Heavy flavour physics at the LHC

Sneha Malde

University of Oxford

 S neha M alde $\hbox{\small\it I}$

Sneha Malde \sim 2

Flavour physics at the LHC

Sneha Malde 6

Cross sections and triggers

Beauty and charm are produced in abundance

GPDs : Mainly di-muon

LHCb : array of different triggers

B_c spectroscopy

- Unique system of two heavy quarks in a bound state
- Production rate is low compared to other B mesons – lots to discover
- Allows tests of non-perturbative QCD.
- Search for excited states of the B_c studies states similar to bottomonium, charmonium

 $B_c(2S)^+ \to B_c^+\pi^+\pi^ B_c^*(2S)^+ \to B_c^{*+}(\to B_c^+\gamma)\pi^+$ **ATLAS** $\sigma_{B_{\text{eff}}}=18 \pm 4 \text{ MeV}$ Ldt = 19.2 fb $N_{B, \pi\pi} = 35 \pm 1$ B_c^+ pp Wrong-charge combinations B_c^+ π^{*} π^+ π π 300 400 500 600 700 100 200 A peak was observed by ATLAS in 2014, but [PRL 113 (2014) 12004] m(B_ρππ)-m(B_ρ)-2m(π) [MeV] which state was it?

Bc (*)(2S)+ at CMS

- CMS uses full Run 2 dataset 140 pb⁻¹
- Topological selection criteria key to reducing backgrounds
- $B_c^*(2S)^+$ and $B_c(2S)^+$ resolved for the first time $> 5 \sigma$
- $B_c[*](2S)⁺$ lower in reconstructed mass due to missing photon

Bc (*)(2S)+ at LHCb

- Run1 + Run2 dataset : 8.5 pb-1
- $B_c[*](2S)⁺$ observed with greater than 50 significance

Exotic hadrons

Insight into QCD

- Over the last decade tetraquarks and more recently pentaquarks have been discovered – despite their existence predicted in 1964
- How do quarks bind themselves?

Sneha Malde $\hbox{\tt \bf 11}$

LHC **Pentaquark observation in 2015**

- Study of 2011 + 2012 data : 6-dim amplitude fit of the $Λ_b$ \rightarrow J/ψ p K decay
- All known Λ^* states and new ones tried
- The structure in the J/ ψ p spectrum cannot be a reflection

Observation of 2 pentaquark states

New data

- Data: $2011 2018$
- New selection with BDT including PID information.
- Signal efficiency doubled for same purity
- \rightarrow x9 previous signal yield

New data

- Data: $2011 2018$
- New selection with BDT including PID information.
- Signal efficiency doubled for same purity
- \rightarrow x9 previous signal yield

Pentaquark structure visible

New strategy

- Narrow J/ ψ p structures can be investigated without full model if data above 1.9 in m_{Kp} is selected.
- 3 narrow peaks seen. Previous broad peak can't be studied without amplitude analysis.

Introducing new pentaquarks LHCL

- Previous P_c (4450)⁺ peak is resolved into two narrow states
- $P_c(4440)^+$ & $P_c(4457)^+$ with 5.4 σ significance
- A further state $P_c(4312)^+$ is discovered with 7.3σ significance

Possible interpretation

The Pentaquarks are found just below threshold by amounts that are plausible hadron-hadron binding energies.

They are narrow.

While it points to the molecular interpretation further experimental and theoretical required to confirm this.

Flavour physics and CP violation

- The CKM matrix couples the weak and mass eigenstates of quarks
- 3 generations gives rise to one free phase which is the source of CP violation in the standard model
- \cdot Level of CP violation in the SM is orders of magnitude too small to explain our matter dominated universe \rightarrow There must be other sources of CP violation.
- Flavour physics provides and excellent arena to study CP violation

 V_{ud} V_{us} V_{ub} V_{cd} V_{cs} V_{cb} V_{td} V_{ts} V_{tb} $\sqrt{2}$ ⎝ ⎜ ⎜ ⎜ $\overline{}$ ⎞ \int ⎟ ⎟ ⎟ $\frac{1}{2}$

Flavour physics as a window to beyond the SM physics

- Throughout history precision flavour physics has resulted in the discovery of "new physics" of its time.
- CP violation, b quark, top quark
- Not only do we learn that something else exists but we can identify its properties.
- Flavour physics could be the key in answering the big questions surrounding the standard model.

Observation of B^0 mixing in 1987

implied that m_t > 50 GeV

Top eventually discovered in 1995 with mass $^{\sim}$ 175 GeV

Low energy phenonmena is sensitive to heavy particles

CP violation in B_s >J/ψ hh decays

CP violation in the Interference between direct decay, and mixing followed by decay

Signal extraction

$$
A_{CP}(t) = \frac{\Gamma_{\bar{B}_s^0 \to f}(t) - \Gamma_{B_s^0 \to f}(t)}{\Gamma_{\bar{B}_s^0 \to f}(t) + \Gamma_{B_s^0 \to f}(t)} \sim \sin(\phi_s) \sin(\Delta m_s t)
$$

- Time dependent:
- ATLAS New: IBL layer
- Pixel layer close to the beam pipe
	- Decay time resolution from \sim 100 fs \rightarrow $~\sim$ 70 fs
- LHCb resolution around \sim 45 fs prompt signal removes from analysis
- Tagging power
- ATLAS: 1.65 %
- $LHCb: 4.73 %$

Full fit

$$
A_{CP}(t) = \frac{\Gamma_{\bar{B}_s^0 \to f}(t) - \Gamma_{B_s^0 \to f}(t)}{\Gamma_{\bar{B}_s^0 \to f}(t) + \Gamma_{B_s^0 \to f}(t)} \sim \sin(\phi_s) \sin(\Delta m_s t)
$$

- The final state has $L = 0, 1, 2$ between the J/ ψ and ϕ , and also a non- ϕ S-wave component
- These must be disentangled by fitting the decay angle distributions

Full fit is a simultaneous fit to mass, decay time, tagging probability, and traversity angles

Time dependent asymmetry

 \sim

$$
A_{CP}(t) = \frac{\Gamma_{\bar{B}_s^0 \to f}(t) - \Gamma_{B_s^0 \to f}(t)}{\Gamma_{\bar{B}_s^0 \to f}(t) + \Gamma_{B_s^0 \to f}(t)}
$$

$$
\sin(\phi_s)\sin(\Delta m_s t)
$$

LH

- Full fit extracts φ_s and other parameters simultaneously
- This figure is an illustration
- As errors continue to shrink the oscillatory nature of the asymmetry will become clear

Results

- New results from ATLAS and LHCb combined with previous data results (and from other modes on LHCb)
- ATLAS & LHCb results are competitive with each other
- While consistent with the SM, approaching a sensitivity to truly probe it.

Progress in LFU measurements

• For the SM e, μ, τ are the **same except for their masses**

• Very precise predictions for
$$
R_h = \frac{\mathbf{B}(B \rightarrow hl_1l_1)}{\mathbf{B}(B \rightarrow hl_2l_2)}
$$

• **R_h** \sim 1.0 for μ/e ; R_h \sim 0.3 for τ/μ (away from phase space limits)

New particles at tree level can compete with SM loop diagrams and alter these ratios

Intriguing deviations

- R_K \sim 2.60 significance deviation from SM
- Similar story elsewhere:
	- R_{K^*} 2.2 (2.4)σ for low (high) q^2
	- Combined significance of $R_{D(*)}^{\sim}$ 3.1 σ

New results from Belle on R_{K^*} **,** R_{K^*+} **,** $R_{D(*)}$

Experimentally challenging WHC!

- Muon and Flectron tracks are different in LHCb
- Interactions with material and bremsstrahlung emission.
- Muons have better PID and trigger perfomances
- To measure R_{K} , require yields and efficiencies.

Double ratio used to try and cancel most systematic uncertainties

$$
R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu\mu)}{\mathcal{B}(B^+ \to K^+ e e)} \bigg/ \frac{\mathcal{B}(B^+ \to K^+ J/\psi(\mu\mu))}{\mathcal{B}(B^+ \to K^+ J/\psi(e e))} \\ = \frac{N(K^+ \mu\mu)}{N(K^+ J/\psi(\mu\mu))} \cdot \frac{N(K^+ J/\psi(e e))}{N(K^+ e e)} \cdot \frac{\varepsilon(K^+ J/\psi(\mu\mu))}{\varepsilon(K^+ \mu\mu)} \cdot \frac{\varepsilon(K^+ e e)}{\varepsilon(K^+ J/\psi(e e))}
$$

A single fit is performed to determine R_{κ} , using 2011 – 2016 dataset

Results with 2011 - 2016 data LHCQ

Using 2011 and 2012 LHCb data R_K was:

$$
R_{K} = 0.745^{+0.090}_{-0.074}(stat) \pm 0.036(syst)
$$
\n
$$
\approx 2.6 \text{ of room SM}
$$
\n
$$
1.5
$$
\n
$$
1.6
$$
\n
$$
1.7
$$
\n
$$
1.8
$$
\n
$$
1.9
$$
\n
$$
1.1
$$
\n
$$
1.0
$$
\n
$$
1.1
$$
\n
$$
1.0
$$
\n
$$
1.1
$$
\n
$$
1.0
$$
\n
$$
1.0
$$
\n
$$
1.1
$$
\n
$$
1.0
$$
\n
$$
1
$$

Compatibility between new and old result

- R_k is more precise. LFU breaking not confirmed \ldots nor ruled out!
- Look forward to update with full Run 2 and plenty of other measurements that probe LFU.

Timeline of CP violation

- CPV in Kaons and B mesons is well established both are down type quarks
- Charm contains an up-type quark. SM predicts it to be at 10^{-3} 10^{-4} level

CPV in charm is finally observed

Sneha Malde \sim 31 $\,$

Direct CPV

Direct CPV:
$$
|A_f|^2 \neq |\overline{A}_{\overline{f}}|^2
$$

e.g $D^0 \rightarrow KK$ or $D^0 \rightarrow \pi \pi$

Necessary to know initial D meson state

Charge of the accompanying particle tags the production flavour

Prompt charm $D^{*+} \rightarrow D^0 \pi^+$

Semileptonic charm $B\rightarrow D^0$ μ- υ X

Sneha Malde $\,$ 32 $\,$

Detector effects contribute to measured asymmetry

Use the difference in the direct CPV in two decay modes to reduce systematic uncertainties (direct CPV is expected to be different in these decay modes)

$$
\Delta A_{CP} = A_{raw} (KK) - A_{raw} (\pi \pi) = A_{CP} (KK) - A_{CP} (\pi \pi)
$$

measurement

Prompt Sample

Very high yields

Secondary samples, lower yields but still substantial contribution

 A_{raw} is a parameter of the fit shared between D^0 and $\overline{D^0}$ states

Results

$$
\Delta A_{CP}^{\pi-tag} = [-18.2 \pm 3.2(stat) \pm 0.9(syst)] \times 10^{-4}
$$

$$
\Delta A_{CP}^{\mu-tag} = [-9 \pm 8(stat) \pm 5(syst)] \times 10^{-4}
$$

Compatible with Run 1 results . When combined together and with Run 1 results:

$$
\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}
$$

First observation of CPV in charm decays at 5.30 significance

Interpretation

$$
\Delta A_{CP} \simeq \Delta a_{CP}^{\text{dir}} \left(1 + \frac{\overline{\langle t \rangle}}{\tau(D^0)} y_{CP} \right) + \frac{\Delta \langle t \rangle}{\tau(D^0)} a_{CP}^{\text{ind}}
$$

Using other LHCb measurements for y_{cp} and $A_r \sim a_{CP}^{ind}$

$$
\Delta a_{CP}^{dir} = (-15.6 \pm 2.9) \times 10^{-4}
$$

- arXiv:1903.10490, arXiv:1903.10638, arXiv:1903.10952 **NP or SM**?
- Further measurements with other charm decays along will theoretical improvements will help clarify the physics picture
- Establish whether this is consistent with SM or indicates the presence of new physics in the up-quark sector

Summary

- Last 2 months have been a very exciting time for flavour **physics at the LHC** – plenty of new results were omitted here.
- Plenty of new information on QCD, CPV, rare processes
- No clear sign of new phyiscs

Sneha Malde $\,$. The contract of the contrac

R_J/ψ

$\overline{\Phi_s}$ analysis results

LHCb