Recent measurements of Higgs to bosons decays at the LHC

Tülay Çuhadar Dönszelmann University of Sheffield (On behalf of the ATLAS and CMS collaborations)

DIS2019: XVII International Workshop on Deep Inelastic Scattering Torino (Italy), 8-12 April 2019

Outline

H \rightarrow ZZ^{*}, H $\rightarrow \gamma\gamma$ and H \rightarrow WW^{*}

- Higgs mass / width
- Production mode cross sections in Simplified Template Cross Section (STXS)
- Differential fiducial cross section
- Higgs self coupling and anomalous coupling

Also discuss:

- Higgs to invisible decays
- Rare decays

Run 1: 25 fb⁻¹ at √s = 7, 8 TeV Run 2 : 140 fb⁻¹ at √s = 13 TeV

ATLAS: Higgs mass and width

Run 2 mass measurement:

 $H \rightarrow \gamma \gamma$ systematic dominated - main source photon energy scale

 $H \rightarrow 4\ell \ (H \rightarrow 4e, \ 4\mu, 2e2\mu \text{ and } 2\mu2e)$ statistics dominated Direct measurement of Higgs width $\Gamma_{\rm H}$: Run 1 H $\rightarrow 4\ell$ (H $\rightarrow \gamma\gamma$) (PRD 90, 052004):

Г_Н < 2.6 (5.0) GeV at 95% C.L

Indirect measurement of $\Gamma_{\rm H}$: Compare on-shell and off-shell rates, and assuming the couplings of on-shell and off-shell are the same: $\mu_{\rm off-shell}/\mu_{\rm on-shell} = \Gamma_H/\Gamma_H^{\rm SM}$ $\Gamma_{\rm H} < 14.4$ MeV (PLB 786 (2018) 223) ³

CMS: Higgs mass and width

Best limit on $\Gamma_{\rm H}$ (arXiv:1901.00174) from indirect measurement: $\Gamma_{\rm H}$ < 9.16 MeV at 95% C.L.

JHEP 11 (2017) 047

Run 2, 36 fb⁻¹: combining $H \rightarrow 4e$, 4μ and $2e2\mu$ m_H = 125.26 ± 0.20 (stat) ± 0.08 (syst) GeV (main systematic: uncertainty in the lepton momentum scale)

Simplified Template Cross Section (STXS)

arXiv:1610.07922 arXiv:1605.04692

- The goal with STXS method:
 - Maximise sensitivity of measurements
 - Minimise their dependence on the theory
- Categorise events in exclusive phase space regions (signal templates) in different production modes (ggF, VBF, VH, ttH)
- STXS allows to combine different decay channels from LHC experiments

Higgs boson properties are measured with 36 fb⁻¹ - 137 fb⁻¹ ($\sqrt{s} = 13$ TeV) for Higgs boson rapidity $|y_H| < 2.5$

$H \rightarrow 4\ell$: Four-lepton Invariant mass distribution

■ Small branching fraction (0.0124% at m_H = 125 GeV), final states are fully reconstructable, S/B better than 2

■ Backgrounds: (irreducible estimated from simulation) production of ZZ via qq annihilation or gluon fusion, (reducible estimated from data) Z+jets, tt+jets, $Z\gamma$ +jets, WW+jets, and WZ+jets

■ Cross sections are extracted by minimising twice the negative logarithm of the profile likelihood ratio (-2 In A)

BDT is trained to separate the production mode from the others

ATLAS-CONF-2018-018

CMS-PAS-HIG-19-001

$H \rightarrow \gamma \gamma$: Diphoton invariant mass distribution

- Small branching fraction (0.23% at m_H = 125.09 GeV), final states are fully reconstructable, look for a narrow peak on a smooth background
- Backgrounds: SM diphoton production or γ +jets, jet+jets (estimated from data)

ATLAS-CONF-2018-028

Signal plus background model fit for the sum of all categories, and the residual plot after subtracting the background

<u>CMS-PAS-HIG-18-029</u>

ATLAS: Production mode cross sections from $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ (Stage 0)

 $\blacksquare Measured \ \sigma \times B \ in \ different \ productions \ mode$

• Events split in 11 (4 ℓ) and 29 ($\gamma\gamma$) categories

■ Good agreement with ggF and VH and $\sigma_{VBF} \times B$ is 1.8 σ higher than SM prediction (in 4 ℓ), evidence of ttH(H $\rightarrow \gamma\gamma$) with 4.9 σ observed significance

8

ATLAS-CONF-2018-018

CMS: Production mode cross sections from $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ (Stage 0)

Measured cross sections in different productions mode

• Events splitted in 22 (4 ℓ) and 14 ($\gamma\gamma$) categories

CMS-PAS-HIG-19-001

(Dominant syst.: lepton ID efficiency & luminosity measurement)

(Dominant syst.: photon shower shape modelling, energy scale/resolution, jet energy scale and luminosity measurement)

With 80 fb⁻¹ CMS-PAS-HIG-18-029

$$\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = 1.15^{+0.15}_{-0.15} \qquad \frac{\sigma_{qqH}}{\sigma_{qqH}^{SM}} = 0.8^{+0.4}_{-0.3}$$

ATLAS: Production mode cross sections from $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ (Stage 1)

ATLAS-CONF-2018-018

- In all regions, measurements are consistent with SM predictions
- Due to finer categorisation, measurements in stage 1 are statistics limited
- Stage 1 theoretical uncertainties are smaller than Stage 0

See talk by S. Tsuno for the details of ATLAS combination

CMS: Production mode cross sections from $H \rightarrow 4\ell$ (Stage 1.1) and $H \rightarrow \gamma\gamma$ (Stage 1)

- Production mode \Rightarrow Split to STXS stage 1.1 (stage 1) bins
 - for $4\ell(\gamma\gamma) \Rightarrow$ split to improve sensitivity
 - $\gamma\gamma$ (77.4 fb⁻¹) with 24 event categories
 - Bins are merged due to limited statistics
- Cross section ratios are constrained to be positive ggH-0j/pT[0,10] 0.87^{+0.28} ggH-0j/pT[10-200] 1.06^{+0.18}_{-0.17}

CMS-PAS-HIG-19-001

CMS *Preliminary*

-0.25

m_H profiled

137.1 fb⁻¹ (13 TeV)

H→ZZ→4I

 $\sigma_{\rm SM}$ (fb)

0.80

2.53

ATLAS H \rightarrow WW*: Production mode cross sections

- Inclusive cross section measurements of $\sigma \times B(H \rightarrow WW^*) \rightarrow e\nu\mu\nu$ at 36 fb⁻¹ via ggH and VBF
- Three main categories: 0jet and 1jet (ggF) and 2jet (VBF). Finer categorisation of 0jet & 1jet based on m_{ℓℓ} and sub-leading lepton p_T

 $\sigma_{ggF} \times B = 11.4^{+1.2}_{-1.1} (\text{stat})^{+1.2}_{-1.1} (\text{th.})^{+1.4}_{-1.3} (\text{syst}) \text{ pb}$ $\sigma_{ggF} \times B = 10.4 \pm 0.6 \text{ pb} (\text{SM prediction})$

 $\sigma_{VBF} \times B = 0.50^{+0.24}_{-0.22}$ (stat) ± 0.10 (th.) $^{+0.12}_{-0.13}$ (syst) pb $\sigma_{VBF} \times B = 0.81 \pm 0.02$ pb (SM prediction)

12

CMS: $H \rightarrow WW^*$

■ Higgs properties $H \rightarrow WW^* \rightarrow 2\ell 2\nu$ at 36 fb⁻¹ (different and same lepton flavours

ATLAS: Differential fiducial cross section

- Differential cross section as a function of Higgs p_T , N_{jet} , (for $\gamma\gamma$) mode also $|y_{\gamma\gamma}|$ and Jet P_T) are measured
 - High Higgs p_T region is sensitive to pQCD and new physics
 - N_{iet} is sensitive to QCD and composition of the production modes

$$\sigma_{fid,4\ell} = 4.04 \pm 0.41(stat.) \pm 0.22(syst.) \text{ fb}$$

 $\sigma_{SM,4\ell} = 3.35 \pm 0.15 \text{ fb}$

 $\sigma_{\text{fid},\gamma\gamma} = 60.4 \pm 6.1(\text{stat.}) \pm 6.0(\text{exp.}) \pm 0.3(\text{th.}) \text{ fb}$ $\sigma_{SM,\gamma\gamma} = 63.5 \pm 3.3 \text{ fb}$

121801 (2017)

 $\kappa_c = -10$

 $\kappa_c = -5$ $\kappa_c = 0$

 $\kappa_c = 5$

CMS: Differential fiducial cross section

■ Differential cross section as a function of Higgs p_T , N_{jet} , $|y_H|$ and Jet P_T are measured (for $\gamma\gamma$, measurement is done for jet kinematics)

CMS-PAS-HIG-19-001

 $\sigma_{fid,4l} = 2.73^{+0.23}_{-0.22}(\text{stat.})^{+0.24}_{-0.19}(\text{syst.})$ fb $\sigma_{\text{SM},4l} = 2.76 \pm 0.14$ fb

 $\sigma_{fid,\gamma\gamma} = 84 \pm 11(\text{stat.}) \pm 7(\text{syst.}) \text{ fb}$ $\sigma_{SM,\gamma\gamma} = 73 \pm 4 \text{ fb}$

ATLAS: Higgs self coupling

- Higgs boson trilinear self coupling (λ_{HHH}) contributes at NLO EW via Higgs self energy loop corrections and additional diagrams $_{H}$
 - Indirect constraint is set to $λ_{HHH}$ from single Higgs
 - Global fit to single H decays: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^*$, $H \rightarrow WW^*$, $H \rightarrow \tau\tau$ and VH (H \rightarrow bb) to extract κ_λ
 - Luminosity ranging from 36.1 fb⁻¹ to 79.1 fb⁻¹

$$\mu_{if}(\kappa_{\lambda}) = \mu_{i}(\kappa_{\lambda}) \times \mu_{f}(\kappa_{\lambda}) \equiv \frac{\sigma_{i}(\kappa_{\lambda})}{\sigma_{SM,i}} \times \frac{BR_{f}(\kappa_{\lambda})}{BR_{SM,f}} \qquad \kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$$

single Higgs production in VBF

POIs	Granularity	$\kappa_{F-1\sigma}^{+1\sigma}$	$\kappa_{V-1\sigma}^{+1\sigma}$	$\overset{+1\sigma}{\kappa_{\lambda-1\sigma}}$	κ_{λ} [95% C.L.]
κ_λ	STXS	1	1 C	$4.0^{+4.3}_{-4.1}$	[-3.2, 11.9]
				$1.0^{+8.8}_{-4.4}$	[-6.2, 14.4]
κ_{λ}	inclusive	1	1	$4.6_{-4.2}^{+4.3}$	[-2.9, 12.5]
				$1.0^{+9.5}_{-4.3}$	[-6.1, 15.0]
$\kappa_{\lambda}, \kappa_{V}$	STXS	1	$1.04_{-0.04}^{+0.05}$	$4.8^{+7.4}_{-6.7}$	[-6.7, 18.4]
			$1.00\substack{+0.05 \\ -0.04}$	$1.0^{+9.9}_{-6.1}$	[-9.4, 18.9]
$\kappa_{\lambda},\kappa_{F}$	STXS	$0.99\substack{+0.08\\-0.08}$	1	$4.1_{-4.1}^{+4.3}$	[-3.2, 11.9]
		$1.00^{+0.08}_{-0.08}$		$1.0^{+8.8}_{-4.4}$	[-6.3, 14.4]

CMS: Higgs anomalous coupling

- Search for anomalous Higgs boson couplings to electroweak vector bosons with the H \rightarrow 4 ℓ (ϕ) and H \rightarrow $\tau\tau$ (<u>CMS-HIG-17-034</u>) decay channels in VBF and VH using data from Run 1 (25 fb⁻¹) and Run 2 (80 fb⁻¹)
- HVV amplitude:

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu},$$

- a2: CP-even interaction
- a₃: CP-odd interaction (pure pseudo-scalar)
- Λ_1 : leading momentum expansion

HVV amplitude parameterised as a function of f_{ai}:

HVV couplings expressed as effective cross-section fractions and phases ($\phi_{ai} = arg(a_i/a_1)$:

CMS-HIG-17-034

Parameter	Observed / (10^{-3})		Expected / (10^{-3})		
	68% CL	95% CL	68% CL	95% CL	
$f_{a3}\cos(\phi_{a3})$	0.00 ± 0.27	[-92, 14]	0.00 ± 0.23	[-1.2, 1.2]	
$f_{a2}\cos(\phi_{a2})$	$0.08\substack{+1.04 \\ -0.21}$	[-1.1, 3.4]	$0.0^{+1.3}_{-1.1}$	[-4.0, 4.2]	
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.00\substack{+0.53 \\ -0.09}$	[-0.4, 1.8]	$0.00\substack{+0.48\\-0.12}$	[-0.5, 1.7]	
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.0^{+1.1}_{-1.3}$	[-6.5, 5.7]	$0.0\substack{+2.6 \\ -3.6}$	[-11, 8.0]	

Higgs decay to invisible

Rare decays

- Probe Higgs-charm couplings via Higgs rare decays
- CMS: Upper limits @95 C.L. set on the branching fractions of $H \rightarrow J/\psi J/\psi$ and $H \rightarrow \gamma(nS)\gamma(nS)$

■ ATLAS: Upper limits @95 C.L. set on the branching fractions of $H \rightarrow J/\psi(\psi(2S))\gamma$ and $H \rightarrow \gamma(nS)\gamma$

n=1,2,3 and $J/\psi \rightarrow \mu\mu$, $\Upsilon(nS) \rightarrow \mu\mu$ with 36 fb⁻¹

Branching fraction limit $(95\% \text{ CL})$	Expected	Observed
$\mathcal{B}\left(H\to J/\psi\gamma\right)\left[\;10^{-4}\;\right]$	$3.0^{+1.4}_{-0.8}$	3.5
$\mathcal{B}\left(H \to \psi\left(2S\right)\gamma\right)\left[\;10^{-4}\;\right]$	$15.6^{+7.7}_{-4.4}$	19.8
$\mathcal{B}\left(Z \to J/\psi \gamma ight)\left[10^{-6} ight]$	$1.1_{-0.3}^{+0.5}$	2.3
$\mathcal{B}\left(Z \to \psi\left(2S\right) \gamma\right) \left[\ 10^{-6} \ \right]$	$6.0^{+2.7}_{-1.7}$	4.5
$\mathcal{B}\left(H\to\Upsilon(1S)\gamma\right)\left[\;10^{-4}\;\right]$	$5.0^{+2.4}_{-1.4}$	4.9
$\mathcal{B}\left(H\to\Upsilon(2S)\gamma\right)\left[\;10^{-4}\;\right]$	$6.2^{+3.0}_{-1.7}$	5.9
$\mathcal{B}\left(H\to\Upsilon(3S)\gamma\right)\left[\;10^{-4}\;\right]$	$5.0^{+2.5}_{-1.4}$	5.7
$\mathcal{B}\left(Z ightarrow \Upsilon(1S) \gamma ight) \left[\ 10^{-6} \ ight]$	$2.8^{+1.2}_{-0.8}$	2.8
$\mathcal{B}\left(Z ightarrow \Upsilon(2S) \gamma ight) \left[\ 10^{-6} \ ight]$	$3.8^{+1.6}_{-1.1}$	1.7
$\mathcal{B}(Z \to \Upsilon(3S) \gamma) [\ 10^{-6} \]$	$3.0^{+1.3}_{-0.8}$	4.8

<u>SM prediction</u>: $B(H \rightarrow J/\psi\gamma) = 2.99 \times 10^{-6}$ $B(H \rightarrow \psi(2S)\gamma) = 1.03 \times 10^{-6}$ $B(H \rightarrow Y(nS)\gamma) = (5,22, 1.42, 0.91) \times 10^{-9} (n=1,2,3)$ 19

Summary

- Higgs discovery channels are investigated using pp collision data with integrated luminosity between 36 fb⁻¹ and 137 fb⁻¹ at $\sqrt{s} = 13$ TeV (LHC Run 2)
 - Four main production mechanisms are observed
 - Differential cross sections are measured
 - Possible BSM contributions are explored
- So far, all the results are in agreement with the SM predictions
- ATLAS and CMS continue to improve the results and search for deviations from SM with the full LHC Run 2 data (~140 fb⁻¹)

BACKUP

Higgs Production at LHC

Higgs Production at LHC

 Branching fraction at $m_H = 125.09$ GeV:

 WW: 21%, ZZ: 2.64%

 $Z\gamma$: 0.2%

- $\blacksquare H \rightarrow WW^*$
 - High branching fraction
 - Poor mass resolution and large background
- $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow (Z/\gamma)\gamma$ decays
 - Small branching fraction
 - Final states are fully reconstructable
 - S/B better than 2
 - Look for a narrow peak on a smooth background

ATLAS: 11 H \rightarrow ZZ^{*} \rightarrow 4 ℓ categorise

ATLAS: $H \rightarrow \gamma \gamma$ 29 categories

Category label	Selection
ttH lep BDT1	$N_{\rm lep} \ge 1, \ N_{b-\rm jet} \ge 1, \ {\rm BDT}_{\rm ttHlep} > 0.987$
ttH lep BDT2	$N_{\rm lep} \ge 1, \ N_{b-\rm jet} \ge 1, \ 0.942 < {\rm BDT}_{\rm ttHlep} < 0.987$
ttH lep BDT3	$N_{\rm lep} \ge 1, \ N_{b-\rm jet} \ge 1, \ 0.705 < {\rm BDT}_{\rm ttHlep} < 0.942$
ttH had BDT1	$N_{\text{lep}} = 0, \ N_{\text{jets}} \ge 3, \ N_{b-\text{jet}} \ge 1, \ \text{BDT}_{\text{ttHhad}} > 0.996$
ttH had BDT2	$N_{\rm lep} = 0, \ N_{\rm jets} \ge 3, \ N_{b-\rm jet} \ge 1, \ 0.991 < {\rm BDT}_{\rm ttHhad} < 0.996$
ttH had BDT3	$N_{\rm lep} = 0, \ N_{\rm jets} \ge 3, \ N_{b-\rm jet} \ge 1, \ 0.971 < {\rm BDT}_{\rm ttHhad} < 0.991$
ttH had BDT4	$N_{\rm lep} = 0, \ N_{\rm jets} \ge 3, \ N_{b-\rm jet} \ge 1, \ 0.911 < {\rm BDT}_{\rm ttHhad} < 0.971$
VH dilep	$N_{ m lep} \ge 2, \ 70 { m GeV} \le m_{\ell\ell} \le 110 { m GeV}$
VH lep High	$N_{ m lep} = 1, \ m_{e\gamma} - 89 { m GeV} > 5 { m GeV}, \ p_{ m T}^{\ell + E_{ m T}^{ m miss}} > 150 { m GeV}$
VH lep Low	$N_{ m lep} = 1, ~ m_{e\gamma} - 89 { m GeV} > 5 { m GeV}, ~ p_{ m T}^{\ell + E_{ m T}^{ m miss}} < 150 { m GeV}, ~ E_{ m T}^{ m miss}$ significance > 1
VH MET High	$150\mathrm{GeV} < E_\mathrm{T}^\mathrm{miss} < 250\mathrm{GeV}, \ E_\mathrm{T}^\mathrm{miss} \ \mathrm{significance} > 9 \ \mathrm{or} \ E_\mathrm{T}^\mathrm{miss} > 250\mathrm{GeV}$
VH MET Low	$80\mathrm{GeV} < E_\mathrm{T}^\mathrm{miss} < 150\mathrm{GeV}, \ E_\mathrm{T}^\mathrm{miss}$ significance > 8
qqH BSM	$N_{\rm jets} \ge 2, \ p_{\rm T,j1} > 200 {\rm GeV}$
VH had BDT tight	$60 \mathrm{GeV} < m_{\mathrm{jj}} < 120 \mathrm{GeV}, \mathrm{BDT}_{\mathrm{VH}} > 0.78$
VH had BDT loose	$60 \mathrm{GeV} < m_{\mathrm{jj}} < 120 \mathrm{GeV}, \ 0.35 < \mathrm{BDT}_{\mathrm{VH}} < 0.78$
VBF high- $p_{\rm T}^{Hjj}$ BDT tight	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, \ p_{\mathrm{T}}^{Hjj} > 25 \mathrm{GeV}, \ \ \mathrm{BDT}_{\mathrm{VBF}}^{\mathrm{high}} > 0.47$
VBF high- $p_{\rm T}^{Hjj}$ BDT loose	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, \ p_{\rm T}^{Hjj} > 25 {\rm GeV}, \ -0.32 < {\rm BDT}_{\rm VBF}^{\rm high} < 0.47$
VBF low- $p_{\rm T}^{Hjj}$ BDT tight	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, \ p_{\mathrm{T}}^{Hjj} < 25 \mathrm{GeV}, \ \ \mathrm{BDT}_{\mathrm{VBF}}^{\mathrm{low}} > 0.87$
VBF low- $p_{\rm T}^{Hjj}$ BDT loose	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, \ p_{\rm T}^{Hjj} < 25 {\rm GeV}, \ 0.26 < {\rm BDT}_{\rm VBF}^{\rm low} < 0.87$
ggF 2J BSM	$N_{ m jets} \ge 2, \ p_{ m T}^{\gamma\gamma} \ge 200 { m GeV}$
m ggF~2J~High	$N_{ m jets} \geq 2, \ p_{ m T}^{\gamma\gamma} \in [120, 200] \ { m GeV}$
ggF 2J Med	$N_{ m jets} \geq 2, \ p_{ m T}^{\gamma\gamma} \in [60, 120] \ { m GeV}$
ggF 2J Low	$N_{ m jets} \geq 2, \ p_{ m T}^{\gamma\gamma} \in [0, 60] \ { m GeV}$
$\rm ggF~1J~BSM$	$N_{ m jets} = 1, \ p_{ m T}^{\gamma\gamma} \geq 200 { m GeV}$
ggF 1J High	$N_{\rm jets} = 1, \ p_{\rm T}^{\gamma\gamma} \in [120, 200] \ { m GeV}$
ggF 1J Med	$N_{\rm jets} = 1, \ p_{\rm T}^{\gamma\gamma} \in [60, 120] \text{ GeV}$
ggF 1J Low	$N_{ m jets} = 1, \ p_{ m T}^{\gamma\gamma} \in [0, 60] \ { m GeV}$
ggf UJ Fwd	$N_{ m jets} = 0$, one photon with $ \eta > 0.95$

Differential fiducial cross section

CMS: Combination of Production Cross Section

- Combine H → ZZ, WW, $\gamma\gamma$, tt, bb, and $\mu\mu$ at 13 TeV with 36 fb⁻¹
- Compared to the Run 1 results improvement in the precision of the measurements
 - ggH by 50%, up to 20% for the VBF and VH

<u>Global strength for $|y_H| < 2.5$ </u> $\mu = 1.17 \pm 0.06(\text{stat})^{+0.06}_{-0.05}(\text{sig th.}) \pm 0.06(\text{other syst})$

ATLAS: Rare decays

■ ATLAS: Branchings fraction of $H \rightarrow J/\psi(\psi(2S)) \gamma$ and $H \rightarrow \Upsilon(nS)\gamma$ n=1,2,3 and $J/\psi \rightarrow \mu\mu$, $\Upsilon(nS) \rightarrow \mu\mu$ with 36 fb⁻¹

		Observed (expected) background				Z signal	H signal
$m_{\mu^+\mu^-}$ mass range [GeV]		$m_{\mu^+\mu^-\gamma}$ mass range [GeV]				for	for
			81-101	120-130		$\mathcal{B} = 10^{-6}$	$\mathcal{B} = 10^{-3}$
$J/\psi\gamma$	2.9 - 3.3	92	(89 ± 6)	20	(23.6 ± 1.3)	13.7 ± 1.1	22.2 ± 1.9
$\psi(2S)\gamma$	3.5 – 3.9	43	(42 ± 5)	8	(10.0 ± 0.8)	1.82 ± 0.14	2.96 ± 0.25
$\Upsilon(1S) \gamma$	9.0 - 10.0	115	(126 ± 8)	9	(13.6 ± 1.2)	7.8 ± 0.6	10.7 ± 0.9
$\Upsilon(2S) \gamma$	9.5 – 10.5	106	(121 ± 8)	8	(12.6 ± 1.4)	5.9 ± 0.5	8.1 ± 0.7
$\Upsilon(3S) \gamma$	10.0 - 11.0	112	(113 ± 8)	7	(10.6 ± 1.2)	7.1 ± 0.6	9.2 ± 0.8

ATLAS - Higgs self-coupling

$$\mu_f(\kappa_{\lambda}, \kappa_f) = \underbrace{\frac{\mathsf{BR}_f^{\mathsf{BSM}}}{\mathsf{BR}_f^{\mathsf{SM}}}}_{\mathsf{F}} = \frac{\kappa_f^2 + (\kappa_{\lambda} - 1)C_1^f}{\sum_j \mathsf{BR}_j^{\mathsf{SM}} \left[\kappa_j^2 + (\kappa_{\lambda} - 1)C_1^j\right]}$$

production mode	ggF	VBF	ZH	WH	tīH
$C_{1}^{i} \times 100$	0.66	0.63	1.19	1.03	3.52
$K_{ m EW}^i$	1.049	0.932	0.947	0.93	1.014
κ_i^2	κ_F^2	κ_V^2	κ_V^2	κ_V^2	κ_F^2

-	decay mode	$H \rightarrow \gamma \gamma$	$H \rightarrow WW^*$	$H \rightarrow ZZ^*$	$H \rightarrow b \bar{b}$	$H \to \tau \tau$
	$C_{1}^{f} \times 100$	0.49	0.73	0.82	0	0
-	κ_f^2	$1.59\kappa_V^2 + 0.07\kappa_F^2 - 0.67\kappa_V\kappa_F$	κ_V^2	κ_V^2	κ_F^2	κ_F^2

$$\mu_{i}(\kappa_{\lambda},\kappa_{i}) = \underbrace{\frac{\sigma^{\text{BSM}}}{\sigma^{\text{SM}}}}_{\text{SM}} = Z_{H}^{\text{BSM}}(\kappa_{\lambda}) \left[\kappa_{i}^{2} + \frac{(\kappa_{\lambda} - 1)C_{1}^{i}}{K_{\text{EW}}^{i}}\right]$$

- K_{EW} accounts for the complete NLO EW correction of the production cross section for the process *i* in the SM hypothesis
- C₁ is a process and kinematics-dependent linear coefficient that provides the sensitivity of the measurement to κ_{λ}

$$Z_{H}^{\text{BSM}}(\kappa_{\lambda}) = \frac{1}{1 - (\kappa_{\lambda}^{2} - 1)\delta Z_{H}}$$
 with $\delta Z_{H} = -1.536 \times 10^{-3}$