ANEC operators, by applying the differential operator k times

〈T (z1)E1 . . . EkT (z2)〉 ∼ ∂k 〈T (z1)T (z2)〉 , (2.7)

which means, in particular, that it is fixed by symmetry. While this is natural in light

of Virasoro symmetry, it is quite surprising from a global conformal group point of view,

where for example a four-point function is given by an infinite sum over the exchange of

quasi-primaries. Let us illustrate this fact by considering the four-point function

〈T (z1)E2E3T (z4)〉 . (2.8)

This correlator, much like the local four-point function, is completely fixed by symmetry in

two dimensions due to the Ward identities [4]. Let us start from the canonically normalized

stress-tensor two-point function

〈T (z)T (w)〉 =
c/2

(z − w)4
. (2.9)

2We use an iε prescription such that we pick up the poles that lie in the lower half plane and we close

the contour in that direction, see more details about this in section 3.
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By using the Ward identity (see appendix D) twice, we get the local four-point function

〈T (z1)T (z2)T (z3)T (z4)〉 =
c2/4

z4
12z

4
34

+
c2/4

z4
23z

4
14

+
c2/4

z4
13z

4
24

(2.10)

+
2c

z2
12z

2
23z

2
14z

2
34

− 2c

z12z2
13z23z14z2

24z34
.

We can now integrate this four-point function twice. The terms on the first line of (2.10),

which are crucially proportional to c2, do not have simple poles and therefore vanish. The

answer comes solely from the terms on the second line and reads

〈T (z1)E2E3T (z4)〉 =

∫∫
〈T (z1)T (z2)T (z3)T (z4)〉dz2dz3 =− (4π2)

10c

(z1 − z4)6
. (2.11)

We would now like to rederive this result from the point of view of a global conformal block

expansion, where one sums over an infinite set of quasi-primaries.

Using conformal blocks. We want to explicitely check the computation of the double

integral above using the conformal block decomposition. Note that it corresponds to the

exchange of an infinite number of quasi-primaries. These operators are the stress tensor

itself, as well as composites of the stress-tensor of the schematic form : T∂kT : which are

also quasi-primaries. We will now show that the only global block relevant for computing

the integrated four-point function is the stress-tensor one. All the composites will drop out

once we integrate. We will use the results of [59]. The four-point function can be written

as

〈T (z1)T (z2)T (z3)T (z4)〉 =
1

z4
12z

4
34

FTTTT (η), (2.12)

where the cross-ratio is defined as

η =
z12z34

z13z24
. (2.13)

The result (2.10) can be repackaged in terms of the cross-ratio as

FTTTT (η) =
1

4
c2

(
1 + η4 +

η4

(1− η)4

)
+ 2cη2 1− η + η2

(1− η)2
, (2.14)

which can be written as a sum of global conformal blocks as

FTTTT (η) =
1

4
c2 +

∞∑
p=0

a2pη
2p+2F (2p+ 2, 2p+ 2; 4p+ 4; η), (2.15)

where F (a, b; c; z) is the hypergeometric function and the coefficients a2p are

a2p =

(
1

144
c2(2p− 1)6 + 2c(1 + 2p(2p+ 3))

)
(2p)!(2p+ 1)!

(4p+ 1)!
. (2.16)

For our purposes, we can drop the constant piece coming from the identity operator. It is

the first term in (2.10) and we saw it vanishes when we integrate. We can thus consider

F̃TTTT (η) = FTTTT (η)− 1

4
c2 =

∞∑
p=0

a2pη
2p+2F (2p+ 2, 2p+ 2; 4p+ 4; η). (2.17)

– 8 –
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Let us look at the expansion of F̃TTTT (η) for small η. Taking into account the factor of
1

z4
12z

4
34

, the series will contain terms, for a given m, of the form

1

z4
12z

4
34

ηm =
1

(z12z34)4−m
1

(z13z24)m
. (2.18)

It is clear that when taking the integral as z1 → z2, only terms where 0 ≤ m ≤ 3 can

contribute since otherwise there is no pole at z1 = z2. By inspecting (2.17), it is clear that

the only block for which this happens is p = 0 which is the exchange of the stress-tensor.

The p = 0 block gives a contribution∫ ∫
1

z4
12z

4
34

F̃TTTT (η)

∣∣∣∣
p=0

dz2dz3 = −(4π2)
10c

(z1 − z4)6
, (2.19)

in agreement with the full answer. All other blocks corresponding to the composites vanish

once we integrate. This is quite remarkable: an infinite number of blocks are needed to

reproduce the local four-point function but a single one survives the integrals. In a large c

theory, the composites : T∂kT : can be thought of as double-trace operators. Even though

Virasoro symmetry does not prevail in higher dimensions, we will see that the double-trace

operators also drop out of correlators with the ANEC. This is the first lesson to draw

from this simple two dimensional case. Secondly, the fact that the ANEC operator is a

differential operator in d = 2 (2.5) is no longer true in higher dimensions. However, we will

see that in a large N theory with a large gap, it becomes approximately true again. The

differential operator is slightly more complicated, but it involves a finite number of minus

derivatives. With this newly gained insight, we are ready to discuss the structure of ANEC

operators in higher dimensions.

3 Action of E on local operators

We now study correlation functions of the ANEC operator in higher dimensions. While

our technology should apply to any dimension d > 2, we will work in four dimensions

for the rest of the paper. The goal of this section is to develop the OPE between the

ANEC operator E and any local operator Oµ1...µs of spin s. In the spirit of the previous

section, we will recast the ANEC operator as a differential operator. This will be an exact

statement at the level of CFT three-point functions, which are fixed by symmetry. While

most results in this section are well known, the advantage of this formalism is that under

certain assumptions on the CFT (large N , large gap), the differential operator we find will

enable us to compute higher-point correlation functions with multiple ANEC operators,

which will be the subject of the following section. For now, we restrict to three-point

functions. We will start by explaining the general structure of this differential operator

and then we move on to concrete calculations for operators of different spin.

3.1 ANEC operator as a differential operator

The goal of this section is to show that the ANEC operator can be recast as a differential

operator. At the level of three-point functions with two identical local operators, this

– 9 –
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expression is exact. We will obtain

〈OEO〉 = D 〈OO〉 , (3.1)

for some differential operator D. In the above expression O is a local operator of arbitrary

spin. This differential operator follows directly from considering the expansion of the OPE

between E and O as we now discuss. Throughout this section, we only care about the

terms in the OPE where O itself appears as that is the only relevant information for this

three point function. In the next section we will argue why in large N theories with a gap

this is all we need even for higher point-functions.

We start by discussing the building blocks of the differential operator. Consider a

spacelike vector ni of unit norm. We define two null coordinates as

x± = t± nixi , (3.2)

and define two associated null vectors ξ±. The two spacelike coordinates will be denoted

~x⊥. This gives a natural decomposition of the Lorentz symmetry as

SO(1, 3)→ SO(1, 1)× SO(2) . (3.3)

where the SO(2) leaves ni invariant. This splitting corresponds to separating the two

null directions and the two space-like directions. To proceed, pick a null vector ( say ξµ−)

that will point in the direction along which we will integrate the stress tensor component

ξµ−ξ
ν
−Tµν . Then, we need the spin information of the local operator. If we have an operator

of spin s, we will consider its contraction with a polarization tensor

O = εµ1...µsOµ1...µs . (3.4)

We can now build the most general differential operator that respects the symmetries at

hand. The rules for the OPE E(x1)O(x2) are the following:

1. It is a scalar, so all indices must be contracted.

2. It is built from the constituents: ξµ+, ξ
µ
−, x

µ
12 = xµ1 − x

µ
2 , ε

µ1...µs , Oµ1...µs , gµν , ∂µ.

3. It is linear both in the operator and in the polarization tensor.

4. The position vector xµ12 can only be contracted with ξ−.3

5. The differential operator must have weight 3.

6. It must carry a SO(1, 1) − index.

7. If the operator is a conserved current, the derivative operator cannot be con-

tracted with Oµ1...µs . If it is traceless, the operator cannot be contracted with the

metric either.

3We are going to look at the OPE when the operators are separated only in + direction. The more

general result can be obtained by SO(1, 3) transformations.

– 10 –
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For example, consider the case of a scalar operator. The most general operator that we

can write down under the conditions above is

EO =
∑
q,r,s,t

cq,r,s,t (x12 · ξ−)q (∂ · ξ+)r (∂ · ξ−)s (∂ · ∂)tO , (3.5)

with

− q + r + s+ 2t = 3 , q − r + s = 1 , (3.6)

and where cq,r,s,t are some coefficients that are unfixed for now. The constraints on q, r, s, t

follow directly from the rules above. Furthermore, this expansion must be local at short

distances. This means that r, s, t are positive integer powers. We can then rewrite the

differential operator as4

D =
1

(x12 · ξ−)

∞∑
k=0

(
ak (∂ · ξ−)2 + bk (x12 · ξ−) (∂ · ξ−) (∂ · ∂)

+ck (x12 · ξ−)2 (∂ · ∂)2
)

(x12 · ξ− ∂ · ξ+)k . (3.7)

The coefficients ak, bk, ck can be computed explicitly by comparing with the three-point

function. We will do this in detail in the next subsection. Similar expressions exist for

operators with spin and we write down the explicit expression for U(1) currents and the

stress tensor, see appendix C.

Before deriving the precise differential operator (3.7) for scalars, let us first discuss the

properties of the differential operator once we send it infinitely far away to the celestial

sphere, following (1.10). This object will be relevant when we compute correlation function

of energy detectors in scattering experiments. By symmetry considerations, we are able to

restrict the form of the diferential operator, up to a few coefficients that may be extracted

once (3.7) is known. This is just a rephrasing of the well known analysis of [41].

3.1.1 The large distance limit and matrix elements

We would like to view these correlation functions as scattering experiments with the ANEC

operators being energy detectors [41]. To do so, it is important to send the ANEC operators

to spatial infinity, inserted at a given angle on the celestial sphere. This is illustrated in

figure 1. From this point of view, it is therefore more useful to split the Lorentz symmetry as

SO(1, 3)→ R× SO(3) . (3.8)

After the limit, and an appropriate rescaling by r2, our ANEC operator has undergone

the limit (1.10) and we now refer to it as an energy operator E(ni). We are now interested

in the matrix elements
〈O|E(ni) |O〉
〈O|O〉

. (3.9)

4In later sections, it will sometimes be more convenient to use a slightly different basis: we will use �⊥
instead of ∂µ∂µ which is simply a reshuffling of the basis elements written here.
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Figure 1. The Penrose diagram of Minkowski space in three dimensions. The ANEC operator has

been sent to spatial infinity, at a given point on the celestial sphere (here a point on the circle).

It is still integrated along a null direction represented by the red line. The vector ~n indicates the

direction in which the operator is inserted.

It is useful to go to momentum space so we consider the Fourier transform of the two-point

function

F (q) ≡
∫
eiq·x12 〈O(x2)|O(x1)〉 , (3.10)

and we will be particularly interested in the four-momentum

q = (q0, 0, 0, 0) , (3.11)

namely ~q = 0 momentum eigenstates. For such states, the matrix elements become ex-

tremely simple. By dimensional analysis, the differential operator will necessarily be pro-

portional to the energy q0. We will give explicit expressions in the following subsection.

For now, consider the general form of the energy density one-point function [41]. We have

〈O|E(ni) |O〉
〈O|O〉

=
q0

4πε∗ε
ε∗M(gij , ni, COOT )ε , (3.12)

where COOT represents the relevant OPE coefficients and our notation is

ε∗ε ≡ εi1...isε
i1...is ,

ε∗Mε ≡ εi1...isM
i1...is

j1...js
εj1...js . (3.13)

From this point of view, one should really view the ANEC operator as a transfer matrix

M between the polarizations. The only important detail is that this must be considered

in an in-in formalism. As we made manifest above, it depends on the OPE coefficients

between the stress tensor and the operator creating the state5 and its indices are built

5For operators with spin, note that there is more than one OPE coefficient.
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from the unit vector and the metric. For scalar operators, we have no polarization and

the energy is uniformly spread over the sphere, namely M = 1. For operators with spin,

the situation is more interesting. For example, the transfer matrices for U(1) currents and

stress-tensors read [41]

ε∗MJε = ε∗i

[
gij + a2

(
ninj − 1

3
gij
)]

εj (3.14)

ε∗MT ε = ε∗ij

[
gikgjl + t2g

ik

(
njnl − gjl

3

)
+ t4

(
ninjnknl − 2gikgjl

15

)]
εkl . (3.15)

where the constants a2, t2, t4 depend on the OPE coefficients and the coefficient of the

two-point function. We work them out in detail below by comparing with the OPE. For

operators of spin s, the transfer matrix carries 2s indices and its explicit dependence on

the OPE coefficients can be worked out in a similar fashion.

These expressions, including the values of the coefficients a2, t2, t4 can be obtained

explicitly by resumming the expression for the differential operator of the type (3.7) which

has an infinite radius of convergence as we show below.

At this point, it is worthwhile to pause and ask why we should go through the trouble

of computing this differential operator, since we could have obtained (3.14) directly from

the three-point functions. It turns out, that because of the infinite radius of convergence of

the OPE expansion within this subsector, we can use these expressions to compute higher

order correlation functions of the form

〈O|E(ni1) . . . E(nik) |O〉
〈O|O〉

. (3.16)

These could even be generalized to finite distance in flat space, away from the celestial

sphere where the symmetry considerations are no longer directly applicable.

We will see in the following section that under the large gap assumption, this higher

point matrix element is completely determined by the transfer matrix we have just de-

scribed, once we take the appropriate limit. To see this, note that when the ANEC can

be recast as a differential operator in higher point functions, then the product of ANECs

is simply the product of the differential operators. Upon taking the appropriate limit,

equation (3.16) becomes

〈O|E(ni1) . . . E(nik) |O〉
〈O|O〉

=

(
q0

4π

)k
1

ε∗ · ε
ε∗M1 . . .Mkε . (3.17)

This will provide an efficient tool to obtain bounds on the OPE coefficients. We will now

discuss the details of extracting the differential operator for scalar operators as well as the

way to take the large distance limit.

3.2 Scalar operators

In this section, we derive the differential operator when it acts on scalar local operators,

namely (3.7). The derivation for operators with spin follows but is more tedious. We give

some of the details of the computation for a current and the stress-tensor in appendix C.

We will see that we can give the form of the operator not only as a series expansion, but

also in a compact resummed expression. From this, it becomes very simple to extract the

large distance limit and derive the transfer matrix described above, as we explain below.
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3.2.1 Exact result

We start with the general expression for the three-point function of the stress-tensor with

two scalar operators [36]

〈Tµν(x1)O(x2)O(x3)〉 =
CTOO

xd12x
d
13x

2∆−d
23

tµν(X) , (3.18)

where in 4 dimensions

CTOO = − 2∆

3π2
, (3.19)

and

tµν(X) =
XµXν

X2
− 1

d
δµν , Xµ =

(x12)µ
x2

12

− (x13)µ
x2

13

. (3.20)

It will be more convenient for us to define

sµ = xµ12 , vµ = xµ23 , (3.21)

which also gives xµ13 = sµ + vµ. The three-point function is only a function of these two

vectors by translational invariance. We will always think of the vector sµ as being the

vector between the ANEC operator E and O and vµ being the vector between the two

scalars. We now wish to compute

〈E(x1)O(x2)O(x3)〉 . (3.22)

To do this, we need to specify time orderings for the operators, which is done by giving

the appropriate iε prescription. We thus perform the shifts

x±i → x±i + iεi. (3.23)

We refer the reader to appendix A for our conventions for the ± notation.

We will perform the x− integral by means of a contour integral in the complex x−

plane. From that point of view, the role of the iε prescription will be to determine which

poles lie inside our contour. To obtain a non-vanishing answer, we need to have solely the

singularity due to O(x2) in our contour and not that of O(x3) (or the other way around).

This can be achieved by picking

ε12 > 0 , ε13 < 0 , (3.24)

and closing the contour through the bottom. This corresponds to a time ordering where

we first create the state with O(x2), then insert E and then we go back in time to O(x3)

to create another in state.

We can now compute the correlator with the ANEC operator, obtained by integrat-

ing (3.18). We have

〈OEO〉 =

∫
ds−

− 2∆
3π2

sd(s+ v)dv2∆−d t−−(X) . (3.25)
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The integrand has a pole at

s− =
s2
⊥
s+
− iε12

s2
⊥ + (s+)2

(s+)2
+O(ε212) , (3.26)

and the integral can be computed using Cauchy’s theorem by considering the residue at

the pole. Upon further taking the limit ε12, ε13 → 0, we obtain

〈O(x3)E(x1)O(x2)〉 = (−2πi)
∆

π2

(v+)2(1 + s+

v+ )2

s+v2∆+4(1− (s+)2v−−2s+~s⊥·~v⊥+v+s2⊥
s+v2 )3

. (3.27)

We will now show how to reproduce this answer using an OPE expansion.

3.2.2 The OPE expansion

We will now consider the OPE expansion of the ANEC operator with a scalar operator.

The OPE between a scalar operator and the stress tensor is given by

Tµν(x1)O(x2) = AµνO(x2) +Bα
µν∂αO(x2) + Cαβµν ∂α∂βO(x2) + . . . (3.28)

We give the explicit expression for the tensors in appendix B, but they are basically the

most general tensors built out of the vector sµ and the metric gµν that satisfy the basic

symmetry properties of the indices, namely symmetric traceless in µ, ν and symmetric in

α, β, . . .. The coefficient in front of every tensor structure can be extracted by matching to

the expansion of the three-point function (3.18).

Note that only the tensors A,B,C, . . . carry an sµ dependence, so we can perform the

s− integral term by term to extract the OPE between E and O.6 We will now compare the

expressions that we get at each order in the OPE expansion to the exact answer (3.27). It

is easy to see that the contributions from Aµν and Bα
µν drop out and the first contribution

to the three-point function comes from Cαβµν and yields

(−2πi)
∆

π2

(v+)2

s+v2∆+4
. (3.29)

At the next order, the contribution from Dαβγ
µν is

(−2πi)
∆

π2

v+

(s+)2v2∆+6

(
−6s+v+~s⊥ · ~v⊥ + 3(v+)2s2

⊥ + (s+)2(2v2
⊥ + v−v+)

)
. (3.30)

At this point, it is already easy to understand where this expression comes from by looking

at the exact result (3.27). Rewriting the full answer as

〈O(x3)E(x1)O(x2)〉 = (−2πi)
∆

π2

(v+)2(1 + β1)2

s+v2∆+4(1− β2)3
. (3.31)

6There are many simplifications that occur once we take the integral. For example, it is easy to see that

only the tensor structures with at most two metric factors can contribute once we take the s− integral.

Having three or more metric factors would be accompanied by enough powers of s to cancel the pole at

s2 = 0.
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with

β1 =
s+

v+
,

β2 =
(s+)2v− − 2s+~s⊥ · ~v⊥ + v+s2

⊥
s+v2

. (3.32)

The k-th order in the OPE gives the homogeneous polynomial of order k − 2 in the β1,2

expansion of the exact answer. This shows that the ANEC operator can be recast as a

differential operator acting on the scalar operator. This is an exact statement at the level

of three-point functions. We will now proceed to write this operator explicitly. We will do

so for ~s⊥ = 0, which will be enough for our purposes. The full expression for ~s⊥ 6= 0 can be

recovered by using SO(1, 3) transformations to change coordinates. For states created by

operators with spin, we will no longer be able to fix the polarization vectors since most of the

rotational symmetry has been used to align the ANEC operator in the s+ direction. This

will render the expressions slightly more complicated but the concept remains the same.

3.2.3 The explicit form of the differential operator

It is straightforward to work out the differential operator by integrating the OPE between

the scalar and the stress-tensor. Writing the operator in the form (3.7) we find7

D = (−2πi)
∆

π2

1

s+

∑
k≥0

(
ak

∆k+2
∂2
− + s+ bk

∆k+3
∂−�⊥ + (s+)2 ck

∆k+4
�2
⊥

)(
s+∂+

)k
(3.33)

with

ak = 1 ,

bk =
k + 1

2
, (3.34)

ck =
k2 + 3k + 2

32
, (3.35)

and where we have used the Pochhammer symbol

∆x =
Γ(x+ ∆)

Γ(∆)
. (3.36)

Fortunately, we can explicitly resum the operator. We find

D = (−2πi)
∆

π2

[
∂2
−
s+

es
+∂+

(s+∂+)∆+1

Γ(∆ + 1)− Γ(∆ + 1, s+∂+)

∆

+
∂−�⊥
2∆2

(
1 +

es
+∂+(s+∂+ −∆− 1)(Γ(∆ + 2)− Γ(∆ + 2, s+∂+))

(s+∂+)∆+2

)
(3.37)

+
s+�2

⊥
32∆5

(
∆5

∆3
(s+∂+ −∆)

+
es

+∂+((s+∂+)2 − 2∆2
∆ s+∂+ + ∆3

∆ )(Γ(∆ + 5)− ∆5
∆3

Γ(∆ + 3, s+∂+))

(s+∂+)∆+3

)]
,

7It is more convenient to use �⊥ rather than ∂2, which is a change of basis.

– 16 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
2

which is a relatively simple operator. Here Γ(s, x) is the incomplete Gamma function. At

this point, it is worth comparing this answer to the one we found in two dimensions. First,

we see that the differential operator involves only a finite number of minus derivatives, as

advertised. In two dimensions, the operator truncated to a single minus derivative. Here

it is more complicated but the number of derivatives remains bounded. For operators with

spin, it is also bounded. Second, we notice the appearance of an exponentiation of the plus

derivative. This is a new feature compared to two dimensions.

There is also another phenomenon happening. The OPE expansion had a finite radius

of convergence, given essentially by β2 = 1 in (3.32). Now, in terms of the differential

operator, the series can be resumed with infinite radius of convergence, as is manifest by

the exponential factor in (3.37). This fact is reminiscent of Borrel resummation and is of

importance in taking the large distance limit, over which we now have control. We are now

ready to send the ANEC operator to the celestial sphere and consider energy correlators.

The differential operator will simplify even further.

3.2.4 The large distance limit

We are now completely set up to study energy correlators. The kinematic setup we are

interested in consists of states that are created by inserting local operators near the center

of Minkowski space. Furthermore, we wish to send the ANEC operator(s) far away in the

radial direction (in these coordinates, in the x+ direction). The limit corresponds to taking

s+ →∞ and the leading term in the exact three-point function (3.27) becomes

〈O(x3)E(x1)O(x2)〉s+→∞ ∼ (2πi)
∆

π2

1

(s+)2v2∆

v2

(v−)3
. (3.38)

One can study the differential operator D given in (3.37) in this limit. We find that the

operator becomes particularly simple

D ∼ (−2πi)
∆

π2

1

(s+)2

(
− 1

∆

∂2
−
∂+

+
1

2∆

�⊥∂−
∂2

+

− 1

16∆

�2
⊥

∂3
+

)
. (3.39)

It is worthwhile to mention that there are two asymptotic behaviours for the incomplete

regularized Gamma function and one of them contains an exponential. In the regime of

real momenta that we are interested in, this exponential is a pure phase and it does not

dominate the long distance limit. This is particularly clear when the differential operator

acts on momentum eigenstates. Asymptotically, for states satisfying (3.11):

D ∼ 2i

π(s+)2

∂2
−
∂+

(
1− Γ(∆ + 1)

es
+∂+

(s+∂+)∆

)
=

q0

π(s+)2

(
1− Γ(∆ + 1)

e−is
+q0/2

(−is+q0/2)∆

)
.

(3.40)

From this is obvious that the second term is much smaller than the piece we have kept for

any ∆ > 0.

Now consider the Fourier transform of the two-point function (3.10) where we use (3.11)

F (q) =

∫
eiq·x

1

v2∆
. (3.41)
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The action of the operator then becomes extremely simple and we find

DF (q) ∼ (2πi)
1

π2

1

(s+)2

∂2
−
∂+
F (q) =

q0

4πr2
F (q) . (3.42)

The energy operator (1.10) is extremely simple when acting on the momentum space two-

point function. We then have (in momentum space)

E(ni)O =
q0

4π
O . (3.43)

Note that this is not an approximate formula, it is exact (provided we do not care about

other operators appearing in the OPE). At the level of expectation values, we find

〈E(ni)〉 ≡ 〈OEO〉
〈OO〉

=
q0

4π
, (3.44)

namely a uniform energy distribution on the celestial sphere as expected for scalar states.

This will drastically change once we consider states built out of operators with spin, which

we now discuss.

3.3 Operators with spin

For operators with spin, one repeats the same procedure in a straightforward fashion. The

most general expression for the differential operator of the form (3.7) is given explicitly

for conserved currents and the stress-tensor in (C.1) and (C.5), respectively. One then

compares the general expression with the direct computation of the integrated three-point

function and extracts the values of the expansion coefficients. Note that there is some

gauge freedom in the OPE because of the conservation/tracelessness of the operators but

it can be dealt with reasonably painlessly. In practice, we pick a gauge that makes the

resummation easier, which we can do without loss of generality.

Having the differential operator in the form (3.33), we can simply perform the sum and

obtain the resummed version which is a (much) lengthier version of (3.37). We omit the

exact expression from this draft for environmental reasons. Once again, taking the large

distance limit and acting on momentum eigenstates drastically simplifies the operators and

we obtain the equivalent of (3.43) for operators with spin. Namely,

EεµJµ =
πq0

4

(
3(c̃− 2ẽ)

2cv
ε · J − 3

c̃− 8ẽ

cv
(ξ+ · J) (ξ+ − ξ−) · ε

)
, (3.45)

EεµνTµν =
πq0

4

(
5

3

7â+ 2b̂− ĉ
cT

εµνTµν + 10
13â+ 4b̂− 3ĉ

cT
ξµ+Tµνε

νρ(ξ−ρ − ξ+
ρ )

−15

6

81â+ 32b̂− 20ĉ

cT
ξµ+ξ

ν
+Tµνε

ρσ(ξ−ρ − ξ+
ρ )(ξ−σ − ξ+

σ )

)
. (3.46)
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From this, we can extract the transfer matrices (3.14) and we find well known expressions

for the coefficients

a2 =
3(8ẽ− c̃)
2(c̃+ ẽ)

, (3.47)

t2 =
30(13â+ 4b̂− 3ĉ)

14â− 2b̂− 5ĉ
, (3.48)

t4 = −15(81â+ 32b̂− 20ĉ)

2(14â− 2b̂− 5ĉ)
. (3.49)

The tilde and hat coefficients correspond to the OPE coefficients appearing respectively in

(3.13) and (3.19) of [36]. One can relate the OPE coefficients to the anomaly coefficients a

and c given by

Tµµ =
c

16π2
W 2 − a

16π2
E , (3.50)

where W is the Weyl tensor and E is the Euler density. The relation to the OPE coeffi-

cients is
a

c
=

9â− 2b̂− 10ĉ

3(14â− 2b̂− 5ĉ)
. (3.51)

The values of the OPE coefficients (3.47) naturally agree with the results in [41], obtained

directly from the integrated three-point function without going through the OPE.

As explained in [41], the positivity of the ANEC operator for arbitrary polarizations

yields the conformal collider bounds

−3

2
≤ a2 ≤ 3 ,

0 ≤ 1− t2
3
− 2t4

15
,

0 ≤ t2 + 2

(
1− t2

3
− 2t4

15

)
,

0 ≤ t2 + t4 +
3

2

(
1− t2

3
− 2t4

15

)
. (3.52)

The last three-inequalities can be recast to constrain the anomaly coefficients a and c as

1

3
≤ a

c
≤ 31

18
. (3.53)

Now, the point is that in a consistent finite N CFT this is the end of the story. No other

information can be obtained by looking at higher point functions, as the energy operators

at different positions commute and, therefore, their product is automatically positive.

It turns out that large N/large gap CFTs are somewhat sick, unless stronger con-

straints than (3.53) are imposed. We will see below that either by studying the commutator

of energy operators (effectively a four point function in the CFT) or by looking at higher

point functions we will obtain that the bounds above need to be strengthened to

a2 = t2 = t4 = 0 , =⇒ a

c
= 1 . (3.54)

Therefore, we now turn our attention to higher-point functions.
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4 Correlation functions of the ANEC operator

We have seen that we can rewrite the ANEC operator as a differential operator, which is

an exact statement at the level of three-point functions within the subspace of operators

involved. We are now interested in computing correlation functions with multiple ANEC

operators. For four-point functions and higher, this is a complicated task since all oper-

ators can run in the exchange channel and the four-point function therefore knows about

the entire spectrum of the theory. We will focus on large N theories, where large-N factor-

ization will give us a lot of mileage. We start by reviewing the properties of correlators at

large N . Our counting will be adapted to theories that have order N2 degrees of freedom

like N = 4 SYM or adjoint theories in general. It is straightforward to adapt it to other

types of large N theories if needed.

The upshot of this section is that, for holographic CFTs, the computations from the

previous section are enough to compute all higher point functions of ANEC operators.

This, in turn, results in strong constraints for the OPE coefficients in the theory.

4.1 Review of large N factorization

In large N theories, it is useful to separate the operators into light and heavy operators.

Light operators have a conformal dimension ∆ that is fixed as N → ∞. From a grav-

itational point of view, these operators correspond to fields from the bulk effective field

theory living in AdS. In particular, this excludes all operators that create black holes, as

their conformal dimensions scales with N . We further separate these operators into two

classes: single-trace and multi-trace operators. Single-trace operators correspond to bulk

fields following the usual AdS/CFT dictionary whereas multi-trace operators correspond

to multi-particle states of the bulk fields.

What distinguishes single-trace and multi-trace operators is the way correlation func-

tions scale. This is easiest to see in the normalization where the single-trace operator is

normalized such that

〈OO〉 ∼ O(1) . (4.1)

It is important to note that this is not the canonical normalization for the stress-tensor

or conserved currents, which typically have a two-point function that scales like N2. We

will review the case of the stress-tensor separately. The higher point functions are then

given by

〈OOO〉 ∼ O
(
N−1

)
, 〈OOOO〉c ∼ O(N−2) (4.2)

where 〈. . .〉c is the connected correlation function. On the other hand, the multi-trace

operators satisfy

〈: OO : : OO :〉 ∼ O(1) , 〈: OO : : OO : : OO :〉 ∼ O(1) , (4.3)

namely their correlation functions are order one (provided there exist Wick contrac-

tions) [25].

For any two single-trace operators O1 and O2, there exists at large N a family of double

trace operators

[O1O2]n,l ∼ O1∂µ1 . . . ∂µl(∂
ν∂ν)nO2 , (4.4)
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with conformal dimension (to leading order in N)

∆
(0)
n,l = ∆1 + ∆2 + 2n+ l . (4.5)

Typically, the multi-trace operators give contributions at the largest order in the 1/N

expansion. For example, consider the correlation function

〈O(x1)O(x2)O(x3)O(x4)〉 = 〈O(x1)O(x2)〉 〈O(x3)O(x4)〉+ 〈O(x1)O(x3)〉 〈O(x2)O(x4)〉
+ 〈O(x1)O(x4)〉 〈O(x2)O(x3)〉+O(1/N2) (4.6)

Now consider the conformal block expansion of the correlation function above, in the 1 ↔ 2

and 3 ↔ 4 channel. The exchange of the identity operator gives the first term, whereas

all the double-trace operators sum up to give the other two Wick contractions [11]. We

will denote this contribution DT(0). Note that these double-trace operators only have the

conformal dimensions (4.5) at infinite N . Their dimensions (and OPE coefficients) get

modified once we include 1/N2 contributions to the four-point function, as is required by

crossing symmetry. In general, the structure is

∆n,l = ∆
(0)
n,l +

1

N2
γn,l + . . .

COO[OO]n,l = a
(0)
n,l +

1

N2
a

(1)
n,l + . . . . (4.7)

The leading order OPE a
(0)
n,l coefficients are given in [11].

In this paper, we will be interested in computing the connected four-point function,

which is of order 1/N2. There are two types of contributions at this order:

• The exchange of all single-trace operators. We will denote this contribution schemat-

ically by ST.

• The contribution coming from the anomalous dimensions and the correction to the

OPE coefficients of the double-trace operators. We will denote these contributions

schematically as DT(1).

The correction of the double-trace data has two separate origins. Part of it corresponds to

quartic couplings in the bulk, and this part can be added freely in a crossing symmetric

way [11]. On the other hand, any single-trace operator that runs in one channel will induce

its own correction to the double-trace data, as required by crossing [60]. The corrections

can be systematically extracted using Caron-Huot’s inversion formula [61]. To summarize

this section, we write schematically a local four-point function as

〈OOOO〉 = 1 + DT(0) +
1

N2

(
ST + DT(1)

)
+O(1/N4) . (4.8)

We will shortly see that when two of the operators are ANEC operators instead of local

operators, the only contribution that survives the integral is the single-trace contribution.

This will be a key point in what follows. Before we derive this fact, we start by reviewing

the N -counting for operators whose two-point functions is not O(1) and we focus on the

stress-tensor.
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Figure 2. The OPE expansion of the four-point function in the channel we have picked. To

compute the correlator to the first two orders in 1/N2, the sum over O′ is over all single-trace and

double-trace operators.

N-scaling for the stress-tensor. The N -scaling for the stress-tensor is slightly differ-

ent since

〈TT 〉 ∼ N2 , 〈TTT 〉 ∼ N2 , 〈: T 2 :: T 2 :〉 ∼ N4 . (4.9)

We therefore have the following scaling of the four-point function

〈TTTT 〉 = N4(1 + DT(0)) +N2
(

ST + DT(1)
)

+O(1) . (4.10)

The connected piece is still subleading compared to the disconnected piece, although the

general scaling of the correlation function is different.

4.2 Four-point functions

We would now like to compute four-point functions in large N theories to first non-trivial

order in the 1/N expansion. We can decompose a four-point function of two local operators

and two ANECs using the OPE. We will always use the OPE channel where the local

operator and the ANEC fuse, as illustrated in figure 2.

Following the discussion in section 4.1, the operators we need to take into account are

all single-trace operators, as well as the double-trace operators and their corrected data at

order 1/N2. We will start by showing that the contribution of all double-trace operators

vanishes, both at leading level and when one takes into account their corrected data at

order 1/N2.

4.2.1 The fate of the double-trace operators

In this section, we will show that the double-trace operators vanish in the four-point func-

tion of two ANECs and two local operators. To see this, we will consider the OPE of

local operators

T−− ×O ∼: T−−O : , (4.11)

and integrate on both sides. At leading order in N , the three-point function (from which

one could extract the OPE) is given by8

〈T−−(x1)O(x2) : T−−O : (x3)〉 ∼ 〈T−−(x1)T−−(x3)〉 〈O(x2)O(x3)〉 . (4.12)

8If O is the stress-tensor, there are other Wick contraction but they will vanish as well.

– 22 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
2

We now integrate on both sides. One can directly check that the integral vanishes∫
〈T−−(x1)T−−(x3)〉 dx−1 ∼

∫
dx−1

(x+
12)4

((x⊥12)2 − x−12x
+
12)6

= 0 . (4.13)

We thus conclude that double-trace operators DT(0) do not contribute at leading order in

the 1/N expansion. Also, the identity is trivially projected out by the same argument.

Therefore, we just need to discuss the corrections that appear at order 1/N2. Let

us consider double trace operators in (4.8) denoted by DT(1). We will now argue that

these corrections vanish in the four-point function with two ANECs. To see this, first

note that a change in the OPE coefficient would simply change the prefactor in (4.12), but

the fact that it vanishes comes from the integral and a change in the overall coefficient is

therefore irrelevant. The correction from the OPE coefficient thus doesn’t contribute to

the four-point function with two ANECs at this order.

The case of the anomalous dimensions is more subtle. If the operator acquires an

anomalous dimension, the equations (4.12) and (4.13) no longer hold, and the integral no

longer vanishes. Instead, one can check that it picks up a piece proportional to γn,l/N
2,

which comes from the discontinuity of the integrand in (4.12) once one includes the anoma-

lous dimension. However, to compute the four-point function, one needs to do the OPE

with both local operators, or in other words, to integrate twice. This means that the cor-

rection from the anomalous dimension to the double-trace operator will give a contribution

of the order
1

N4
γ2
n,l . (4.14)

This is a direct consequence of the leading term DT(0) vanishing. If that was not the case

we would indeed have corrections of order 1/N2.

The upshot is that DT(1) does not contribute at the order we are considering. It is

worth mentioning that we are performing a computation at an order that corresponds to

tree-level bulk physics. From the AdS point of view, the ANEC operators can be viewed as

shockwaves and our computation should be thought of as propagating a particle through a

shockwave [40, 41]. At tree-level, particle number must be conserved through the shockwave

and all that happens to the particle is that it gets displaced. This is particularly clear for

high energy particles that can only follow bulk geodesics. This is illustrated in figure 3.

To consider the effect of particle creation, one would need to go one order higher in the

1/N expansion, which corresponds to loops in AdS. This is plotted in figure 4. This is

precisely the order 1/N4 and it is therefore not surprising that the effect of the double-trace

operators can only be seen at that order.

We have now shown that the double-trace operators do not contribute at all to the

order we care about, as advertised before. In two dimensions, it was true as an exact

statement due to a symmetry. Here, it is valid thanks to the large N limit, and only at

this order. At higher orders, the double-trace operators would become important. Overall,

we have shown that a four-point function will be given solely by the sum over single-trace

operators ST. We now discuss their contribution.
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Figure 3. A bulk picture of a graviton scattering through a shockwave. At tree-level the particle

simply gets shifted when it passes through the shockwave and particle number is conserved.

Figure 4. A bulk picture of graviton production when passing through a shockwave. One can see

that it is necessarily a loop effect.

Figure 5. The sum over operators has reduced to a sum over only the single-trace operators.

4.2.2 Single-trace operators and the effect of large gap

We have shown that we only need to keep single-trace operators in the four-point function.

This means that our calculation schematically reduces to figure 5.

There is an operator that stands out in this sum. It is the operator that was used

to create the state in the first place. When this particular operator is exchanged, the

ANEC simply acts as a differential operator. To see this, note that at each three-point

vertex, we have precisely the three-point function we computed exactly in section 3 using

the differential operator. We therefore have

〈OE1E2O〉O−block = D1D2 〈OO〉 . (4.15)
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This turns out to be particularly simple for ANEC operators on the celestial sphere. In

that setting, we showed that the differential operator becomes a transfer matrix between

polarizations. We therefore have

〈O|E(ni1)E(ni2) |O〉O−block

〈O|O〉
=

(
q0

4π

)2
1

ε∗ · ε
ε∗M1M2ε . (4.16)

Thus, we simply multiply the transfer matrices. This is the whole advantage of thinking

about the ANEC operator as a differential operator. Once we understand how it acts, if we

have multiple ANECs we can simply apply one after the other even at finite distances. On

the celestial sphere we just multiply the transfer matrices. It would also be straightforward

to compute the all O block to the k-point function of ANECs as well. It would be given by

〈O|E(ni1) . . . E(nik) |O〉All O

〈O|O〉
=

(
q0

4π

)k
1

ε∗ · ε
ε∗M1 . . .Mkε . (4.17)

In a large N CFT, this block would however not be enough. One would need to add to

this the contribution of all other light single-trace operators. At this point, we will focus

on theories with a large gap in the dimension of single-trace operators with spin s > 2.

In a large gap scenario, the higher spin single-trace operators are heavy and they do not

contribute (or rather give small corrections suppressed by 1/∆gap ). One could worry

about other light operators of lower spin, but it was shown in [15] that in a large gap

scenario, couplings of these form are suppressed by the gap as well. We can, therefore, also

neglect them. In a generic holographic CFT with no supersymmetry or other accidental

symmetries we do not expect to have other low spin single trace operators, in any case.

We have thus arrived at the following conclusion:

CFT with large N, large gap =⇒ Only O appears in the E O OPE .

The remainder of this paper will focus on drawing consequences or constraints from this

statement. For example, we will see that the conformal collider bounds get squeezed in to

give a definite value of a/c = 1. In general, the OPE coefficients will be “minimal” in that

they match what Einstein gravity minimally coupled to matter would predict in the CFT.

4.3 Einstein gravity from commutators

In order to derive Einstein gravity and minimal couplings, we will study the commutator

of two ANECs in the state created by a local operator. This amounts to computing a CFT

four point function of the type described above. The commutator can be computed quite

easily now that we know the transfer matrices. It is simply given by the commutator of the

transfer matrices. As explained in the introduction, two ANEC operators must commute:

[E1, E2] = 0 . (4.18)

For two ANEC operators on the same null-sheet (that means they are separated in the

transverse direction) all points of the two null rays are space-like separated. Therefore,

we expect the operators to commute, see [43, 44]. When taken to the celestial sphere,
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one might worry about contributions to the commutator coming from the point at infinity.

Given that in a CFT these observables can be related to the commutator above by a

conformal transformation [41], we take this to be true even in this case.

We start by studying the commutator in states created by currents.

4.3.1 U(1) current states

The commutator of the transfer matrices can be worked out from (3.14) and reads

[M1,M2]i k =
3(8ẽ− c̃)
2(c̃+ ẽ)

(n1 · n2)
(
ni1n

k
2 − ni2nk1

)
. (4.19)

Once again the tilde coefficients appearing above are related to the JJT OPE and are

defined in [36]. For this matrix to vanish for arbitrary polarization states, we must have

c̃ = 8ẽ =⇒ a2 = 0 . (4.20)

This constraint on the OPE coefficients has a natural interpretation in the AdS dual. It

corresponds to a minimal coupling between the bulk gauge field and the graviton. The

effective action would be given by [41]

S ∼
∫
d5x
√
gFµνF

µν , (4.21)

namely a Maxwell term. From a bulk effective field theory point of view, one could have

written down non-minimal couplings involving curvature tensors, for example a coupling

with the Weyl tensor
∫
d5x
√
gWµνρσF

µνF ρσ, but they would have modified the value of

c̃− 8ẽ. We have therefore shown that the large gap assumption implies minimal couplings

between gauge fields and the graviton.

4.3.2 Stress-tensor states

The transfer matrix for stress-tensor states is given from (3.14), upon taking a suitable

symmetrization and removing the traces. We find

M ij kl
T =

1

2
(gikgjl + gjkgil)− 1

3
gijgkl

+t2

[
1

4
(giknjnl + gjkninl + gilnjnk + gjlnink)

−1

3
(gijnknl + ninjgkl)− 1

6
(gikgjl + gjkgil) +

2

9
gijgkl

]
(4.22)

+t4

[
ninjnknl − 1

3
gijnknl − 1

3
ninjgkl − 1

15
(gikgjl + gjkgil) +

7

45
gijgkl

]
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We now compute the commutator which reads

[M1,M2]ij kl = t22

[
n1 · n2

8
(giknj1n

l
2 + gjkni1n

l
2 + gilnj1n

k
2 + gjln1ijn

k
2) (4.23)

−1

3

(
ni1n

j
1n

k
2n

l
2 −

1

3
(gijnk2n

l
2 + ni1n

j
1g
kl)

)]
+t24

[(
(n1 · n2)2 − 1

3

)(
ni1n

j
1n

k
2n

l
2 −

1

3
(gijnk2n

l
2 + ni1n

j
1g
kl)

)]
−t2t4

[
2

3

(
ni1n

j
1n

k
2n

l
2 −

1

3
(ni1n

j
1g
kl + gijnk2n

l
2)

)
+

(n1 · n2)2

3

(
ni1n

j
1g
kl + gijnk2n

l
2

)]
−1↔ 2 .

Demanding that this vanishes when inserted in states of arbitrary polarizations yields

t2 = t4 = 0 . (4.24)

In terms of the anomaly coefficients, we have from (3.51)

a

c
= 1 . (4.25)

This corresponds to a bulk effective theory given by general relativity, without higher

derivative corrections. More precisely, we have shown that all higher derivative corrections

in (1.3) are suppressed by a UV scale much larger than the IR scale Λ. In short, in order

for the commutator of the ANEC operators to vanish in a theory with a large gap, the

bulk dual must be given by Einstein gravity.

4.4 Strengthening of bounds from higher point correlators

There is an alternative route to these results. It is also possible to derive Einstein gravity

with minimal couplings by considering higher-point functions of the ANEC operator.9 The

product of positive commuting operators must also be a positive operator. This implies

〈E1 . . . Ek〉 ≥ 0 . (4.26)

We will now show that positivity of such correlators will strengthen the conformal collider

bounds in this large N scenario. Therefore, the window for non-minimal couplings will

close in from both sides. To do so, we need to define a correlator that is “blind” to the

commuting properties of the ANEC operators. The most natural object to consider is the

symmetrized correlator

〈E1 . . . Ek〉SYM ≡
1

k!

∑
g∈Sk

〈Eg(1) . . . Eg(k)〉 . (4.27)

9D.H. would like to thank Sasha Zhiboedov for early discussions concerning this point. In particular

for bringing up that the holographic computations of these quantities in the AdS bulk show a similar

phenomenon.
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2
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Figure 6. A plot of the allowed parameter space for the coupling a2, as demanded by the positivity

of the k-point function of ANEC operators. For k = 1, we have the conformal collider bounds. As

we increase the number of operators, the region gets more and more constrained and is slowly

closing in on a2 = 0. We can fit the bounds by a power law and we find δmax ∼ 2.98k−0.66 and

δmin ∼ −1.53k−0.46.

One way to convince yourself that this is a reasonable observable is to think a bit about

its holographic computation. This is discussed in [41] for scalar states. The way to perform

this computation is to push an incoming particle through a gravitational shockwave with

insertions associated to each E operator. When one performs the expansion of this solution

the result is naturally symmetric under the reshuffling of all E’s as they all exist in the

same light-like plane and have no natural ordering associated to them.

Consider, as an example, the observable above in a state created by a local current

operator. We can now solve for the eigenvalues of such a matrix as a function of the

parameter a2 defined in (3.47) using (3.14). When one of the eigenvalues becomes zero, we

are in danger of finding negative expectation values. The edges of the a2 parameter space

where the expectation values are positive are therefore given by the values of a2 such that

an eigenvalue vanishes for some angle on the celestial sphere.

We compute this numerically below. We distribute k ANEC operators randomly over

the celestial sphere and iterate the procedure many times to find the strongest possible

constraint for a given k. We plot the results for current states in figure 6 for k = 1, . . . , 8.

We clearly see that the bounds on a2 close in on zero as we increase k. Demanding positivity

of an arbitrary number of operator insertions will therefore close the allowed range down

to a2 = 0 which is again minimally coupled Maxwell theory in the bulk.

5 Discussion

In this paper, we have studied correlation functions of ANEC operators in states created

by a local operator. We developed an OPE between the local operators and the ANEC

operator and recast it as a differential operator. This statement is exact at the level of

three-point functions and becomes approximately true for higher point functions in a CFT

at large N and with a large gap. The form of this differential operator is given as a series
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expansion which we were able to resum. In the limit where the ANEC operator is sent to

the celestial sphere infinitely far away, the differential operator becomes particularly simple.

This formalism is particularly useful to compute correlation functions with multiple

ANEC operators. In a large N CFT with a large gap to higher spin operators, we showed

that the contribution of double-trace operators completely drops out from the correlator at

the order that we care about and the correlation function of multiple ANEC operators is

simply given by acting with a sequence of differential operators on the two-point function.

The emerging structure is reminiscent of d = 2 physics, as it was previewed in section 2.

We used this property to compute the commutator of two ANEC operators and de-

manded it must vanish. In a CFT with a large gap, we showed that this constrains the

OPE coefficients of the theory to be “minimal”, which, in particular, forces the anomaly

coefficients to satisfy

a = c . (5.1)

The bulk version of this statement is that any large N theory with a large gap must

have a holographic dual with Einstein gravity minimally coupled to matter. We have also

computed the k-point function of ANEC operators and demanded it to be positive. This

implies a strengthening of the conformal collider bounds. In the large k limit, the bounds

close in again on the minimal couplings. The two approaches turn out to be equivalent.

The most important direction in which this discussion could be improved concerns

relaxing the assumption of an infinite gap to higher spin operators. If one kept a large but

finite value of ∆gap, it would be possible to perform a systematic expansion in terms of this

quantity in order to study how equalities like a = c can be corrected by powers of ∆−1
gap.

This way one could obtain precise expressions including numerical factors that would build

on the results in [15, 17]. The obstacle is that this computation cannot be done reliably

entirely in the conformal channel used in this paper where light-ray operators act on local

operators creating a state. The reason is that it is actually easy to see that the addition of

a finite number of operators to the computations described in this work cannot change the

strong contraints coming from the vanishing of commutators. What we find in this case,

instead, is the requirement that further non-minimal couplings to this new heavy operators

must vanish as well. In order to have an effect on the constraints an infinite number of

heavy operators need to be included. But this is equivalent to considering a finite number

of them in the cross-channel. Therefore, our techniques don’t apply directly to this case

and they need important improvements to account for this physics.

If one could somehow improve the analysis, a new kind of results would become avail-

able. If many single trace operators can appear in the intermediate channel of the calcula-

tion of the ANEC commutator one would expect interesting sum rules to arise of the form10(
a− c
c

)2

∼
∑

O∆,s
S.T. 6=Tµν

|CTTO|2f(∆O, sO) . (5.2)

One direct application that is readily available from the results presented here is the com-

putation of arbitrary high-point correlation functions of ANEC operators, even when they

10A similar type of structure was observed in [54].
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are separated by a finite distance from each other in the large N limit. While we have

not looked at these observables in detail, it seems their structure is universal and can be

thought of as a generalization of the well known structure present in two dimensional CFTs.

The fact that we have written the operators in differential form gives us direct access to

study the Ward identities for these theories, in the spirit of [4]. We hope this approach will

help provide a better understanding of the appearance of infinite dimensional algebras in

some contexts in d = 4 CFTs [44, 56–58].
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A Notation and conventions

We start by setting up some notation. We will work in d = 4, and work mostly in lightcone

coordinates

x± = t± z (A.1)

with metric

ds2 = −dx+dx− + dx2 + dy2 . (A.2)

This also fixes the specification of the vectors ξµ± from section 3, and the vector ni would

point in the z direction, namely on the north pole of the celestial sphere. We will also use

the more compact notation

~x⊥ = (x, y) (A.3)

x2
⊥ = x2 + y2 (A.4)

B TO OPE

In this appendix, we want to compute the operator product expansion of the stress-tensor T

when fusing with a scalar field O(x) of conformal weight ∆. We obtain it by expanding the

exact result (3.18) when the distance between two points is getting small. We follow [36]

and give more terms in the expansion. Also, we use the standard metric on R4, i.e gµν = δµν .

First, let us define

sµ = xµ − yµ, Xµ =
sµ

s2
− xµ − zµ

(x− z)2
. (B.1)

From (3.18) and (B.1), the short distance limit of the three-point function in 4 dimensions

is given by

〈Tµν(x)O(y)O(z)〉 =
1

s4(x− z)4(y − z)2∆−4
tµν(X), (B.2)
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with s and X as in (B.1) and with tµν(X) given as in (3.20). The two-point function of

two scalar operators is given by

〈O(x)O(y)〉 =
1

(x− y)2∆
. (B.3)

As x→ y, the three-point function can be expressed, using the OPE, as

〈Tµν(x)O(y)O(z)〉 ∼Aµν(s)
1

(y − z)2∆
+Bµνα(s)

∂

∂yα
1

(x− y)2∆
(B.4)

+ Cµναβ(s)
∂

∂yα
∂

∂yβ
1

(y − z)2∆
+ . . . .

Expanding (B.2) and matching order by order, one is able to determine the first coefficients

Aµν , Bµνα, . . . . They can be built only out of two building blocks, namely the metric δµν
and the vector sµ. The zeroth order term in s is given by

Aµν(s) =
a

s4

(
sµsν
s2
− 1

4
δµν

)
=

a

s4
tµν(s). (B.5)

The first order term in s is given by

Bµνα(s) =
a

2∆s4

(
sµδαν + sνδαµ − sαδµν + 4

sµsνsα
s2

)
. (B.6)

The second order term in s is given by

Cµναβ(s) =C1s
2δµνδβα + C2s

2 (δβνδµα + δβµδνα) + C3(sβsαδµν + sµsνδβα) (B.7)

+ C4(sνsαδβµ + sµsαδβν + sβsνδµα + sβsµδνα) + C5
sβsµsνsα

s2
,

with

C1 =
a

8 (∆2 + ∆) s4
, (B.8)

C2 =
a

8 (∆2 + ∆) s4
, (B.9)

C3 =− 3a

4 (∆2 + ∆) s4
, (B.10)

C4 =
a

2 (∆2 + ∆) s4
, (B.11)

C5 =
a

(∆2 + ∆) s4
. (B.12)

The third order term in s is given by

Dµναβχ(s) =D1s
2 (sνδαχδβµ + sµδαχδβν + sνδαµδβχ + sµδανδβχ + sνδαβδµχ + sµδαβδνχ)

+D2s
2 (sχδαβδµν + sβδαχδµν + sαδβχδµν)

+D3s
2
(
sχδανδβµ + sβδανδµχ + sχδαµδβν

+ sαδβνδµχ + sβδαµδνχ + sαδβµδνχ
)
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+D4(sµsνsχδαβ + sβsµsνδαχ + sαsµsνδβχ)

+D5(sβsνsχδαµ + sαsνsχδβµ + sβsµsχδαν

+ sαsµsχδβν + sαsβsνδµχ + sαsβsµδνχ)

+D6sαsβsχδµν +D7
sαsβsµsνsχ

s2
, (B.13)

where

D1 = − a

8∆(∆ + 1)(∆ + 2)s4
, (B.14)

D2 =
a

8∆(∆ + 1)(∆ + 2)s4
, (B.15)

D3 =
a

8∆(∆ + 1)(∆ + 2)s4
, (B.16)

D4 = − a

2∆(∆ + 1)(∆ + 2)s4
, (B.17)

D5 =
a

2∆(∆ + 1)(∆ + 2)s4
, (B.18)

D6 = − a

∆(∆ + 1)(∆ + 2)s4
, (B.19)

D7 =
a

∆(∆ + 1)(∆ + 2)s4
. (B.20)

The fourth order term is the last one we will write explicitly, and it is given by

Eµναβχδ =E1s
4 (δβδδαχδµν + δαδδβχδµν + δδχδαβδµν)

+ E2s
2 (sδsχδαβδµν + δαδsβsχδµν + δβδsαsχδµν

+sβsδδαχδµν + sαsδδβχδµν + δδχsαsβδµν)

+ E3s
4 (δδµδαχδβν + δδνδαχδβµ + δδµδανδβχ + δδνδαµδβχ + δδχδανδβµ

+δδχδαµδβν + δβδδανδµχ + δαδδβνδµχ + δδνδαβδµχ

+δβδδαµδνχ + δαδδβµδνχ + δδµδαβδνχ)

+ E4s
2 (sδsχδανδβµ + δδµsβsχδαν + sβsδδανδµχ + sδsχδαµδβν + δδµsαsχδβν

+ δδνsβsχδαµ + δδνsαsχδβµ +sαsδδβνδµχ + δδνsαsβδµχ

+sβsδδαµδνχ + sαsδδβµδνχ + δδµsαsβδνχ)

+ E5(sβsδsνsχδαµ + sαsδsνsχδβµ + δδµsαsβsνsχ + sβsδsµsχδαν

+ sαsδsµsχδβν + δδνsαsβsµsχ + sαsβsδsνδµχ + sαsβsδsµδνχ)

+ E6s
2 (δβδsνsχδαµ + sδsνδαµδβχ + δδχsβsνδαµ + δαδsνsχδβµ + δδµsνsχδαβ

+δβδsµsχδαν + δαδsµsχδβν + δδνsµsχδαβ + sδsνδαχδβµ

+δδµsβsνδαχ + sδsµδαχδβν + δδνsβsµδαχ + δδµsαsνδβχ

+sδsµδανδβχ + δδνsαsµδβχ + δδχsαsνδβµ + δδχsβsµδαν

+δδχsαsµδβν + sδsνδαβδµχ + δαδsβsνδµχ + δβδsαsνδµχ

+sδsµδαβδνχ + δαδsβsµδνχ + δβδsαsµδνχ)

+ E7(sδsµsνsχδαβ + δαδsβsµsνsχ + δβδsαsµsνsχ

+ sβsδsµsνδαχ + sαsδsµsνδβχ + δδχsαsβsµsν)
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+ E8s
2 (δβδsµsνδαχ + δαδsµsνδβχ + δδχsµsνδαβ)

+ E9sαsβsδsχδµν + E10
sαsβsδsµsνsχ

s2
, (B.21)

with

E1 =− a

64∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.22)

E2 =
a

8∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.23)

E3 =− a

64∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.24)

E4 =
a

8∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.25)

E5 =
a

2∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.26)

E6 =− 3a

32∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.27)

E7 =− 3a

8∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.28)

E8 =
a

8∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.29)

E9 =− 5a

4∆(∆ + 1)(∆ + 2)(∆ + 3)s4
, (B.30)

E10 =
a

∆(∆ + 1)(∆ + 2)(∆ + 3)s4
. (B.31)

To compute the OPE with the ANEC operator. We can integrate these terms order by

order in the OPE expansion. The first two vanish upon integration and Cµνρσ is the first

order that contributes. Performing the integrals and setting s⊥ = 0 gives the differential

operator (3.33).

C Differential operator acting on T and J

C.1 U(1) currents

In this section, we explain the structure of the OPE between the ANEC operator and con-

served currents. Following the rules established in section 3.1, the most general differential

operator that one can write down is of the following form

EεµJµ =

( ∑
q1,r1,s1,t1

c1
q1,r1,s1,t1 (x12 · ξ−)q1 (∂ · ξ+)r1 (∂ · ξ−)s1 (∂ · ∂)t1

)
ε · J (C.1)

+

( ∑
q2,r2,s2,t2

c2
q2,r2,s2,t2 (x12 · ξ−)q2 (∂ · ξ+)r2 (∂ · ξ−)s2 (∂ · ∂)t2

)
(ε · ξ+)(ξ+ · J)

+

( ∑
q3,r3,s3,t3

c3
q3,r3,s3,t3 (x12 · ξ−)q3 (∂ · ξ+)r3 (∂ · ξ−)s3 (∂ · ∂)t3

)
(ε · ξ+)(ξ− · J)
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+

( ∑
q4,r4,s4,t4

c4
q4,r4,s4,t4 (x12 · ξ−)q4 (∂ · ξ+)r4 (∂ · ξ−)s4 (∂ · ∂)t4

)
(ε · ξ−)(ξ+ · J)

+

( ∑
q5,r5,s5,t5

c5
q5,r5,s5,t5 (x12 · ξ−)q5 (∂ · ξ+)r5 (∂ · ξ−)s5 (∂ · ∂)t5

)
(ε · ξ−)(ξ− · J)

+

( ∑
q6,r6,s6,t6

c6
q6,r6,s6,t6 (x12 · ξ−)q6 (∂ · ξ+)r6 (∂ · ξ−)s6 (∂ · ∂)t6

)
(ε · ∂)(ξ+ · J)

+

( ∑
q7,r7,s7,t7

c7
q7,r7,s7,t7 (x12 · ξ−)q7 (∂ · ξ+)r7 (∂ · ξ−)s7 (∂ · ∂)t7

)
(ε · ∂)(ξ− · J) ,

with the conditions

−q1 + r1 + s1 + 2t1 = 3 , q1 − r1 + s1 = 1

−q2 + r2 + s2 + 2t2 = 3 , q2 − r2 + s2 = 3

−q3 + r3 + s3 + 2t3 = 3 , q3 − r3 + s3 = 1

−q4 + r4 + s4 + 2t4 = 3 , q4 − r4 + s4 = 1 (C.2)

−q5 + r5 + s5 + 2t5 = 3 , q5 − r5 + s5 = −1

−q6 + r6 + s6 + 2t6 = 2 , q6 − r6 + s6 = 2

−q7 + r7 + s7 + 2t7 = 2 , q7 − r7 + s7 = 0

Note that due to conservation of the current, we have not allowed contraction between

∂µ and Jµ, since it vanishes. We can compute the values of the coefficients ci at any

given order by expanding the integrated three-point function, and find a similar expression

to (3.33). It is then easy to resum the operator and look at the large distance limit. When

acting on zero-momentum eigenstates, the operator is

EεµJµ =
−πq0

4

(
18ẽ

cv
ε−J+ + 3

c̃− 2ẽ

cv
ε+J− + 3

c̃− 8ẽ

cv
ε+J+ −

3(c̃− 2ẽ)

2cv
εiJi

)
=
πq0

4

(
3(c̃− 2ẽ)

2cv
ε · J − 3

c̃− 8ẽ

cv
(ξ+ · J) (ξ+ − ξ−) · ε

)
. (C.3)

cv is the coefficient appearing in the two-point function and reads

cv = π2(c̃+ ẽ) (C.4)

C.2 The stress-tensor

The most general operator that one can write down for the stress-tensor is

EεµνTµν =

( ∑
q1,r1,s1,t1

c1
q1,r1,s1,t1(x12 · ξ−)q1(∂ · ξ+)r1(∂ · ξ−)s1(∂ · ∂)t1

)
εµνT

µν (C.5)

+

( ∑
q2,r2,s2,t2

c2
q2,r2,s2,t2(x12 · ξ−)q2(∂ · ξ+)r2(∂ · ξ−)s2(∂ · ∂)t2

)
× (εµνξ

µ
+ξ

ν
+)(ξα+ξ

β
+Tαβ)
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+

( ∑
q3,r3,s3,t3

c3
q3,r3,s3,t3(x12 · ξ−)q3(∂ · ξ+)r3(∂ · ξ−)s3(∂ · ∂)t3

)
× (εµνξ

µ
+ξ

ν
+)(ξα+ξ

β
−Tαβ)

+

( ∑
q4,r4,s4,t4

c4
q4,r4,s4,t4(x12 · ξ−)q4(∂ · ξ+)r4(∂ · ξ−)s4(∂ · ∂)t4

)
× (εµνξ

µ
+ξ

ν
+)(ξα−ξ

β
−Tαβ)

+

( ∑
q5,r5,s5,t5

c5
q5,r5,s5,t5(x12 · ξ−)q5(∂ · ξ+)r5(∂ · ξ−)s5(∂ · ∂)t5

)
× (εµνξ

µ
+ξ

ν
−)(ξα+ξ

β
+Tαβ)

+

( ∑
q6,r6,s6,t6

c6
q6,r6,s6,t6(x12 · ξ−)q6(∂ · ξ+)r6(∂ · ξ−)s6(∂ · ∂)t6

)
× (εµνξ

µ
+ξ

ν
−)(ξα+ξ

β
−Tαβ)

+

( ∑
q7,r7,s7,t7

c7
q7,r7,s7,t7(x12 · ξ−)q7(∂ · ξ+)r7(∂ · ξ−)s7(∂ · ∂)t7

)
× (εµνξ

µ
+ξ

ν
−)(ξα−ξ

β
−Tαβ)

+

( ∑
q8,r8,s8,t8

c8
q8,r8,s8,t8(x12 · ξ−)q8(∂ · ξ+)r8(∂ · ξ−)s8(∂ · ∂)t8

)
× (εµνξ

µ
−ξ

ν
−)(ξα+ξ

β
+Tαβ)

+

( ∑
q9,r9,s9,t9

c9
q9,r9,s9,t9(x12 · ξ−)q9(∂ · ξ+)r9(∂ · ξ−)s9(∂ · ∂)t9

)
× (εµνξ

µ
−ξ

ν
−)(ξα+ξ

β
−Tαβ)

+

( ∑
q10,r10,s10,t10

c10
q10,r10,s10,t10

(x12 · ξ−)q10(∂ · ξ+)r10(∂ · ξ−)s10(∂ · ∂)t10

)
× (εµνξ

µ
−ξ

ν
−)(ξα−ξ

β
−Tαβ)

+

( ∑
q11,r11,s11,t11

c11
q11,r11,s11,t11

(x12 · ξ−)q11(∂ · ξ+)r11(∂ · ξ−)s11(∂ · ∂)t11

)
× (εµνξ

µ
+∂

ν)(ξα+ξ
β
+Tαβ)

+

( ∑
q12,r12,s12,t12

c12
q12,r12,s12,t12

(x12 · ξ−)q12(∂ · ξ+)r12(∂ · ξ−)s12(∂ · ∂)t12

)
× (εµνξ

µ
+∂

ν)(ξα+ξ
β
−Tαβ)

+

( ∑
q13,r13,s13,t13

c13
q13,r13,s13,t13

(x12 · ξ−)q13(∂ · ξ+)r13(∂ · ξ−)s13(∂ · ∂)t13

)
× (εµνξ

µ
+∂

ν)(ξα−ξ
β
−Tαβ)
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+

( ∑
q14,r14,s14,t14

c14
q14,r14,s14,t14

(x12 · ξ−)q14(∂ · ξ+)r14(∂ · ξ−)s14(∂ · ∂)t14

)
× (εµνξ

µ
−∂

ν)(ξα+ξ
β
+Tαβ)

+

( ∑
q15,r15,s15,t15

c15
q15,r15,s15,t15

(x12 · ξ−)q15(∂ · ξ+)r15(∂ · ξ−)s15(∂ · ∂)t15

)
× (εµνξ

µ
−∂

ν)(ξα+ξ
β
−Tαβ)

+

( ∑
q16,r16,s16,t16

c16
q16,r16,s16,t16

(x12 · ξ−)q16(∂ · ξ+)r16(∂ · ξ−)s16(∂ · ∂)t16

)
× (εµνξ

µ
−∂

ν)(ξα−ξ
β
−Tαβ)

+

( ∑
q17,r17,s17,t17

c17
q17,r17,s17,t17

(x12 · ξ−)q17(∂ · ξ+)r17(∂ · ξ−)s17(∂ · ∂)t17

)
× (εµν∂

µ∂ν)(ξα+ξ
β
+Tαβ)

+

( ∑
q18,r18,s18,t18

c18
q18,r18,s18,t18

(x12 · ξ−)q18(∂ · ξ+)r18(∂ · ξ−)s18(∂ · ∂)t18

)
× (εµν∂

µ∂ν)(ξα+ξ
β
−Tαβ)

+

( ∑
q19,r19,s19,t19

c19
q19,r19,s19,t19

(x12 · ξ−)q19(∂ · ξ+)r19(∂ · ξ−)s19(∂ · ∂)t19

)
× (εµν∂

µ∂ν)(ξα−ξ
β
−Tαβ)

+

( ∑
q20,r20,s20,t20

c20
q20,r20,s20,t20

(x12 · ξ−)q20(∂ · ξ+)r20(∂ · ξ−)s20(∂ · ∂)t20

)
× (ξ+µ(εµγTγν)ξν+)

+

( ∑
q21,r21,s21,t21

c21
q21,r21,s21,t21

(x12 · ξ−)q21(∂ · ξ+)r21(∂ · ξ−)s21(∂ · ∂)t21

)
× (ξ+µ(εµγTγν)ξν−)

+

( ∑
q22,r22,s22,t22

c22
q22,r22,s22,t22

(x12 · ξ−)q22(∂ · ξ+)r22(∂ · ξ−)s22(∂ · ∂)t22

)
× (ξ−µ(εµγTγν)ξν+)

+

( ∑
q23,r23,s23,t23

c23
q23,r23,s23,t23

(x12 · ξ−)q23(∂ · ξ+)r23(∂ · ξ−)s23(∂ · ∂)t23

)
× (ξ−µ(εµγTγν)ξν−)

+

( ∑
q24,r24,s24,t24

c24
q24,r24,s24,t24

(x12 · ξ−)q24(∂ · ξ+)r24(∂ · ξ−)s24(∂ · ∂)t24

)
× (∂µ(εµγTγν)ξν+)

– 36 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
2

+

( ∑
q25,r25,s25,t25

c25
q25,r25,s25,t25

(x12 · ξ−)q25(∂ · ξ+)r25(∂ · ξ−)s25(∂ · ∂)t25

)
× (∂µ(εµγTγν)ξν−),

with

−q1 + r1 + s1 + 2t1 = 3, q1 − r1 + s1 = 1

−q2 + r2 + s2 + 2t2 = 3, q2 − r2 + s2 = 5

−q3 + r3 + s3 + 2t3 = 3, q3 − r3 + s3 = 3

−q4 + r4 + s4 + 2t4 = 3, q4 − r4 + s4 = 1

−q5 + r5 + s5 + 2t5 = 3, q5 − r5 + s5 = 3

−q6 + r6 + s6 + 2t6 = 3, q6 − r6 + s6 = 1

−q7 + r7 + s7 + 2t7 = 3, q7 − r7 + s7 = − 1

−q8 + r8 + s8 + 2t8 = 3, q8 − r8 + s8 = 1

−q9 + r9 + s9 + 2t9 = 3, q9 − r9 + s9 = − 1

−q10 + r10 + s10 + 2t10 = 2, q10 − r10 + s10 = − 3

−q11 + r11 + s11 + 2t11 = 2, q11 − r11 + s11 = 4

−q12 + r12 + s12 + 2t12 = 2, q12 − r12 + s12 = 2

−q13 + r13 + s13 + 2t13 = 2, q13 − r13 + s13 = 0

−q14 + r14 + s14 + 2t14 = 2, q14 − r14 + s14 = 2

−q15 + r15 + s15 + 2t15 = 2, q15 − r15 + s15 = 0

−q16 + r16 + s16 + 2t16 = 2, q16 − r16 + s16 = − 2

−q17 + r17 + s17 + 2t17 = 1, q17 − r17 + s17 = 3

−q18 + r18 + s18 + 2t18 = 1, q18 − r18 + s18 = 1

−q19 + r19 + s19 + 2t19 = 3, q19 − r19 + s19 = − 1

−q20 + r20 + s20 + 2t20 = 3, q20 − r20 + s20 = 3

−q21 + r21 + s21 + 2t21 = 3, q21 − r21 + s21 = 1

−q22 + r22 + s22 + 2t22 = 3, q22 − r22 + s22 = 1

−q23 + r23 + s23 + 2t23 = 3, q23 − r23 + s23 = − 1

−q24 + r24 + s24 + 2t24 = 2, q24 − r24 + s24 = 0

−q25 + r25 + s25 + 2t25 = 2, q25 − r25 + s25 = 2

Note that due to the stress-tensor conservation equation, we have not allowed contraction

between ∂µ and Tµν since it vanishes. We can once again extract the exact coefficient

by a comparison with the three-point function. At large distance and when acting on

zero-momentum eigenstates, we find

EεµνTµν =
πq0

4

(
5

3

7â+ 2b̂− ĉ
cT

εµνTµν + 10
13â+ 4b̂− 3ĉ

cT
ξµ+Tµνε

νρ(ξ−ρ − ξ+
ρ )

−15

6

81â+ 32b̂− 20ĉ

cT
ξµ+ξ

ν
+Tµνε

ρσ(ξ−ρ − ξ+
ρ )(ξ−σ − ξ+

σ )

)
, (C.6)
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with

cT = π2 14â− 2b̂− 5ĉ

3
. (C.7)

This reproduces the expectation of the transfer matrix (3.14), with the coefficients in

agreement with [41].

D 2d: two scalars and two stress tensors

The n−point functions of stress-tensors with themselves or with scalar fields can be com-

puted exactly using Ward identites [4] that are recalled here for convenience

〈T (ξ)T (x1) . . . T (xM )φ1(z1) . . . φN (zN )〉

=

{
N∑
i=1

[
∆i

(ξ − zi)2
+

1

ξ − zi
∂

∂zi

]
+

M∑
j=1

[
2

(ξ − xj)2
+

1

ξ − xj
∂

∂xj

]}
× 〈T (x1) . . . T (xM )φ1(z1) . . . φN (zN )〉

+

M∑
j=1

[
c/2

(ξ − xj)4

]
〈T (x1) . . . T (xj−1)T (xj+1) . . . T (xM )φ1(z1) . . . φN (zN )〉. (D.1)

We can use the two-point function of two scalars of conformal weight h

〈φ(z1)φ(z2)〉 =
1

(z1 − z2)2h
, (D.2)

as well as the Ward identity (D.1) to compute 〈T (z1)φ(z2)T (z3)φ(z4)〉, which is given as

〈T (z1)φ(z2)T (z3)φ(z4)〉 =
1

2

c

z2h
24 z

4
13

+
h(hz2

13z
2
24 − 2z12z23z14z34)

z2h−2
24 z2

12z
2
13z

2
23z

2
14z

2
34

(D.3)

It is then straightforward to integrate twice to obtain

〈E1φ(z2)E3φ(z4)〉 =

∫
〈T (z1)φ(z2)T (z3)φ(z4)〉dz1dz3 =− (4π2)

2h(2h+ 1)

(z2 − z4)2+2h
. (D.4)

D.1 Conformal block expansion

The result (D.3) can be recast as

〈T (z1)φ(z2)T (z3)φ(z4)〉 =z−2−h
12

(
z24

z13

)
2−hz−2−h

34 Fφ1φ2φ3φ4(η), (D.5)

with

FTφTφ(η) =
1

2
cηh+2 +

ηh

(1− η)2
(h2 − 2hη(1− η)), (D.6)

=

∞∑
n=0

Cnη
h+nF (2h+ n− 2, n+ 2; 2h+ 2n; η). (D.7)
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Here, (D.6) is the result one get by direct computation using the Ward identity (D.1), as

we did in (D.3) while (D.7) is the conformal block expansion. The coefficients Cn can be

found in [59]. When expanding FTφTφ for small η, we get contributions of the form

z−2−h
12

(
z24

z13

)2−h
z−2−h

34 ηm =
1

z2+h−m
12

1

z2+h−m
34

z2−h−m
24 z−2+h−m

13 . (D.8)

When extracting the residues as z1 → z2 and z3 → z4, only the terms with m = h and

m = h+ 1 will be non-vanishing while all contributions with m ≥ h+ 2 vanish.

Expanding the exact Ward identity result (D.6) for small η yields

FTφTφ(η) = ηh
(
h2 +

(
2h2 − 2h

)
η +

(
3h2 − 2h+

c

2

)
η2 +

(
4h2 − 2h

)
η3 +O

(
η4
))
,

(D.9)

which once integrated gives

〈E1φ(z2)E3φ(z4)〉 =

∫
〈T (z1)φ(z2)T (z3)φ(z4)〉dz1dz3 =− (4π2)

2h(2h+ 1)

(z2 − z4)2+2h
. (D.10)

This result naturally matches the one obtained by directly integrating the exact re-

sult (D.6).

D.2 OPE computation

We can also reproduce this result using the OPE of the stress-tensor with a scalar field φ,

which is

T (z)φ(w) ∼ hφ(w)

(z − w)2
+
∂wφ(w)

(z − w)
+ . . . . (D.11)

The OPE between ε(z) and φ(w) will simply project onto ∂φ(w). We then obtain

〈φ(z2)E1E3φ(z2)〉 = 4π2∂z2∂z4 〈φ(z2)φ(z4)〉 = −(4π2)
2h(2h+ 1)

(z2 − z4)2h+2
(D.12)

This result is identical to (D.10).
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