
The Tracking Machine Learning challenge :
Accuracy phase∗

Sabrina Amrouche1, Laurent Basara2, Paolo Calafiura3, Victor Estrade2,
Steven Farrell3, Diogo R. Ferreira4, Liam Finnie5, Nicole Finnie6, Cécile
Germain2, Vladimir Vava Gligorov7, Tobias Golling1, Sergey Gorbunov8,

Heather Gray3, Isabelle Guyon9, Mikhail Hushchyn10, Vincenzo
Innocente11, Moritz Kiehn1, Edward Moyse12, Jean-François Puget13,
Yuval Reina14, David Rousseau †15, Andreas Salzburger11, Andrey
Ustyuzhanin10, Jean-Roch Vlimant16, Johan Sokrates Wind17, Trian

Xylouris18, and Yetkin Yilmaz15

1Département de Physique Nucléaire et Corpusculaire, Université de
Genève, Geneva, Switzerland

2LRI/TAU, Univ. Paris-Sud/INRIA/CNRS, Université Paris-Saclay,
Gif-sur-Yvette, France

3Physics Division, Lawrence Berkeley National Laboratory and University
of California, Berkeley CA, USA

4IST, University of Lisbon, Lisbon, Portugal
5IBM Germany Research and Development, Germany
6Bosch Center for Artificial Intelligence, Germany

7LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité,
CNRS/IN2P3, Paris, France

8Goethe University Frankfurt am Main, Germany
9UPSud/INRIA Université Paris-Saclay, Orsay, France, and ChaLearn,

Berkeley, CA, USA
10National Research University Higher School of Economics and Yandex

School of Data Analysis, Moscow, Russia
11CERN, Geneva, Switzerland

12Department of Physics, University of Massachusetts, Amherst MA, USA
13Data and AI R&D, IBM France Lab, Biot, France

14Tel-Aviv, Israel
15LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay,

France
16California Institute of Technology, Pasadena CA, USA

17Norwegian University of Science and Technology, Oslo, Norway
18Frankfurt am Main, Germany

∗To be published in NeurIPS 2018 Competition Book, Springer Series on Challenges in Machine
Learning

†contact: rousseau@lal.in2p3.fr. D.R. Ferreira, S. Gorbunov, L. Finnie, N. Finnie, J.F. Puget, Y.

1

ar
X

iv
:1

90
4.

06
77

8v
3

 [
he

p-
ex

]
 3

 M
ay

 2
02

1

Abstract

This paper reports the results of an experiment in high energy physics:
using the power of the “crowd" to solve difficult experimental problems linked
to tracking accurately the trajectory of particles in the Large Hadron Collider
(LHC). This experiment took the form of a machine learning challenge or-
ganized in 2018: the Tracking Machine Learning Challenge (TrackML). Its
results were discussed at the competition session at the Neural Information
Processing Systems conference (NeurIPS 2018). Given 100.000 points, the
participants had to connect them into about 10.000 arcs of circles, following
the trajectory of particles issued from very high energy proton collisions. The
competition was difficult with a dozen front-runners well ahead of a pack.
The single competition score is shown to be accurate and effective in select-
ing the best algorithms from the domain point of view. The competition has
exposed a diversity of approaches, with various roles for Machine Learning,
a number of which are discussed in the document.

1 Introduction
TrackML[12] is the third ML challenge for particle physics. After the success
of the Higgs Boson challenge [3] and the Flavour of Physics challenge [8], the
goal was to address a completely different issue, which is critical to ensure the
quality of novel particle detection at the Large Hadron Collider (LHC)[9] at
CERN: Tracking accurately the trajectory of particles in the LHC detectors.
The challenge was organized by an interdisciplinary team of physicists from
three LHC experiments (ATLAS, CMS, and LHCb), computer scientists, and
ChaLearn, a non-profit group dedicated to the organization of challenges
in Machine Learning, and supported by a number of sponsors listed in the
Acknowledgments section. No knowledge of particle physics was necessary
to participate.
The LHC is a unique particle accelerator complex colliding protons at

unprecedented energies. It allowed the Higgs boson discovery in 2012 (ac-
knowledged by the 2013 Nobel prize in physics). It will collect data of
increasing complexity and at increasing rate with a large upgrade so called
High Luminosity LHC planned for 2025. All the analysis pipelines of the
proton collisions (or events) rely on a first step, the reconstruction of the 3D
trajectories of the particles within the detector (see Figure 1) and Figure 2.
This problem is currently conveniently solved by combinatorial optimiza-
tion methods (based on Kalman filters). But the CPU time to reconstruct
the trajectories (helices) from the measurements (3D points) is expected to
increase faster than the projected computing resources. New approaches to
pattern recognition are needed to exploit fully the discovery potential of the
HL-LHC.

Reina, J.S. Wind and T. Xylouris are participants, all others are organizers

2

Figure 1: TrackML detector (one sector of the detector has been etched out). White
dots are the measured points, while the red lines are the trajectories of the particles.

The overall goal of the challenge was to explore new methods to address
the trade-off between algorithmic quality (good track reconstruction) and
speed. From the Machine Learning point of view, the problem can be treated
as a latent variable problem similar to clustering, in which particle trajectory
“memberships” must be inferred, although the ratio between the number of
clusters (10K) and their size (10 points), is highly unusual. It can also be
treated as a tracking problem considering trajectories as time series, or a
pattern de-noising problem considering that the dotted trajectories are noisy
versions of continuous traces. One important point is that the points on one
trajectory are not geometrically close to each other (a human cannot associate
the points by eye), but they follow a specific pattern : a distorted arc of helix
pointing approximately to the origin.
The HEP (High Energy Physics) experiments have embraced Machine

Learning, originally for supervised classification as a tool in the final anal-
ysis stage, and for exploring more diverse applications. Recent attempts of
applying Machine Learning to particle physics pattern recognition-tracking
indicate a strong potential [20]. A one day hackathon[5] limited to a two-
dimensional problem has shown the richness of approaches and the setup to
be tested.
A dataset consisting of an accurate simulation[24] of a LHC experiment

has been created, listing for each event the measured 3D points, and the list
of 3D points associated to a true track. The data set is large to allow the
training of data hungry Machine Learning methods; the orders of magnitude

3

Figure 2: A very simplified view in 2-Dimension : the name of the game is to
associate the points into tracks.

are: ten thousand events, one billion points, on e hundred million tracks. The
participants to the challenge should find the tracks in an additional test dataset,
meaning building the list of 3D points belonging to each track (deriving the
track parameters is not the topic of the challenge). The emphasis is to expose
innovative approaches, rather than hyper-optimizing known approaches. The
challenge has been run in two phases:

1. During the first "Accuracy" phase, which has run on Kaggle [14] from
1st May 2018 to 10th August 2018, a metric reflecting the accuracy of
the model at finding the proper point association that matters to most
physics analysis to identify the best algorithms. The metric is based on
the overall fraction of points associated to a true track.

2. The second "Throughput" phase has been running from October 2019
to 12th March 2019 on Codalab [13]. It focuses on optimizing the
inference speed, starting from the collection of algorithms exposed in
the first phase. The training speed remains unconstrained.

As the second phase is still running at the time of writing, this document
focuses on the first phase.
The success of the Challenge can be attributed in part to the visibility

of CERN, and the appeal of the problem. We also stimulated participation
by providing a starting kit, responding promptly to questions in the online
forum, where participants were also helping each other, and through wide
advertising. An additional incentive was provided in the form of prizes for
the winners and an invitation to visit CERN to discuss their results with high-
energy physicists. Design choices also played an important role. Simplifying
the problem setting in order to reach computer scientists, while keeping

4

it realistic enough for the challenge to be useful, was much more difficult
than for the HiggsML. We were largely successful, as the many solutions,
including the winning ones, come from computer scientists. However, for
most solutions, the focus has been mostly on optimization, rather than the
variety of ML methods we envisioned.
Given the interest raised by theChallenge and thewillingness to pursue the

study beyond the formal end of the competition, a very similar dataset will be
made permanently available on theCERNopen data portal[10] and on theUCI
repository[11], together with accompanying software and documentation.
The document is structured as follows: section 2 details the setup of the

competition, with in particular the dataset (2.3 and the scoring algorithm 2.4).
Section 3 summarizes the competition proceedings and studies devoted to the
accuracy of the ranking. Section 4 presents the performances of selected
algorithms while the long section 5 gives a brief summary of the different
techniques that have been used, before the conclusion and outlook in section 6.

2 Setup
An event is a set of particle measurements in the detector. From an abstract
point of view, the detector is simply an apparatus that records the impacts,
called the hits, of the particles traversing the detector in an event, i.e. each
time a pair of protons collides. The detector is formed of discrete layers. One
event has O

(
105

)
hits, corresponding to O

(
104

)
particles.

The basic configuration is as follows.
• Each particle is created close to, but not exactly, at the center of the
detector (see section 2.3 for details).

• Each hit is a 3D measurement in Cartesian coordinates (𝑥, 𝑦, 𝑧). For
each particle, the number of hits is on average 12, but as low as 4 and
as large as 20.

• The participants should associate the hits created by each particle to-
gether, to form tracks. Typically, at least 90% of the true tracks should
be recovered,

• The tracks are slightly distorted arc of helices with axes parallel to the
𝑧-axis, and pointing approximately to the interaction center.

In an ideal world:
• each particle would leave one and only one hit on each layer of the
detector

• the trajectories would be exact arcs of helices;
• the (𝑥, 𝑦, 𝑧) coordinates would be exact.
In this ideal world, fitting the parameters of the helices suffices to solve

the problem. However, there are a number of subtleties:

5

• Depending of the local geometry, each particle may leave multiple hits
in a layer, and the layer may not record anything at all.

• The arcs are often slightly distorted.
• The measurements have some non isotropic uncertainty.
The challenge is to show robustness of the algorithm with respect to all

these perturbations. It is enforced by the metric defined by the score.

2.1 The TrackML detector
The challenge relies on a realistic detectormodel to simulatemeasured particle
hits similar to what is expected for an HL-LHC experiment. The detector
model is inspired by the ATLAS and CMS upgrade tracker designs [17, 16].
They are based on large surface all-silicon detectors with a cylinder-like
geometry in the central regions and a disk-like geometry in the forward
regions.
The coordinate system is a right-handed Cartesian coordinate system

(𝑥, 𝑦, 𝑧) with the global 𝑧 axis defined along the beam direction, which is the
axis of symmetry of the cylinders and disks composing the detector. The
(𝑥 − 𝑦) plane is referred to as the transverse plane, and the azimuthal angle
𝜙 ∈ [−𝜋, 𝜋[is defined in the transverse plane with 𝜙 = 0 denoting the 𝑥-axis.
The polar angle 𝜃 is measured from the 𝑧-axis and is defined to be within
[0, 𝜋].
In order to measure the particle momentum, tracking detectors are em-

bedded in a strongmagnetic field. A charged particle, whenmoving through a
constant magnetic field follows a helical trajectory (figures 3). The magnetic
field is usually aligned with the beam direction, such that the particle is bent
in the transverse plane.
The full detector geometry is shown in figure 4. The detector is split

into three separate sub-detectors that differ in spatial resolution and passive
material. The inner-most sub-detector is a pixel detector with a spatial res-
olution of 50 µm × 50 µm and further out two different strip detectors with
short 80 µm × 1200 µm and long strips 0.12mm × 10.8mm are placed. Each
detector includes realistic module geometries with placement and overlap
chosen to yield a hermetic coverage up to 𝜂 = 3.

2.2 Simulation
This section gives more details for reference on the physics involved in the
simulation, non physicists can skip it.
The particle content of the collisions is generated using the Pythia 8

event generator [32]. A hard Quantum Chromodynamics (QCD) interaction
that generates a 𝑡𝑡-pair is used as the signal. An additional 200 soft QCD
interactions are overlaid to simulate the expected pile-up conditions at the

6

fraction of hits  
from particles

in 200 pile-up events

z
y

tra
nsv

ers
e p

lan
e

B

x

x [mm]

y

[
m
m
]

Figure 3: Illustration of a particle moving through a constant magnetic field. In the
transverse projection, this corresponds to the particle moving along a circle.

HL-LHC. The interaction vertices are spread out over a luminous region with
a width of 5.5mm along the beam axis.
Charged particles are propagated through the detector using a fast detector

simulation based on the ACTS software [24]. An inhomogeneous magnetic
field similar to the one in the ATLAS experiment is used and material in-
teractions, i.e. multiple scattering, energy loss, or hadronic interactions, are
simulated using parametric models. Only tracks with a transverse momentum
above 150MeV are propagated. Inefficient sensors and additional hits from
noise or particles below the threshold are also included. Most particles are
primary particles produced near the origin. Primary particles can produce
(through decay or interaction with the detector material itself) secondary
particles which are hence created at a distance from the origin.
Figure 5 shows various kinematic distributions of the particles. There is

no dependence on the 𝜙 angle, and the distribution of the primary particles
as a function of 𝜂 is flat (it’s a known properties of primary particles for this
variable), unlike the secondary particles which peak around 0. The secondary
particles have a lower momentum than the primaries and, being produced in
the interaction of the primary particles with the matter of the detector, the

7

3000− 2000− 1000− 0 1000 2000 3000
z [mm]

0

200

400

600

800

1000

r

[
m
m
]

Figure 4: Detector layout for the virtual TrackML detector. On the left the three
major sub-detectors, pixel, short strips, and long strips, are shown separately. On the
right, a schematic of the full layout and its coverage along the radial and longitudinal
dimensions as well as in the 𝜂 direction is shown. The different colors represent
the different sub-detectors while the marked numbers are the internal volume and
layer identifiers.

transverse radius of the production vertex 𝑟0 =
√︃
𝑥20 + 𝑦20 corresponds to the

location of the modules.

2.3 Dataset
Particle physics events contain a multitude of different types of information
that are usually represented in a nested structures of variable length. Here,
we aim to provide the data in a flattened structure to avoid the necessity for
specialized tools or formats. Since events are statistically independent, data
is stored separately for each event, organized by a numerical event identifier.
For each event in the training dataset the following four files are provided in
CSV format (only a brief description is given here, more details are available
in the participant document[14] and in the open data set description[10].

• Hits : Each entry has a unique identifier and provides the simulated
hit information that are the core input for the challenge, essentially the
coordinates (𝑥, 𝑦, 𝑧)

• Cells : Each entry enables participants to extract additional information,
e.g. directional information

• Hit truth : Each entry has the same unique identifier as the hits file,
gives the true hit position and which particle created the hit

• Particles truth : Each entry has a unique id and represents one gener-
ated, charged, final state particle.
Training and test data-sets only differ by the type of files made available.

In the test data set only the hits and cells files are available, as would be the

8

0.5 0.0 0.5 1.0
log10 PT

0.00

0.25

0.50

0.75

1.00

1.25

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

0 100 200 300 400 500 600
vertex r0 (mm)

0.000

0.002

0.004

0.006

0.008

0.010
primary
secondary

0 5 10 15
zoom vertex r0 (mm)

0.000

0.002

0.004

0.006

0.008

0.010

15 10 5 0 5 10 15
vertex z0 (mm)

0.00

0.02

0.04

0.06

0.08

Figure 5: Probability density function of primary (blue) and secondary (orange)
particles, normalized to the sum of the distributions, as a function of six kinematic
variables, in the coordinate system described in section 2.1. 𝑙𝑜𝑔10(𝑝𝑇) (top left)is
the transverse momentum which is proportional to the radius of curvature, so
that particles on the right side are almost straight. 𝜙 (top middle) is the azimuth
angle.𝜂 = log(tan(𝜃/2)) (top right) is the pseudo-rapidity, related to the dip angle
𝜃: 𝜂=0 for particle perpendicular to the z axis, +3 for particle very close to the z
axis on the positive 𝑧 side, -3 on the negative side. 𝑟0 (bottom left with a zoom
bottom middle) is the transverse radius of the point of origin of the particle , and
𝑧0 (bottom right) is the 𝑧 coordinate of the origin of the particle.

case in the real data from the detector. Internally, all events were generated
in exactly the same way.
Participants had to provide their solutions also in CSV format. Due to

technical requirements by the Kaggle platform a single file had to be provided
for all events in the test dataset. Each entry therefore had to comprise three
values: the event identifier as provided, the event-unique hit identifier as
provided, and an arbitrary track identifier generated by the participant. Hits
reconstructed to belong to the same track must have the same track identifier.
All the hits of all events should be listed once and only once.

2.4 Scoring
When developing a tracking algorithm for particle physics, experts usually
assemble a large number of histograms to assess its quality. However, as
usual for a Kaggle competition, algorithms had to be ranked based on a
single score to evaluate their quality. Participants submit a submission file,
which proposes a partition of the hits into a list of suggested tracks. The

9

score evaluates the quality of this partition by comparing to the ground truth
partition.
In one sentence: the score is based on the intersection between the re-

constructed tracks and the ground truth particles, normalized to one for each
event, and averaged on the events of the test set. It is implemented in the
helper library [33]. More details follow.
Only particles with four hits or more are considered, and only proposed

tracks with four hits or more are considered. Each track is matched with
the ground truth majority particle sharing with it the greatest hit number.
The ratio of this intersection to the number of hits of the reconstructed track
defines the track purity, while the ratio of this intersection to the number of
hits of the underlying particle defines particle purity. Both ratios have to be
above 50% to define a good track so that a one-to-one relationship between
particle and track can be defined.
Each hit has a weight 𝑤𝑖 , as explained below, and the total score 𝑆 for a

given solution is given by the following multiple sum:

𝑆 =
1

𝑁events

∑︁
{events}

∑︁
{ good tracks}

∑︁
{intersection hits}

𝑤𝑖 (1)

This score is largely consistent with the various and more complicated
metrics used in physics reconstruction. It is a combination of the Jaccard
version of counting pairs [6] and set matching [26]. With set matching, it
shares the one-to-one assignment of reconstructed clusters to true clusters.
However, thanks to the majority rule, it does not suffer from the “problem
of matching” [26]. With respect to counting pairs, the Jaccard index is more
appropriate than the Rand index [29], as the result of the later would be
dominated by the true negatives (pair of points that agree to be in different
clusters), which are not taken into account in the Jaccard counting points
index.
With this definition no penalty for incorrect hits is necessary (as usually

done by physicists), since a wrongly associated hit will automatically reduce
the score for the other track it should have been associated to.
As commonly done in Kaggle competitions, the participants’ submissions

are based on a test dataset of (here) 125 events. There is a secret split of these
events into 36 events to be used to compute the score for the public leader
board (updated online) and 89 to be used for the final private leader board
which determined the final ranking at the end of the competition.
The contributions to the per-hit weight are illustrated in figure 6. The

order-dependent weight penalizes missed hits at the inner and outer-most
part of the detector more strongly. Missing a hit on the innermost layer will
strongly influence the quality of the extrapolation of the track to the origin,
while a missed hit on the outer layers reduces the lever arm for the momentum
measurement. The 𝑝⊥-dependent part favors reconstructing high-momentum
tracks over low-momentum trackswithout excluding either region completely:

10

100

101

102

103

104

105

pa
rti

cle
s /

 5
0

M
eV

all tracks
3 < nhits

0 1 2 3 4 5
p / GeV

0.0

0.2

0.4

0.6

0.8

1.0

p
-d

ep
en

de
nt

 w
ei

gh
t

p , sup=3 GeV (current)

Figure 6: On the left: illustration of the order-dependent hit weight. On the right:
the simulated 𝑝⊥ distribution and the 𝑝⊥-dependent hit weight.

high-momentum (straight) tracks are more likely to come from an interesting
physics process but are more rare. Hence
The overall score is normalized such that a perfect algorithm has a score

of one. A random algorithm has a null score. A given algorithm may
leave undecided a number of hits ; as a valid solution requires all hits to
be assigned, these hits are usually assigned to a single "garbage" track with
possibly thousands of hits ; this garbage track has a null contribution to the
score.
Figure 7 shows the weighted distribution of the particles, similar to Fig-

ure 5 (which is not weighted). One sees that the weight has reduced the low
momentum part and reduced the contribution of secondary particles.

0.5 0.0 0.5 1.0
log10 PT

0.0

0.2

0.4

0.6

0.8

1.0

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0 100 200 300 400 500 600
vertex r0 (mm)

0.000

0.002

0.004

0.006

0.008

0.010
primary
secondary

0 5 10 15
zoom vertex r0 (mm)

0.000

0.002

0.004

0.006

0.008

0.010

15 10 5 0 5 10 15
vertex z0 (mm)

0.00

0.02

0.04

0.06

0.08

Figure 7: Probability density functions taking into account the score weight. The
variables are described in Fig. 5.

11

2.5 The Kaggle platform
The accuracy phase uses the Kaggle platform [14]. This platform hosts the
dataset and provides the scoring and the leader-board for the participants.
Participants can download the training and test dataset, train on the former
and prepare a solution for the latter, and upload the solution.
While a variety of solution metrics already existed, the scoring metric

discussed in section 2.4 was not one of them. It was implemented by Kaggle
on their platform specifically for this challenge. For the test dataset, 125
simulated events were selected. Participants had to reconstruct all events on
their own machines and upload their solution to Kaggle where the score was
then computed.

2.6 Summary of challenge choices
When designing a challenge, the domain problem has to be simplified so that
it can be tackled by participants of diverse backgrounds, often without any
domain knowledge. The various simplification choices are listing below:

• the data comes from a simplified simulation with Acts, instead of real
data from the detector or data from a detailed simulation [1] : the
simplified simulation still has a number of relevant features which
make track finding as difficult as in the detailed simulation or real data

• simple geometry with modules arranged in cylinders and disks, instead
of a more complex geometry with cones, and accurate simulation of
electronics, cooling tubes and cables : there is no reason to believe the
more complex geometry would lead to radically different algorithms

• no merging of reconstructed hits : merging of hits would occur in less
than 0.5% of the cases. Dealing with such cases is eventually necessary
but it would not radically change the core algorithm use, so the added
complexity was deemed unnecessary

• only one type of event (top quark simulation) instead of a variety of
events : top quark simulation is often used for algorithm validation
because of many possible final state including electron muon and 𝜏

lepton, b c and light quark
• one single metric based on the hit clustering, while algorithms are
evaluated with many metrics, in particular some based on the quality
of the evaluation of the particle parameter from the associated hits
: deriving the particle parameters from the associated hits is a well
defined process done with proven techniques like Kalman filtering, so
this aspect has been removed from the scope of the challenge. In
addition, experience of the expert of the domain is that the quality of
the particle parameter evaluation is directly impacted by the quality of
the hit clustering.

12

2.7 Starting kit
The baseline solutions for the challenge were presented in the form of ex-
ecutable Jupyter notebooks [27]. Participants were introduced into three
basic approaches that helped to develop geometrical intuition behind the task.
The first approach was straightforward k-Nearest Neighbor classifier that was
trained on a bunch of tracks and was able to discriminate hits that fall into
the proximity of certain tracks venues. However, the performance of such an
approach was quite limited.
The second approach introduces data preprocessing based on the obser-

vation that most of the track hits follow an arc of a helix pattern:

𝑟1 =

√︃
𝑥2 + 𝑦2 + 𝑧2

Hencewe can transform hit coordinates in the followingway (see Figure 8)
so the hits from the same helix would be close to each other after the mapping.

𝑥2 = 𝑥/𝑟1

𝑦2 = 𝑦/𝑟1

𝑟2 =

√︃
𝑥2 + 𝑦2

𝑧2 = 𝑧/𝑟2

Figure 8: Hit coordinates transformation before DBSCAN: original (left) and
transformed (right).

After that, we apply DBSCAN [19] to identify dense regions of the
transformed space as track candidates. This method achieves the score of ≈
0.21.

13

The third notebook explores another kind of transformation that maps
from Cartesian space into possible track parameters space. Let’s consider a
simple 2D example with circular tracks. Such tracks can be parametrized in
polar coordinate system as follow:

𝑟 = 2𝑟0 cos(𝜙 − 𝜃)

where:
• 𝑟 and 𝜙 : are coordinates of a hit in the polar system;
• 𝑟0 and 𝜃 : are coordinates of a centre of a circular track in the polar
system.
So the transformation of Cartesian coordinates of a hit to polar coordinates

is defined as:

𝜙 = arctan(𝑦
𝑥
)

𝑟 =

√︃
𝑥2 + 𝑦2

In that system a linear track corresponds to the 𝑟0 = ∞. The Hough
Transform [18] maps a hit in (𝑟, 𝜙) space to a curve in (1

𝑟0
, 𝜃) space (see

light-blue curves on the right side of figure 9):

1
𝑟0

=
2 cos(𝜙 − 𝜃)

𝑟

A linear track in this space corresponds to the (0, 𝜃) point. For 3D case, we
can parametrize a helix by cylindrical coordinates: 𝜙, r, z. For the simplicity,
we can assume

𝛾 =
𝑧

𝑟
= 𝑐𝑜𝑛𝑠𝑡

which is true for high-PT tracks. So we can map every hit into possible
helix coordinate space as depicted by the figure 9.
Afterwards, we split the track-parameter space into bins, and those with

the higher density correspond to the higher possibility of tracks with the
corresponding parameters and eventually represent recognized tracks. With
the help of Hough transform one can achieve similar score as with DBSCAN
(≈ 0.20).
Those approaches are intended to give an easy-to-grasp way of dealing

with the data and help to develop geometrical intuition for the challenge.

3 Competition Facts and Figure
The first phase of the TrackML challenge was well attended, with a total of
656 participants. Fig. 10 shows the evolution of the leader scores over the

14

Figure 9: Hough hit coordinates transformation: original (left) and transformed
(right).

duration of the competition. Several features are visible. First, a score of
more than 90% was only reached in the last days of the competition. Also,
there is a large cluster of candidates achieving a score of 20% to 25%, which
corresponds to the 22% performance of the DBSCAN starting kit described
in section 2.7. After around 30 days, public kernels achieving a performance
greater than 50% were posted on the public forum, which lead to a second
group of candidates reaching a performance of 50% to 60% after 40 days
of competition. Finally, except for those groups, it is interesting that the
candidates achieving the best performance are well separated from those
groups and from each other.
Fig. 11 shows the final leaderboard (LB) with the top 20 participants. The

dashes on the left column indicate that the final leaderboard ranks (determined
on the 89 events of the private leaderboard dataset) are identical to those from
the public leaderboard (determined on the 36 events of the public leaderboard
dataset) for the ranks 1 to 19.
A deeper analysis of the score statistical accuracy has been done using

the participants submission for the 125 test events. Fig. 12 shows the score
distribution for the best participants; While there is some overlap between the
distributions, the means are well separated, except maybe for rank 7, 8 and
9. A quantitative analysis has been done using the Wilcoxon signed-rank test
[34], a standard non-parametric statistical hypothesis test used to compare
repeated measurements on a same sample to assess whether their population
mean ranks differ. The test is done on the 36 events of the smaller public
dataset (which gave the rankings on the Kaggle web page), and gives a two-
sided p-value; the only candidate pairs having more than 1−6 are 10 and 11
(3−6), 7 and 9 (3−5), and more relevant 7 and 8 (0.03) and 8 and 9 (0.08).
All values are at the few percent level or (way) below, showing that the final
ranking could not have changed due to statistical fluctuations.

15

0 20 40 60 80 100
days from start

0.0

0.2

0.4

0.6

0.8

1.0
te

am
 b

es
t s

co
re

Figure 10: Evolution of the best score of each team as a function of time.

4 Study of algorithms performance
In this section, we analyze the quality of the top algorithms in more details
beyond just the score, in particular with an eye on the criteria from a physicist
point of view.
As a post-analysis of the competition, we have downloaded from the

Kaggle website the submissions of the top candidates, and compared them
to the ground truth. This allows us to know where each hit of each of
the 125 test events, was correctly associated, and whether each track was
correctly reconstructed (we consider a track to be correctly reconstructed if it
contributes to the score as described in section 2.4). In addition to check the
correct hit to track assignment, what is usually done in particle physics is to
derive from the hits the particle parameters at the origin, and compare them
to the ground truth; this is an on-going study not reported here.

4.1 Tracking efficiency
Tracking efficiency is commonly defined in particle physics as the probability
to reconstruct a track. A good tracking algorithm must provide consistently
high efficiency over a wide range of track parameters.
The efficiency of a good algorithm is expected to be independent of the

16

Figure 11: Final leaderboard from the competition website. [14] The various
columns correspond to the final rank, ranking difference with respect to the private
leaderboard (in this case identical except for the last candidate), candidate name,
logo, final score on the 125 test events, number of submissions, and time elapsed
since the last submission.

17

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Event score

#1 Top Quarks

#2 outrunner

#3 S. Gorbunov

#4 demelian

#5 E. Steiner

#6 Komaki

#7 Yuval & Trian

#8 bestfitting

#9 DBSCAN forever

#10 Zidmie & KhaVo

#11 A. Lonza

#12 Finnies

#13 R. Matsuzaki

#20 Victor Nedel'ko

#50 HiddenTrack

#100 Diogo

#500 Starting kit

m
od

el

Figure 12: Boxplot distribution of the best candidates and number 20, 50, 100, and
starting kit. The box plots display the quartiles and extrema of the algorithm scores
on the 125 test events. A clear separation between the candidates is seen, validating
the ranking.

azimuth angle 𝜙 and the pseudo-rapidity 𝜂, and perform best for tracks orig-
inating from a low radius (𝑟0, that is, near the beam axis, where the primary
particles are created. Such distributions are shown for representative solu-
tions to the TrackML challenge in Fig. 13. The efficiency was computed
using only the primary particles having created more than 4 hits (both ex-
pected result in well reconstructed tracks, and more relevant for physicists),
hence the numbers can be slightly higher than those displayed on Fig. 11 and
12. To put some perspective, to the 13 leaders have been added the contri-
bution of number 20, 50, 100 and of the DBSCAN starting kit introduced in
Section 2.7 (500 is representative of the ranking it would have achieved in the
competition). The better the ranking, the higher and flatter is the efficiency
distribution according to all variables, validating the choice of the scoring
variable (see Section 2.4). One interesting exception is the candidate ranked
100, diogo, who achieves a very high efficiency (the best one) at large radius
(see Section 5.1.7). Those distributions have to be compared to the underlying
probability density functions of the particles, which are indicated on Fig. 5.
It is necessary for an algorithm to be performing well where the bulk of the
particles are.
An important algorithmic quality criterion is the ability to distinguish

particles close to each other. If a particle is created close to the axes origin,
the 𝜙 and 𝜂 coordinates described in section 2.1 can be used to describe its
direction of propagation. The angular distanceΔ𝑅 between two such particles

18

0.5 0.0 0.5 1.0 1.5 2.0
log10 PT

0%

20%

40%

60%

80%

100%

3 2 1 0 1 2 3 2 0 2

100 200 300 400 500 600
vertex r0 (mm)

0%

20%

40%

60%

80%

100%

5 10 15
zoom vertex r0 (mm)

10 0 10
vertex z0 (mm)

#1 Top Quarks
#2 outrunner
#3 S. Gorbunov
#4 demelian
#5 E. Steiner
#6 Komaki
#7 Yuval & Trian
#8 bestfitting
#9 DBSCAN forever
#10 Zidmie & KhaVo
#11 A. Lonza
#12 Finnies
#13 R. Matsuzaki
#20 Victor Nedel'ko
#50 HiddenTrack
#100 Diogo
#500 Starting kit

Figure 13: Primary particle reconstruction efficiency for various candidates as a
function of six physics variables. See Fig.5 for the variables definition, and the
underlying probability distribution function (lower statistics means greater uncer-
tainty).

separated by angles Δ𝜙 and Δ𝜂 can then be defined by:

Δ𝑅 =

√︃
Δ𝜙2 + Δ𝜂2

For each particle, this distance is computed with respect to its nearest neigh-
bour in the 𝜙 − 𝜂 plane; Particles of opposite charge sign (which bend in
different directions) can be separated more efficiently, so the distance is also
computed for the nearest neighbour of the same charge and of the opposite
sign charge. It is also relevant to ensure that the two particles were created
close to each other, and a selection can be made on Δ𝑧, defined as the distance
on the 𝑧 axis between the vertices that created both particles considered.
Fig. 14 shows the efficiency as a function of Δ𝑅, for the nearest neighbour

having the same charge sign (full lines in bright tones) and the opposite (dotted
lines in dark tones). As expected, the efficiency drops when the angular
separation is small, because of a more likely confusion between the points of
the two particles. The behaviour differs according to the relative sign of the
nearest neighbour. Minimizing the drop of efficiency at smallΔ𝑅 is important
because it would impact the detection of interesting phenomena yielding a
bunch of almost collinear particles. This was not included specifically in
the score, and we see that even the best algorithm, top-quark, suffers from
this drop, albeit in a limited manner, as do the algorithms currently used in
HEP. Different algorithmic choices reflect in different sensitivity to the closest
particle.

19

0.00 0.02 0.04 0.06 0.08 0.10
R (| z|<10mm)

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%
Ef

fic
ie

nc
y

#1 Top Quarks same
#1 Top Quarks opp
#2 outrunner same
#2 outrunner opp
#3 Sergey Gorbunov same
#3 Sergey Gorbunov opp
#4 demelian same
#4 demelian opp
#5 Edwin Steiner same
#5 Edwin Steiner opp
#6 Komaki same
#6 Komaki opp
#7 Yuval & Trian same
#7 Yuval & Trian opp
#8 bestfitting same
#8 bestfitting opp
#9 DBSCAN forever same
#9 DBSCAN forever opp
#10 Zidmie & KhaVo same
#10 Zidmie & KhaVo opp

Figure 14: Primary particle reconstruction efficiency for various submissions as a
function ofΔ𝑅, the nearest neighbour angular distance, with a selectionΔ𝑧 < 10𝑚𝑚

on the nearest neighbour vertex z distance. Each color corresponds to a different
candidate; full lines in bright tones correspond to nearest particle of same charge
sign and dotted lines in dark tones to opposite charge sign.

4.2 Track purity
In this section we explore the reasons why some tracks had a null score. For
example, did they fail to get a sufficient fraction of the underlying particle?
Did they aggregate several of them?
Following the definition of particle purity and track purity in section 2.4,

tracks can be categorized as follows:
• Good : Both purities above 50% (the only case taken into account in
the score)

• Split : Particle purity below 50%, track purity above 50% (only a small
part of the underlying particle was "caught")

• Multiple : Particle purity above 50%, but track purity below 50%
(typically, the track aggregated the result of two different underlying
particles; this is rare since most particles originate near the origin)

• Bad : Both below 50%
Fig. 15 shows the classification of tracks for the primary particles of

the aforementioned algorithms. Whereas the fraction of good tracks closely
follows the global efficiency, it is interesting to note that for instance algorithm
number 20 has an excellent fraction of good tracks among the ones selected,
indicating that the "bad tracks" category must contain few tracks with a high
number of garbage hits.

20

The distributions of track types according to the six usual physical vari-
ables are shown in Fig. 16 which displays the track type distribution for the
leader. The "good" tracks represent the majority of the event, and the score
reflects quantitatively the efficiency of Fig. 13 (which only took into account
primary particles). The amount of good tracks found is lower when going
further from the origin, but is flat up to 300 mm in 𝑟0 and along the 𝑧 axis
coordinate; this was the secret behind the best rank.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of track type

Top Quarks #1

outrunner #2

S. Gorbunov #3

demelian #4

E. Steiner #5

Komaki #6

Yuval & Trian #7

bestfitting #8

DBSCAN forever #9

Zidmie & KhaVo #10

A. Lonza #11

Finnies #12

R. Matsuzaki #13

Victor Nedel'ko #20

HiddenTrack #50

Diogo #100

Starting kit #500

Good
Split
Multiple
Bad

Figure 15: Distribution of the kind of tracks for each of the algorithms under
consideration.

Finally, we use the hits to estimate where in the detector the algorithms
perform the best. We categorize the hits into three types:

• If a hit was not associated to a good track, it is called garbage.
• Otherwise, if it did not belong to the particle with the majority of the
hits, it is called mis-associated.

• Otherwise (good track and part of majority particle), it is called good.
Fig.17 summarizes the position of those types for the leading candidate. We
see that the algorithm performs best near the center, except for a bin of mis-
associated hits close from the beam axis but far (around 50 cm) from the
origin; the garbage hits are mostly found on the detector outer layer (up to
80% there).

21

0.5 0.0 0.5 1.0 1.5 2.0
log10 PT

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

Good
Split
Multiple
Bad

2 1 0 1 2 2 0 2

100 200 300 400 500
vertex r0 (mm)

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

5 10 15
zoom vertex r0 (mm)

10 0 10
vertex z0 (mm)

Figure 16: Reconstructed track type distribution of the six physical variables of
Fig. 13 for the TopQuarks contribution. Note that the "good" category matches
closely the efficiency of the candidate (although on Fig. 13 we only considered
primary particles, slightly increasing the score.)

5 Selected algorithms
At the end the first phase of the challenge the participants were encouraged
to provide a description of their algorithms to be able to claim their prize and
enter the jury selection. As underlined in section 4, one of the solutions has
a rather atypical behavior and has an advantage for track with large impact
parameter. We first describe the algorithms underlining the overall strategies
and innovations. We then highlight interesting aspects that would deserve
special attention in further work on tracking using machine learning.

5.1 Algorithm Description
All algorithms share common approaches and methods, but for the sake
of clarity of the description, each algorithm is described separately below
leading to some unavoidable repetitions.

5.1.1 Challenge Winner : top-quarks
The team topquarks is composed of Johan Sokrates Wind ¬´ icecuber ¬ª and
Erling Solberg "erlinsol". The technique was essentially developed by Johan

22

0 500 1000 1500 2000 2500 3000
|z| (mm)

0

200

400

600

800

1000

R
(m

m
)

Good hits

0 500 1000 1500 2000 2500 3000
|z| (mm)

Misassociated hits

0 500 1000 1500 2000 2500 3000
|z| (mm)

Garbage hits

0.0

0.2

0.4

0.6

0.8

1.0

Figure 17: Fraction of the good (left), mis-associated (center), and garbage (right)
hits as a function or their position in the detector for the winning algorithm
(TopQuarks).

Wind who is an Industrial Mathematics master student in Norway.
The winning algorithm[35] is modular so as to allow for efficient testing

new ideas at all levels of the algorithm. The algorithm’s track following
strategy is similar to that of several tracking algorithms currently used in
production by high energy physics experiments. The subsequent steps are
instrumented with intermediate measurement of the quality of the solution.
This allows to keep track of loss in score and was probably a key factor in
winning the challenge. While most of the code is written in C++/C++11,
some training was performed using python for practicality. A dedicated data
structure was implemented especially for the challenge to favormany look-ups
which could have been otherwise prohibitively expensive. The compromise
between hit combinatorics and search space usually present in standard track
following algorithms as the algorithm proceeds with finding hits that belongs
to track, is avoided in this method by fixing the branching in the combinatorial
tree using an estimation of the density of polluting hits as a function of the
hit location in the detector. Binary classification is used at two stages of the
algorithm and was trained on a very small number of events, as each event
anyways contains a large number of hits and tracks. The whole algorithm
contains several parameters which turn out to be hard to optimize by trial and
error. The solution proceeds as follows, and as represented in fig 18
1. Seed generation: 50 pairs of layers are selected in the innermost part
of the detector and all pairs of hits are created. A logistic regression
classifier is trained on hit pair features, and allows to reduce the number
of wrong seed, keeping a almost all good seeds.

2. Extension to triplets: using a straight line extrapolation from the pair
of hits to the next layer allows to find compatible hits. The 10 closest
hits are used to form triplets. A logistic regression classifier is trained
on triplet features, and retains most good triplets, rejecting bad triplets.

3. Track Following: further hits are attached to track candidates, starting
from the triplets, by running an helix extrapolation to the next layers

23

using the last three hits of the track candidate. The closest hit to the
crossing point if added to the candidate. This helix extrapolation is
performed using a data driven estimation of the magnetic field so as to
be more accurate.

4. Track Consolidation: the track candidate building so far has not taken
into account overlapping modules which may lead to multiple hits per
layer. Extra hits on each layer already crossed are added to the candidate
if they are closer than a threshold.

5. Track Ambiguity Resolution: the procedure so far as created candi-
dates with potential overlap. Ambiguities are lifted by selecting the
candidate with the least amount of estimated polluting hits (calibrated
using training data), promoting it as final track and recursively removing
its hits on all candidates.

Figure 18: Schematic representation of the steps of the challenge winner algorithm.
From top to bottom : pair finding, extension to triplet, extension to tracks, addition
of hits from overlapping modules, and final track disambiguation.

5.1.2 Challenge Runner-up : outrunner
Pei-Lien Chou "outrunner" is a software engineer in image-based deep learn-
ing in Taïwan.
The solution that ranked second in the challenge is using an artificial

neural network model predicting the adjacency matrix of hits in a all to
all connection scheme. A three hits helix compatibility check is used the
post-processing The solution implement in python is organized as follows

24

1. Adjacency Matrix prediction: all pairs of hits are considered and 27
features are constructed from its quantities. A neural network model
composed of multiple wide dense layers is trained to predict the prob-
ability of the pair to be on the same track. There is a large class
imbalance in the problem due of the predominance of pair of hits that
are not belonging to the same track. This is overcome by sampling
pairs from the negative class closer to the positive pairs to better define
the boundary between the two classes. The accuracy weighted by the
class cardinal is a better estimator of the performance of the model in
this heavy imbalanced setup.

2. Adjacency Navigation: For a given initial hit, the pair with the highest
predicted score defines a seed. The third hit that maximize the sum of
probabilities of the pairs formed with the other two hits is considered
for addition to the track. The compatibility of this third hits with an
circle passing from the origin and the other two hits is used to definitely
add or reject the hit to the track candidate. Once no hit remains as
possible candidate for addition, and new initial hit is taken to create a
new candidate.

3. Track Merging and extension: the quality of tracks is quantified by
the amount of hits uniquely assigned to it. This quality is used to order
overlapping tracks and assign hits to final tracks. Track candidates
with high quality are extended by navigating the adjacency matrix with
looser constraints.
The proposed approach is an unstructured track following algorithmwhere

the next hit is not provided by track extrapolation but directly a hit index based
on the hit pair classifier score. The reported prohibitive computation cost
seems to indicates that much too many branches of the combinatorial tree are
followed during the track following step. Some level of tuning could result
in similar performance without much loss of accuracy, and may constitute
an alternative the the combinatorial track finder approach. Although the
proposed solution is prohibitively expensive to be used for making track
candidate prediction, it is rather accurate, and further development might
make it much more tractable. It should be noted that graph based neural
network approaches, such as the one presented in [20] can combine the hit
pair classification and the navigation of the adjacent hits.

5.1.3 Challenge Second Runner-up : Sergey Gorbunov
Sergey Gorbunov is a physicist in Germany, expert in tracking software.
The solution which ranked third [23] during the challenge is following

closely the strategy of most tracking algorithm in high energy physics. A
couple of novelties are introduced, the magnetic field is estimated from the
data, instead of provided by a numerical model, the hit search on each layer is

25

performed with a fixed grid lookout data structure, and tagging of candidate
hits is done using incremental counts allowing for fast hit categorization.
The algorithm written in C++, proceeds as follow and as depicted in fig

19
1. Seeding: triplet of layers of the detectors are determined to build up
seeds from. All hits from the first layer are considered and a search for
compatible hit is performed on the second layer, using a straight line
extrapolation, from the origin and the first hit. Hits within a search
window are taken as second hits. A second straight line extrapolation
from the two hits onto the third layer is done to find hits within the search
region. Triplets of hits are rejected based on their lack of alignment in
the r-z plane.

2. Track Candidate Building: triplets found so far are taken individually
and extrapolated through the successive layers of the detector. The last
three hits of the candidate track is used for a local helix fit. This helix
is used to find nearby hits on the layer of the last hit, to account for
module overlap within layers. The helix is further used to propagate to
the next layer, and the closest hit is added to the track candidate.

3. Track Selection: all the candidate tracks found from the original hit
on the first layer are arbitrated to find a single best candidate. The
candidate with the most hit of the least deviation from the local helix
fits is retained and its hits are removed from the collection of hits. The
algorithm restart with a hit on the first layer, and so on.
The helix fit and extrapolations are performed using a data-driven esti-

mation of an effective magnetic field, which takes into account variation in
the magnetic field and the amount of material in the detector. The good
performance obtained with the absence of branching in the building of the
candidate (one candidate per seed) is somehow surprising and an indication
that the detector is granular enough compared to the amount of material such
that there are little local ambiguities on hit association.

5.1.4 Jury Innovative Prize : Yuval and Trian
Yuval Reina is an electronic engineer in Israel and Trian Xylouris is an
entrepreneur in Germany
The jury has selected the solution [30] for the innovation in implementing

a method that is not unlike the Hough transform [18]. The algorithm and
the training of machine learning models are done in python. The Hough
transform in all 5 helix parameters at the origin is expensive computationally
and prohibitive in dense collision environment like the one simulated for the
challenge. The smart indexing of the unique quintuplet of track parameters
and the marginalization over transverse momentum and longitudinal impact
parameter made the application of the Hough transform tractable in this case.
The algorithm contains the following steps

26

Figure 19: Schematic representation of the steps of the challenge second runner up
algorithm. Left : seeding from triplet of inner layers of the detector. Right : track
candidate building using an helix extrapolation made from the last three hits of the
candidate.

1. Clustering: assuming a doublet composed of the signed curvature and
the longitudinal impact parameter of an helix, each hit correspond to a
unique helix. This helix is parametrized by the polar angle, the sine and
cosine of the azimuthal angle of the tangent on the longitudinal axis.
The phase space of the triplet is discretized in order to form bins, bins
in which hits of the same helix will accumulate. The helix triplet are
smeared to prevent the fixed binning to limit the clustering, by allowing
hit to migrate from nearby bins. Each bin is a track candidate if it
contains at least one hit. The phase space of the initial doublets is
discretized and scanned at random. Each set of track candidates are
merged by assigning each hit, uniquely to the bin that has the largest
cardinal. The indexing of each bin is made unique throughout the
discretization of the five helix parameter, so as to effectively uniquely
index a track parameter by the bin index.

2. Ensembling: Because the solution of the clustering of the previous step
depends on the random walk in the doublet space, and the smearing on
bin assignment, multiple passes of clustering are run and ensembled
to produce a better solution. Each track index (or index of a bin in
the five dimensions) determines a set of hits from which a set of track
candidate features are extracted and then use to train a boosted decision
tree for binary classification of the candidate. The multiple solutions
of clustering are merged recursively in pairs, by selecting for each hit,
the track with the best classification score.

3. Post-Processing: Further merging of candidates that are close in the
helix parameter space is done by first estimating the curvature and
longitudinal impact parameter that minimize the standard deviation of
the remaining three helix parameters. The triplet of parameters are then
recomputed and used to find hits with close-by helix parameters.

27

This solution ranked seventh in the challenge, even though it does not
includemuch domain knowledge about charged particle trajectories. Machine
learning is limited to a classifier used for selecting good track candidate from
other clustering of unrelated hits.

5.1.5 Jury Clustering Prize : CPMP
Jean-François Puget CPMP is a software engineer at IBM in France. He is
a Kaggle competition grandmaster and a Kaggle discussion grandmaster.
The jury has selected the following solution [28] for bringing multiple

improvements to the starting kit based on DBSCAN [19]. It uses a concept
developed in a solution detailed in section 5.1.7 for a definition of track
quality. Concepts of the Hough transform already discussed in 5.1.4 are used
to form track candidates in an iterative manner.

1. Track parameter data bank: the doublet : curvature and longitudinal
impact parameters of all tracks observed in a training set are registered
to be later used as possible track parameters to be scanned over. As
such this can be seen as a track pattern data bank.

2. Track quality calibration: the frequency of observation of quadruplets
of crossedmodules is measured from a training dataset, and is later used
to estimated the likelihood of a track candidate.

3. Track candidate building: the space of track parameters doublet is
scanned at random from the data bank of track pattern. For each track
sub-parameter considered, all the hits are represented with three re-
maining parameters of the helix passing through the hit. A cluster of
hits in this transformed space represent hits that closely share all five
track parameters, and hence are considered a track candidate. This
clustering is obtained using the DBSCAN algorithm in the hit trans-
formed coordinate space. Ambiguities for hits already assigned to a
track candidate are lifted by chosing to assigne to the trackwith themost
hits and the best quality (based on frequency of module quadruplets).

4. Ensembling: the track candidate building above is ran once in the
whole detector and once only in the most inner part of the detector. The
two solutions are merged by virtue of track overlap.

The use of DBSCAN, compared to the method detailed in section 5.1.4
allows for a unbinned clustering in track parameters space. By construction,
this algorithm cannot find loopers (particles not escaping the tracker volume
and returning to the beam line) and tracks from secondary vertex (tracks
originating from a displaced pointt, hence missing the 𝑧 axis by a large
distance). The track quality estimator based on module quadruplet frequency
is effective, but could be improved with a more granular and selective input.
In the transformation of the hit spacial coordinate into a triplet of track
parameters, the observed non-uniformity of the magnetic field is taken into

28

account by calibrating the transformation as a function of the longitudinal
coordinate.

5.1.6 Jury Deep Learning Prize : finnies
Nicole and Liam Finnie are software engineers in Germany.
The jury has selected this solution[22] for the use of recurrent artificial

neural network (RNN), using long short termmemory cells [25] (LSTM) also
used in [20]. The DBSCAN algorithm reference in 5.1.5 is used to cluster
hits in inner-most layers of the detector in order to produce tracklets seeds.
The recurrent network is used in place of a propagator to find the potential
position of hits on subsequent layers of the detector.
The team that ranked twelth in the challlenge also came up with the

following algorithm implemented in python using keras [15] and Tensorflow
[2]. It proceeds as follows and as depicted in fig 20
1. Seeding: hits from all layers are considered in polar coordinates and
clustered using the DBSCAN algorithm [19]. Each track candidate is
truncated to the first 5 hits to produce a tracklet seed. The purity of the
collection of seeds is improved using outliers rejection.

2. Path Prediction: from the observation that tracks are mostly straight
lines in the coordinate systems (𝜙, r) and (r, z), the (𝜙, r, z, z/r) is chosen
for track following. A recurrent unit is constructed (see figure 21) with
one hit position in input, and one hit position in output. It is ran along
the 5 hits of the seed, and unrolled for 5 more iterations using zero-ed
input to predict the position of the next 5 hits. Multiple architectures
for the recurrent model are implemented and trained separately. They
are ensembled with averaging to provide the final prediction of the path
of the charged particle in the detector.

3. Hit association: the k-D tree [7] is built using all hits of the events in
the quadruplet space to efficiently find hits that are the closest to the
path prediction, based on the Manhattan distance.
Multiple architecture of the recurrent model are investigated, the training

of the models is quite prohibitive to allow for a full optimization. Computa-
tionally more economical recurrent cells such as gated recurrent units (GRU)
could be used to make this training faster without a-priory loss of predictabil-
ity. This approach uses RNNs for track following and used the starting kit (see
section 2.7) to quickly get a set of good seeds. The algorithmic performance
depends strongly on the seeding mechanism and could therefore be largely
improved. By design, this algorithm can only provide track candidates with
ten hits. Variations of the model architecture and training could allow for
shorter and longer tracks to be found.

29

Figure 20: Schematic representation of the steps of algorithm selected by the jury
for its use of deep learning and recurrent network. Left : seeding is performed using
DBSCAN. Middle : a recurrent model is trained and used to predict the positions
of the next hits. Right : kNN-tree algorithm is used to find the closest matching
hits.

5.1.7 Organizer’s Pick : diogo
Diogo R. Ferreira is a professor/researcher at the University of Lisbon, fo-
cusing on data science and nuclear fusion.
As discussed in section 4, one of the solutions drew the attention of the

organizer as it performed quite uniquely well for track with large impact
parameters (see bottom left plot of figure 13), regardless of the poor score
overall (rank hundredth). The solution [21] uses a pattern matching algorithm
also found in actual LHC trigger implementations that can be found in [31]
and is based on the assumption that the training dataset contains all possible
track pattern that can be observed in the detector during collisions. The
algorithm written in Python has the following two main steps.
1. Route data-banks building: from the observation that tracks are sel-
dom sharing the ordered sequence of modules that are crossed, a set of
routes are constructed from unique sequence of modules of the detector.
A route consists of a sequence of module id and the expected position
of the hit on the model. In the case of multiple tracks having the same
sequence of module in the training data set, the prediction is made from
the averaged positions. The weights of hits provided in the training data
set are used in the averaging of hit position with a route, so as to favor
the higher score.

2. Hit matching: routes that have at least one hit on each of its modules
are used to build track candidates. In case of a candidate hit shared
by multiple routes, the hit is assigned to the track candidate with the
smallest average distance to the route predicted positions.

30

Figure 21: Diagram of the recurrent neural network architecture used by the jury
deep learning prize algorithm. A set of 5 hit quadruplets followed by 5 blank
coordinates are presented in input to the model which produces in total 10 hit
position quadruplets, that last five of which are used to look for matching hits in the
detector. The model is a dual stacked LSTM with a dense model transforming the
hidden representation into the space of hit position quadruplets.

This pattern matching algorithm performs poorly for tracks originating
close to the beam line probably because of the initial assumption is incorrect
for these type of tracks. This can be explained by the fact that a route
is covering a non negligible finite volume in the space of possible tracks,
and the density of track parameters along a route is too high and leads to
ambiguities. It however functions rather well for tracks created at secondary
vertex (see section 4 for more details), likely because the density in the track
parameter space is much lower, leading to unambiguous hit association within
a nevertheless ambiguous route.

5.2 Lessons Learned
It is not too surprising to find among the top ranking and winning solutions,
algorithm highly inspired from the seeding, track following, track selection
three-stages approach implemented in the current charged particle tracking
algorithms. The variations on this baseline approach are however interesting
for future development of tracking algorithms.

31

route

particle hits particle hits

particle hits

position position
posi tion

particles

detector detector detector

Figure 22: Schematic representation of the route used in the algorithm of the
"Organizer’s pick". The route is precomputed from the positions of hits from tracks
sharing the same sequence of traversed modules of the detector. Track candidates
are produced by selecting the list of hits that are the closest to the predefined route.

5.2.1 Accuracy Driven Steps
The monitoring of the loss of accuracy at each step of the winning solution
is probably a vector of its success in the competition as development an
improvement are mainly guided by retaining almost all of the good track and
hits. Even though the metric of the challenge cannot be applied as such at
each step and iteration, the participants were able to find useful and realistic
proxies that help them develop their algorithms without losing the maximum
score in objective.

5.2.2 Data Driven Estimation of the Magnetic Field
Themodel ofmagnetic field used in the simulation of the data for the challenge
was not been provided in the data set description, as it was not deemed
necessary and in order to simplify the data set publication. Participants
however observed loss of accuracy in their prediction, due to non-uniformity
of the magnetic field. Corrections which were applied have been derived in
a data-driven manner, and would not only contain actual modification of the
magnetic field, but also the amount of material that composes the detector.
Due to the imperfect modeling of the geometry of the real detector, the

models for the magnetic field and material used in reconstruction software are
only approximate and may lead to inaccuracies. Such data-driven measure-
ment of the magnetic field and geometry models may lead to better algorithms
in the future.

32

5.2.3 Computational Cost of Deep Learning
The teams which applied deep learning to the vast amount of training data
provided in the challenge had to face computation resource limitations. Even
with the use of general purpose Graphical Processing Units (GPUs) it took
multiple days to train models. As in many occasions, the phase space of
hyper-parameters of such models were not fully scanned for the optimal set.
The participants did not report whether their proposed solutionwould perform
better if given more resource and time.
On the other hand, however long it may take to train models and optimize

the set of hyper-parameters, the use of the trained model can be extremely
fast and potentially faster than conventional approaches.

5.2.4 Hyper-parameter Tuning
Deep learning methods are not the only algorithms, which have hyper-
parameters that require tuning. Many solutions proposed in the challenge
were tuned by hand by the participants using their algorithm knowledge and
intuition. A more systematic approach would probably require more compu-
tational resources, so as to fully the performance of the algorithm. Further
methods of tuning could involve Bayesian optimization using Gaussian pro-
cesses regression of the performance function, or evolutionary algorithms
which can be used to find an optimum functioning point of the proposed
methods.
In the case of the challenge with a single score as a measure of goodness,

such hyper-optimizations are rather easy to implement (at the cost of more
resource). On the other hand, in the context of charged particle reconstruction
in an experiment software, there might not be a unique figure of merit of
tracking. Multiple quantities which have counter-balancing importance for
the scientific throughput play a role, and the scientific throughput is not
directly quantifiable.

5.2.5 Noise-Driven Control of the Combinatorial Explosion
The solution detailed in section 5.1.1 is inspired from the the canonical
charged particle tracking algorithms. In particular, during the track following
steps, the number of candidate hits to be considered at each step is not
controlled using the estimated error on the predicted position (which can be
numerically expensive to compute), but by using the density of track outliers.
This approach may allow for faster software with an exact control on the

complexity of the algorithm. It might help to recover efficiency in pattern
recognition of tracks which experienced large statistical fluctuations at some
point of their trajectories through the detector. The increased, controlled size
of the tree would have to be balanced with a significant gain in computation
to be beneficial of course.

33

6 Conclusion and Outlook
The Accuracy phase of the TrackingML challenge has introduced a variety of
approaches, some of them being completely original for the field, as listed in
section 5.2. The quality of the algorithms is excellent, as it has been studied
in depth in section 4. In particular, the fact that 99% efficiency is reached over
a wide range of parameters (see Fig.13) indicates that the quality is similar to
the state of the art, although a direct comparison is not available at this stage.
This was not given for granted as using a single score as a factor-of-merit is
very unusual in the domain. The challenge being a competition, and despite
a very active discussion forum on [14], there was not a lot of collaboration
between top participants. Thanks to the software released by the participants,
more in-depth studies developing algorithms combining the different ideas
have been launched.
From the domain point of view, the goal was to obtain new algorithms

which are both of good quality and fast. For the first Accuracy phase, there
was deliberately no incentive on the execution time, beyondwhatwas practical
for the participants. In the post competition survey, time between 10 minutes
per event and one day per event have been reported. The Throughput phase
has been launched on Codalab [13] in October 2018 till March 2019 and was
still running at the time of writing. However, it appears already that some
participants are managing to obtain very high score in just a few seconds, as
a first hint of the success of the two stage approach. In depth analysis of the
Throughput phase will be published in a future paper [4].

Acknowledgements
The team would like to thank CERN for allowing the use of the dataset, and
Kaggle for hosting it. We are very grateful to our generous sponsors without
which the challenges would not have been possible. Platinum sponsors: Kag-
gle, Nvidia and Université de Genève. Gold sponsors: Chalearn, ERC mPP
and DataIA. Silver sponsors : CERN Openlab, Paris-Saclay CDS, INRIA,
ERC RECEPT, Common Ground, Université Paris Sud, INQNET, Fermilab
and pyTorch. TG acknowledges the support of the Swiss National Science
Foundation under the grant 200020_181984. SG acknowledges the support
of the German BMBF ministry. This project has received funding from the
European Union Horizon 2020 research and innovation programme under
grant agreement No 724777 “RECEPT”, No 772369 “mPP” and No 654168
“AIDA-2020”. In addition, the organizers would like to thank participant Pei-
Lien Chou "outrunner" for major contributions, Maggie Demkin and Walter
Reade at Kaggle and the members of the International Advisory Committee
: Markus Elsing (CERN), Frank Gaede (DESY), Alison Lowndes (Nvidia),
Maurizio Pierini (CERN), Danilo Rezende (Google DeepMind), Marc Schoe-
nauer (INRIA-Saclay) and Svyatoslav Voloshynovskyy (U Genève).

34

References
[1] Aad, G., et al.: The ATLAS Simulation Infrastructure. Eur. Phys. J.

C70, 823–874 (2010). DOI 10.1140/epjc/s10052-010-1429-9
[2] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,
Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.:
TensorFlow: Large-scale machine learning on heterogeneous systems
(2015). URL https://www.tensorflow.org/. Software available
from tensorflow.org

[3] Adam-Bourdarios, C., Cowan, G., Germain, C., Guyon, I., Kégl, B.,
Rousseau, D.: The Higgs boson machine learning challenge. In:
HEPML@ NIPS, pp. 19–55 (2014). URL http://www.jmlr.org/
proceedings/papers/v42/cowa14.pdf

[4] Amrouche, S., et al.: The Tracking Machine Learning Challenge :
Throughput phase. in preparation

[5] Amrouche, S., et al.: Track reconstruction at LHC as a collaborative
data challenge use case with RAMP. EPJWeb Conf. 150, 00015 (2017).
DOI 10.1051/epjconf/201715000015

[6] Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for
discovering structure in clustered data. In: Pacific Symposium on
Biocomputing, pp. pp. 6–17 (2002)

[7] Bentley, J.L.: Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM 18(9), 509–517 (1975). DOI
10.1145/361002.361007. URL http://doi.acm.org/10.1145/
361002.361007

[8] Flavours of Physics: Finding 𝜏 → 𝜇𝜇𝜇. URL https://www.kaggle.
com/c/flavours-of-physics

[9] the Large Hadron Collider at CERN. URL https://home.cern/
topics/large-hadron-collider

[10] TrackML data set to appear on . URL http://opendata.cern.ch
[11] TrackML data set to appear on . URL https://archive.ics.uci.

edu/ml/datasets.html

[12] TrackML particle tracking challenge main site. URL https://sites.
google.com/site/trackmlparticle/

[13] TrackML Particle Tracking Challenge on Codalab. URL https://
competitions.codalab.org/competitions/20112

35

https://www.tensorflow.org/
http://www.jmlr.org/proceedings/papers/v42/cowa14.pdf
http://www.jmlr.org/proceedings/papers/v42/cowa14.pdf
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
https://www.kaggle.com/c/flavours-of-physics
https://www.kaggle.com/c/flavours-of-physics
https://home.cern/topics/large-hadron-collider
https://home.cern/topics/large-hadron-collider
http://opendata.cern.ch
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
https://sites.google.com/site/trackmlparticle/
https://sites.google.com/site/trackmlparticle/
https://competitions.codalab.org/competitions/20112
https://competitions.codalab.org/competitions/20112

[14] TrackML Particle Tracking Challenge on Kaggle. URL https://www.
kaggle.com/c/trackml-particle-identification

[15] Chollet, F., et al.: Keras. https://keras.io (2015)
[16] CMS Collaboration: The Phase-2 Upgrade of the CMS Tracker. Tech.

Rep. CMS-TDR-014, CERN, Geneva (2017)
[17] Collaboration, A.: Technical Design Report for the ATLAS Inner

Tracker Pixel Detector. Tech. Rep. ATLAS-TDR-030, CERN, Geneva
(2017)

[18] Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines
and curves in pictures. Tech. rep., Artificial Intelligence Center (1971)

[19] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise. In: Kdd,
pp. 226–231. AAAI Press (1996)

[20] Farrell, S., et al.: The HEP.TrkX Project: deep neural networks for HL-
LHC online and offline tracking. EPJ Web Conf. 150, 00003 (2017).
DOI 10.1051/epjconf/201715000003

[21] Ferreira, D.R.: Code for TrackML Accuracy challenge. URL https:
//github.com/diogoff/trackml-100

[22] Finnie, L., Finnie, N.: Code for TrackML Accuracy challenge. URL
https://github.com/jliamfinnie/kaggle-trackml

[23] Gorbunov, S.: Code for TrackML Accuracy challenge. URL https:
//github.com/sgorbuno/TrackML_CombinatorialTracker

[24] Gumpert, C., Salzburger, A., Kiehn, M., Hrdinka, J., Calace, N.: ACTS:
fromATLAS software towards a common track reconstruction software.
J. Phys. Conf. Ser. 898(4), 042011 (2017). DOI 10.1088/1742-6596/
898/4/042011

[25] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997). DOI 10.1162/neco.1997.9.8.1735.
URL http://dx.doi.org/10.1162/neco.1997.9.8.1735

[26] Meilă, M.: Comparing clusterings—an information based distance. J.
Multivar. Anal. 98(5), 873–895 (2007)

[27] Pérez, F., Granger, B.E.: IPython: a system for interactive scientific
computing. Computing in Science and Engineering 9(3), 21–29 (2007).
DOI 10.1109/MCSE.2007.53. URL https://ipython.org

[28] Puget, J.F.: Code for TrackML Accuracy challenge. URL https:
//github.com/jfpuget/Kaggle_TrackML

[29] Rand, W.M.: Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical Association 66(336), 846–850
(1971)

[30] Reina, Y., Xylouris, T.: Code for TrackML Accuracy challenge. URL
https://github.com/tx1985/kaggle-trackML

36

https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification
https://keras.io
https://github.com/diogoff/trackml-100
https://github.com/diogoff/trackml-100
https://github.com/jliamfinnie/kaggle-trackml
https://github.com/sgorbuno/TrackML_CombinatorialTracker
https://github.com/sgorbuno/TrackML_CombinatorialTracker
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://ipython.org
https://github.com/jfpuget/Kaggle_TrackML
https://github.com/jfpuget/Kaggle_TrackML
https://github.com/tx1985/kaggle-trackML

[31] Sabes, D.: L1 track triggering with associative memory for the CMS
HL-LHC tracker. JINST 9(11), C11014 (2014). URL https://cds.
cern.ch/record/2025864

[32] Sjöstrand, T., Mrenna, S., Skands, P.: A brief introduction to PYTHIA
8.1. Computer Physics Communications 178(11), 852–867 (2008).
DOI 10.1016/j.cpc.2008.01.036

[33] TrackML team: TrackML helper library . URL https://github.
com/LAL/trackml-library

[34] Wilcoxon, F.: Individual Comparisons by Ranking Methods. Bio-
metrics Bulletin 1(6), 80–83 (1945). DOI 10.2307/3001968. URL
http://dx.doi.org/10.2307/3001968

[35] Wind, J.S.: Code for TrackML Accuracy challenge. URL https:
//github.com/top-quarks/top-quarks

37

https://cds.cern.ch/record/2025864
https://cds.cern.ch/record/2025864
https://github.com/LAL/trackml-library
https://github.com/LAL/trackml-library
http://dx.doi.org/10.2307/3001968
https://github.com/top-quarks/top-quarks
https://github.com/top-quarks/top-quarks

	1 Introduction
	2 Setup
	2.1 The TrackML detector
	2.2 Simulation
	2.3 Dataset
	2.4 Scoring
	2.5 The Kaggle platform
	2.6 Summary of challenge choices
	2.7 Starting kit

	3 Competition Facts and Figure
	4 Study of algorithms performance
	4.1 Tracking efficiency
	4.2 Track purity

	5 Selected algorithms
	5.1 Algorithm Description
	5.1.1 Challenge Winner : top-quarks
	5.1.2 Challenge Runner-up : outrunner
	5.1.3 Challenge Second Runner-up : Sergey Gorbunov
	5.1.4 Jury Innovative Prize : Yuval and Trian
	5.1.5 Jury Clustering Prize : CPMP
	5.1.6 Jury Deep Learning Prize : finnies
	5.1.7 Organizer's Pick : diogo

	5.2 Lessons Learned
	5.2.1 Accuracy Driven Steps
	5.2.2 Data Driven Estimation of the Magnetic Field
	5.2.3 Computational Cost of Deep Learning
	5.2.4 Hyper-parameter Tuning
	5.2.5 Noise-Driven Control of the Combinatorial Explosion

	6 Conclusion and Outlook

