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We present the fully integrated form of the two-loop four-gluon amplitude in N ¼ 2 supersymmetric
quantum chromodynamics with gauge group SUðNcÞ and with Nf massless supersymmetric quarks
(hypermultiplets) in the fundamental representation. Our result maintains full dependence onNc andNf , and
relies on the existence of a compact integrand representation that exhibits the duality between color and
kinematics. Specializing to the N ¼ 2 superconformal theory, where Nf ¼ 2Nc, we obtain remarkably
simple amplitudes that have an analytic structure close to that ofN ¼ 4 super-Yang-Mills theory, except that
now certain lower-weight terms appear. We comment on the corresponding results for other gauge groups.
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The formidable goal of one day solving a four-dimen-
sional gauge theory such as quantum chromodynamics
(QCD) has inspired spectacular progress related to analytic
computations of scattering amplitudes. Most of the
progress targets the simpler N ¼ 4 super-Yang-Mills
(SYM) theory, where analytic results for multileg ampli-
tudes are known to very high loop orders [1–16].
Massless higher-loop amplitudes often evaluate to multi-

ple polylogarithms (MPLs) [17], which generalize the
ordinary logarithm and dilogarithms functions. The notion
of a transcendental weight, which counts the number of
integrations in the functions’ definition, has played an
essential role for classifying the MPLs that are allowed to
appear. The logarithm [and iπ ¼ logð−1Þ] has a weight of 1,
while the dilogarithm has a weight of 2, etc. It was
empirically observed in many examples that an L-loop
amplitude inN ¼ 4SYMtheory always has uniformweight
2L. The uniformweight property of theN ¼ 4 SYM theory
was not only observed for scattering amplitudes, but it was
also established for certain anomalous dimensions [18–24],
form factors [25–27], correlation functions [28,29], and
correlators of semi-infinite Wilson lines [30].
The conjectured uniform weight property has made it

possible to circumvent explicit loop calculations and
instead bootstrap the function space and determine the
amplitude from knowledge of kinematic limits [4–10,31].
Understanding the origin of this property, and the theories

to which it can be applied, is central for unraveling the
mathematical structure of more general gauge theories. As
of yet, there is no clear picture of which theories have
amplitudes of uniform weight, or how deviations from it
can be best understood. Amplitudes in QCD do not have
uniform weight, though there is accumulating evidence that
amplitudes in N ¼ 8 supergravity have the same uniform
weight as in the N ¼ 4 SYM theory [32].
More general understanding comes from studying the

BFKL gluon Green’s function to high loop orders in
SUðNcÞ Yang-Mills theory with generic matter content
[33]. It was observed that a necessary condition for
obtaining results with uniform weight is that the matter
content coincides with that of a weakly coupled super-
conformal gauge theory, such as N ¼ 4 SYM theory, or
corresponding superconformal N ¼ 2; 1 theories.
However, it is not expected to be a sufficient condition,
and additional data concerning the weight properties of
more general gauge theories is needed. Furthermore, if
weight properties are to have lasting impact on boot-
strapping techniques for the real-world problem of QCD,
one needs to develop insight for better controlling the
deviations from uniform weight.
In this Letter we study a two-loop amplitude in SUðNcÞ

N ¼ 2 supersymmetric QCD (SQCD)—a theory which
has tuneable matter content like QCD, namely Nf super-
symmetric quarks, as well as a weakly coupled super-
conformal phase, like theN ¼ 4 SYM theory, at the critical
point Nf ¼ 2Nc. The Lagrangian of N ¼ 2 SQCD can be
constructed as the unique N ¼ 2 supersymmetric exten-
sion of QCD. Its perturbative spectrum consists of an
adjoint vector multiplet containing the gluon field, two
gluinos, and a complex scalar. Matter fields assemble into
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Nf fundamental hypermultiplets, each containing a quark
and two complex scalars. We only consider the limit where
the quarks and superpartners are massless.
As the main result, we present a closed analytic form of

the two-loop, four-gluon amplitude in N ¼ 2 SQCD, for
arbitrary Nc and Nf. Our starting point is the integrand of
Ref. [34], which is characterized by a particularly elegant
presentation that exhibits the duality between color and
kinematics [35,36]. The duality was critical for obtaining
the nonplanar integrand contributions through kinematic
identities that relate them to the simpler planar ones. It was
later observed that the numerators display a remarkable
simplicity when reexpressed in terms of Dirac traces [37],
from which one may expect that the final result should
share some of the simplicity of the integrand.
The color-dual integrand.—N ¼ 2 SQCD has a running

coupling constant αSðμ2RÞ, and loop amplitudes need to be
renormalized to remove ultraviolet (UV) divergences. Prior
to renormalization, we may perturbatively expand n-point
amplitudes in terms of the bare coupling α0S,

Mn ¼ ð4πα0SÞ
n−2
2

X∞
L¼0

�
α0SSϵ
4π

�
L

MðLÞ
n ; ð1Þ

where Sϵ ¼ ð4πÞϵe−ϵγ anticipates dimensional regulariza-
tion in D ¼ 4 − 2ϵ dimensions. At a multiplicity of 4, we
will always use kinematics defined by s > 0; t, u < 0,
where s ¼ ðp1 þ p2Þ2, t ¼ ðp2 þ p3Þ2, u ¼ ðp1 þ p3Þ2,
with sþ tþ u ¼ 0, and all momenta are outgoing.
The two-loop integrand of Ref. [34] was constructed to

make manifest separations at the diagrammatic level
between distinct gauge-invariant contributions. For exam-
ple, it manifests the difference between the N ¼ 4 SYM
theory and the N ¼ 2 superconformal theory (SCQCD),
with Nf ¼ 2Nc, as a combination of simple diagrams that
are manifestly UV finite. The diagrammatic separation will
allow us to have a clear partition of the integrated answer
into terms with distinct physical interpretation.
The integrand of Ref. [34] consists of 19 cubic diagrams.

Of these only ten, shown in Fig. 1, give rise to nonvanishing
integrals. Using these ten diagrams [Figs. 1(a)–1(j)] the
N ¼ 2 SQCD amplitude is assembled, with an S4 permu-
tation sum over external particle labels, as

iMð2Þ
4 ¼e2ϵγ

X
S4

X
i∈fa;…;jg

Z
d2Dl

ðiπD=2Þ2
ðNfÞjij
Si

nici
Di

; ð2Þ

where d2Dl≡ dDl1dDl2 is the two-loop integration mea-
sure and jij is the number of matter loops in the given
diagram. Diagrams are described by kinematic numerator
factors ni, color factors ci, symmetry factors Si, and
propagator denominators Di [34,37].
Color-kinematics duality requires that the kinematic

numerators ni satisfy the same general Lie algebra relations
as the color factors ci [35]. Through these relations the
numerators of Figs. 1(e)–1(j) were completely determined
by the four planar Figs. 1(a)–1(d). The integrand was
constructed through an ansatz constrained to satisfy
(D ≤ 6)-dimensional unitarity cuts. The upper bound
corresponds to theD ¼ 6,N ¼ ð1; 0Þ SQCD theory, which
is the unique supersymmetric maximal uplift of the four-
dimensional N ¼ 2 SQCD theory.
For later convenience we quote the relevant numerator

contributions to Fig. 1(b) for different gluon helicities,

ð3aÞ

ð3bÞ

ð3cÞ

where κij is proportional to the color-stripped tree ampli-
tude—for instance, in the purely gluonic case we have

κ12 ¼ istMð0Þ
ð−−þþÞ, and Mð0Þ

ð−−þþÞ ¼ −ih12i2½34�2=st. The

tr� are chirally projected Dirac traces taken strictly over the

four-dimensional parts of the momenta, and μij ¼ −l½−2ϵ�
i ·

l½−2ϵ�
j contain the extradimensional loop momenta.

Numerators of the other diagrams are of comparable
simplicity, see Refs. [34,37]. Note that four-gluon
amplitudes with helicity ð�þþþÞ exactly vanish in
supersymmetric theories due to Ward identities, so we
need not consider them. Without a loss of generality we
focus on gluon amplitudes with helicity configurations
ð−−þþÞ and ð−þ−þÞ; the general vector multiplet
cases are obtained from these by supersymmetric Ward
identities.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

FIG. 1. Ten cubic diagrams that describe the four-gluon two-loop amplitude of N ¼ 2 SQCD. At the conformal point, Nf ¼ 2Nc,
diagrams (d), (e), (i), and (j) manifestly cancel out from the integrand.
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In general, we note that any gluon amplitude in N ¼ 2
SQCD can be decomposed into three independent blocks
that have different characteristics after integration,

MðLÞ
n ¼ MðLÞ½N¼4�

n þRðLÞ
n þ ðCA − NfÞSðLÞ

n : ð4Þ
CA is the quadratic Casimir; for SUðNcÞ we normalize it as
CA ¼ 2Nc. The decomposition involves three terms:

MðLÞ½N¼4�
n is a gluon amplitude in the N ¼ 4 SYM theory,

RðLÞ
n is a remainder function that survives at the conformal

point Nf ¼ 2Nc, and SðLÞ
n is a term that contributes away

from the conformal point. By definition the first term will
have the same (uniform) weight property as the N ¼ 4
SYM theory, and the first two terms will be free of UV
divergences. The two-loop integrand of Eq. (2) is particu-
larly well suited to this decomposition: only four diagrams

[Figs. 1(b), 1(c), 1(g), 1(h)] contribute to Rð2Þ
4 , and six

diagrams [Figs. 1(b), 1(c), 1(e), 1(g), 1(h), 1(j)] contribute

to Sð2Þ
4 . The diagrams in Figs. 1(a), 1(d), 1(f), and 1(i) may

be ignored as they only contribute to the two-loop N ¼ 4
SYM amplitude, which is already known in the litera-
ture [1,12,13].
Integrating the two-loop amplitude.—In order to pro-

mote the integrand (2) to a fully integrated two-loop
amplitude, the following steps are taken. First, all contri-
butions are reduced to scalar-type integrals in shifted
dimensions using Schwinger parametrization (see, e.g.,
Ref. [38]). This technique works particularly well when
Dirac traces are involved as the number of resulting scalar
integrals tends to be small. The extradimensional compo-
nents μij are treated in the same way.
Next, the higher-dimensional scalar integrals are reduced

to D dimensions using dimensional recurrence relations
[1,39,40]. The resulting integrals are reduced to a basis of
master integrals using integration-by-parts (IBP) relations
[41], for which we used the Mathematica package
LiteRed [42]. These master integrals are known analytically
[40,43–45], and their insertion yields our final result.
Manipulation of the master integrals expressed in terms
of harmonic polylogarithms [46] was done using the
Mathematica package HPL [47].
The complete one- and two-loop amplitudes are presented

inMathematica-readable ancillary text files [48]. (The one-
loop results are adapted from Ref. [49]) We have performed
several checks on our result. First, we have integrated an
alternative representation of the integrand—given also in
Ref.[34]—nontriviallyobtainingthesameresult.Second,we
have checked that our result reproduces the high-energy
behaviorexpectedfromtheknowntwo-loopReggetrajectory
for supersymmetric gauge theories [50]. Finally, the ampli-
tude is divergent, andwehave checked that the amplitudehas
the correct IR-pole structure after UV renormalization.
UV divergences are captured by the β function. From the

all-order NSVZ β function [51] it can be seen that the β
function of N ¼ 2 SQCD is one-loop exact,

β½αSðμ2RÞ� ¼ −αSðμ2RÞ
�
2ϵþ β0

αSðμ2RÞ
2π

�
; ð5Þ

where β0 ¼ CA − TRNf, with CA ¼ 2Nc and we take TR ¼
1 in this Letter. UV-renormalized amplitudes fMðLÞ

n are
defined by Eq. (1), except with α0SSϵ replaced by αSðμRÞ. In
the MS scheme the renormalized and bare couplings are
related by

α0SSϵ ¼ αSðμ2RÞμ2ϵR
X∞
L¼0

�
−
β0
ϵ

αSðμ2RÞ
4π

�
L

: ð6Þ

See, e.g., Ref. [52] for more details.
The IR singularities of a scattering amplitude are

universal and independent of the hard scattering process.
At one loop a color-space operator Ið1ÞðϵÞ may be defined
that encodes all IR singularities [52],

fMð1Þ
n ¼ fMð1Þfin

n þ Ið1ÞðϵÞfMð0Þ
n ; ð7Þ

where fMðLÞfin
n is finite as ϵ → 0.

The IR singularities of two-loop amplitudes are encoded
into the formula [52,53]

fMð2Þ
n ¼ fMð2Þfin

n þIð1ÞðϵÞfMð1Þ
n −

�
1

2
Ið1ÞðϵÞ2þβ0

ϵ
Ið1ÞðϵÞ

−e−ϵγ
Γð1−2ϵÞ
Γð1− ϵÞ

�
β0
ϵ
þK

�
Ið1Þð2ϵÞ−Hð2ÞðϵÞ

�
Mð0Þ

n :

ð8Þ

In our case we haveK ¼ −ζ2CA þ 2ð1þ 2ϵÞβ0. The tensor
Hð2ÞðϵÞ, which determines the Oðϵ−1Þ pole, is

Hð2ÞðϵÞ ¼ eϵγ

4ϵΓð1 − ϵÞ
�
μ2R
−s

�
2ϵ

ð4Hð2Þ
g 1þ Ĥð2ÞÞ: ð9Þ

The color-diagonal part is fixed by Hð2Þ
g ¼ C2

Aζ3=2þ
β0ð2β0 þ CAζ2=4Þ. The nondiagonal part Ĥð2Þ matches
what was found in Ref. [38] for QCD and theN ¼ 1 SYM
theory.
As previously mentioned, the integrated amplitude can

be decomposed as in Eq. (4), where the remainder Rð2Þ
4 is

strikingly compact and discussed further in the next

section. The contribution Sð2Þ
4 is given in the ancillary

files for the unrenormalized amplitude [48]. We note that
various SU(Nc) color relations allow us to eliminate certain
partial amplitudes in favor of the independent components.

For example, in Sð2Þ
4 only the planar leading-color part is

independent under the SUðNcÞ color algebra. Our results
make this property manifest [48].
Having at our disposal the full analytic result for the two-

loop N ¼ 2 SQCD amplitude, we can use it to study its
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transcendental weight properties as a function of Nf and
Nc. This is the first time that the weight properties of a full-
color two-loop amplitude are explored in a gauge theory
that is neither superconformal nor equal to QCD (or the
pure Yang-Mills theory). We observe that the unrenormal-
ized amplitude in N ¼ 2 SQCD for generic Nf and Nc

shares the same weight properties as the two-loop QCD
amplitude. In particular, the coefficient of ϵ−k of the

function Sð2Þ
4 contains MPLs of weight up to 4 − k,

including weight 0 (note that the smallest value of k is
k ¼ 3, and the coefficient of 1=ϵ3 has a weight of 0).
The remainder of SCQCD.—Consider the UV-finite

remainder function RðLÞ
n in Eq. (4) needed to describe

theN ¼ 2 SCQCD amplitude. By definitionRðLÞ
n vanishes

at tree level, and it also vanishes at one loop in the large-Nc
limit for any number of external legs [54]. Beyond leading

color,Rð1Þ
n is nonzero and IR finite. At four points, we read

off the coefficient of Mð0Þ
ð−−þþÞN

0
cTrðTa1Ta2ÞTrðTa3Ta4Þ,

which we denote by Rð1Þ½0�
ð−−ÞðþþÞ (and analogously for other

helicity configurations), giving [49]

Rð1Þ½0�
ð−−ÞðþþÞ ¼ 2τ½ðT − UÞ2 þ 6ζ2� þOðϵÞ; ð10aÞ

Rð1Þ½0�
ð−þÞð−þÞ ¼

2τ

υ2
TðT þ 2iπÞ þOðϵÞ; ð10bÞ

where we have introduced the shorthand notation τ ¼ −t=s,
υ ¼ −u=s, T ¼ logðτÞ, and U ¼ logðυÞ. We recall that
s > 0; t, u < 0, so T and U are real. We see that the one-
loop remainders have a uniform, transcendental weight of
2, just like the corresponding N ¼ 4 SYM amplitudes.
The two-loop remainder functions are finite and nonzero

already at leading color [55,56]. Beyond leading color, the
two-loop remainders develop IR divergences, which can be
cast in a form reminiscent of Eq. (7),

Rð2Þ
n ¼ Rð2Þfin

n þ Ið1ÞðϵÞRð1Þ
n ; ð11Þ

with Rð2Þfin
n finite as ϵ → 0. Using the integrand in Eq. (2)

we can easily isolate individual diagrams that contribute to

Rð2Þ
n at different orders of Nc. For example, at leading color

OðN2
cÞ, only Fig. 1(b) is needed to compute the SCQCD

remainder. The coefficient of N2
cTrðTa1Ta2Ta3Ta4Þ can be

compactly written as

ð12Þ

where the numerators are given in Eq. (3), and Db contains
the propagator denominators of Fig. 1(b).
As the integral with the μ12 factor in Eq. (3a) begins at

OðϵÞ, we need only integrate the two Dirac traces in
Eqs. (3b) and (3c). They are manifestly IR finite, giving the
leading-color remainders (for s > 0; t, u < 0)

Rð2Þ½2�
ð−−þþÞ ¼ 12ζ3þ

τ

6
f48Li4ðτÞ−24TLi3ðτÞ−24TLi3ðυÞ

þ24Li2ðτÞðζ2þTUÞþ24TULi2ðυÞ−24ULi3ðτÞ
−24S2;2ðτÞþT4−4T3Uþ18T2U2−12ζ2T2

þ24ζ2TUþ24ζ3U−168ζ4−4iπ½6Li3ðτÞ
þ6Li3ðυÞ−6ULi2ðτÞ−6ULi2ðυÞ−T3þ3T2U

−6TU2−6ζ2Tþ6ζ2U�gþOðϵÞ; ð13aÞ

Rð2Þ½2�
ð−þ−þÞ ¼ 12ζ3 þ

1

6

τ

υ2
T2ðT þ 2iπÞ2 þOðϵÞ; ð13bÞ

where LinðzÞ are the classical polylogarithms and Sn;pðzÞ
are Nielsen generalized polylogarithms. Rð2Þ½2�

ð−þ−þÞ is com-

paratively simpler as cancellations occur between two
cyclic permutations of the numerator (3b). The leading-
color remainder of N ¼ 2 SCQCD was presented in

Ref. [55], and the Rð2Þ½2�
ð−−þþÞ remainder was first published

in Ref. [56]; we confirm the correctness of those results.
Furthermore, the diagrams in (12) precisely match the
simple IR finite integrals considered in Ref. [57].
Inspecting the leading-color result, it is clear that remain-

der does not have a uniform weight of 4, in agreement with
Refs. [55,56]. The deviation from uniformweight, however,
is very minimal and entirely captured by a constant 12ζ3
times the tree amplitude. This leads to some hope that the
deviation from maximal weight is simple enough that it can
be understood in general, at least at leading color.
The subleading-color part of Rð2Þ

4 is given by the

coefficients of Mð0Þ
ð−−þþÞNcTrðTa1Ta2ÞTrðTa3Ta4Þ. We find

for the finite parts

Rð2Þ½1�fin
ð−−ÞðþþÞ ¼

2τ

3
f96Li4ðτÞ − 72TLi3ðτÞ þ 24TLi3ðυÞ þ 24TLi2ðτÞðT −UÞ − 24ULi2ðυÞðT −UÞ þ 96Li4ðυÞ þ 24ULi3ðτÞ

− 72ULi3ðυÞ þ T4 þ 4T3U − 18T2U2 þ 4TU3 þ U4 þ 24ζ2TU − 12ζ2T2 − 12ζ2U2 − 654ζ4 − 4iπ½12Li3ðτÞ
þ 12Li3ðυÞ − 12TLi2ðτÞ − 12ULi2ðυÞ − T3 − 3T2U − 3TU2 −U3 − 18ζ2T − 18ζ2U�g þOðϵÞ; ð14aÞ
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Rð2Þ½1�fin
ð−þÞð−þÞ ¼

2τ

3υ2
f48Li4ðτÞ − 24TLi3ðτÞ − 24S2;2ðτÞ þ 24ζ2Li2ðτÞ þ T4 − 84ζ2T2 − 102ζ4 þ 24Tζ3 − 8iπ½3Tζ2 − T3�g

−
8τ

3υ2
f6τLi3ðτÞ − 6τLi3ðυÞ − 6τTLi2ðτÞ þ 6Li3ðυÞ − 6υULi2ðυÞ þ 3τTU2 þ 3TυU2 − 3TU2 − 30τTζ2

− 30υUζ2 − 6ζ3 þ 3iπ½2ðυ − τÞLi2ðτÞ þ τT2 þ 2TυU þ υU2 þ 2τζ2�g þOðϵÞ: ð14bÞ

Finally, the subsubleading-color parts of Rð2Þ
4 are, for all

helicity configurations, given by the relation

Rð2Þ½0�
ð1234Þ ¼Rð2Þ½2�

ð1234Þ−Rð2Þ½1�
ð13Þð24Þþ

1

2

�
Rð2Þ½1�
ð12Þð34ÞþRð2Þ½1�

ð14Þð23Þ

�
: ð15Þ

It follows from consistency conditions on the SUðNcÞ
color algebra, and using the fact that only four diagrams
[Figs. 1(b), 1(c), 1(g), 1(h)] are required to fully specify

Rð2Þ
4 . We have explicitly checked that this relation is

satisfied by the integrated amplitude.
Equations (11) and (13)–(15) give the full analytic result

for the remainderRð2Þ
4 . We find it striking that the complete

result for four-gluon scattering at two loops in N ¼ 2
SCQCD can be cast in a compact form which fits into a few

lines. Analyzing the weight properties of Rð2Þ
4 , we observe

that the finite terms of the subleading-color part involve
MPLs of weights 2, 3, and 4, but no lower-weight MPLs are
present. Moreover, we observe a striking cancellation
between lower-weight terms in the two-loop remainder
and the higher-order terms in ϵ in Eq. (11). As a result, the

finite remainders Rð2Þfin
4 in Eqs. (14a) and (14b) only

involve MPLs of weights 3 and 4. In other words, there
seems to be conspiracy between the lower-weight terms
and the structure of the IR divergences described by
Eq. (11), resulting in a minimal departure from the property
of maximal weight in the finite remainder. It would be
interesting to understand better this interplay between the
structure of infrared divergences and the appearance of
lower-weight terms.
Finally, we note that the integrand (2) is valid for any

gauge group and matter representation—for convenience,
results for UðNcÞ, SOðNcÞ, and USpðNcÞ groups are
included in the ancillary files [48]—making it possible
to study the group-theory impact on the weight properties.
For the AbelianUð1ÞN ¼ 2 theory (SQED), only Fig. 1(b)
is nonvanishing; hence the full amplitude is obtained by
summing over all permutations of the external legs in the
leading-color remainders Eqs. (13a) and (13b), multiplied
by the respective tree amplitudes. Since the weight-3 terms
are constants, they cancel in the sum due to a photon-
decoupling identity satisfied by the tree amplitudes. As a
result, the two-loopN ¼ 2 SQED amplitude has a uniform
weight of 4, in agreement with Ref. [58].
A curious observation is the following: if we work with

gauge group SO(3) and a fundamental hypermultiplet

(Nf ¼ 1), the amplitude in N ¼ 2 SQCD is identical to
the amplitude in the SO(3) N ¼ 4 SYM theory, and thus
has a uniform transcendental weight. We expect this
equality to hold to any loop order since both the structure
constants and fundamental generators of SO(3) are
described by rank-3 Levi-Civita tensors, so the fundamental
hypermutiplet behaves as if it belonged to the adjoint
representation. This observation shows that the weight
properties are tightly connected not only to the matter
content and the symmetries of the theory, but also that the
choice of gauge group and representation play an impor-
tant role.
Conclusions and outlook.—In this Letter we have

presented the fully integrated two-loop, four-gluon
N ¼ 2 SQCD amplitude, generalizing previous results
to full Nc and Nf dependence. Using our result we have,
for the first time, performed a complete analysis of the
transcendental weight properties of an amplitude beyond
one loop and beyond leading color in a gauge theory that is
neither the N ¼ 4 SYM nor QCD theories. While the one-
loop amplitude has a uniform weight of 2, just like in the
N ¼ 4 SYM theory, we find that for generic matter content
the two-loop amplitude contains MPLs of all possible
allowed weights, just like in QCD.
Interestingly, when restricted to the conformal point,

many of the lower-weight terms in the amplitude disappear.
Moreover, we observe striking cancellations between
lower-weight terms when the infrared poles are subtracted.
Based on these observations one may speculate that
conformal symmetry and infrared singularities play a vital
role in understanding the detailed transcendental weight of
scattering amplitudes. Finally, we observe that the choice of
the gauge group also has an impact on the transcendental
weight, and we have identified two instances where a gauge
group other than SUðNcÞ leads to amplitudes of uniform
and maximal weight.
Looking forward, it will be interesting to extend the

analysis of transcendental weight to higher loops, higher
multiplicities, or to N < 2 supersymmetric theories. In the
latter case, further decomposition into superconformal
remainders may reveal additional hidden structure.
Generalizing our N ¼ 2 SQCD amplitudes to massive
hypermultiplets, or to other external state configurations
would also be interesting. The latter study has been initiated
in Ref. [37], where color-kinematics-dual integrands for
two-loop amplitudes with external hypermultiplets are
available.
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