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We present the fully integrated form of the two-loop four-gluon amplitude in A/ = 2 supersym-
metric quantum chromodynamics with gauge group SU(N.) and with Ny massless supersymmetric
quarks (hypermultiplets) in the fundamental representation. Our result maintains full dependence
on N. and Ny, and relies on the existence of a compact integrand representation that exhibits the
duality between color and kinematics. Specializing to the N' = 2 superconformal theory, where
Ny = 2N, we obtain remarkably simple amplitudes that have an analytic structure close to that of
N = 4 super-Yang-Mills theory, except that now certain lower-weight terms appear. We comment
on the corresponding results for other gauge groups.

The formidable goal of one day solving a four-
dimensional gauge theory such as quantum chromody-
namics (QCD) has inspired spectacular progress related
to analytic computations of scattering amplitudes. Most
of the progress targets the simpler N’ = 4 Super Yang-
Mills (SYM) theory, where analytic results for multi-leg
amplitudes are known to very high loop orders [THI6].

Massless higher-loop amplitudes often evaluate to mul-
tiple polylogarithms (MPLs) [I7], which generalize the
ordinary logarithm and dilogarithms functions. The no-
tion of a transcendental weight, which counts the number
of integrations in the functions’ definition, has played an
essential role for classifying the MPLs that are allowed
to appear. The logarithm (and im = log(—1)) has weight
one, while the dilogarithm has weight two, etc. It was
empirically observed in many examples that an L-loop
amplitude in ' = 4 SYM always has uniform weight 2L.
The uniform weight property of N' = 4 SYM was not only
observed for scattering amplitudes, but it was also es-
tablished for certain anomalous dimensions [I8-24], form
factors [25H27], correlation functions [28] 29], and corre-
lators of semi-infinite Wilson lines [30].

The conjectured uniform weight property has made it
possible to circumvent explicit loop calculations and in-
stead bootstrap the function space and determine the
amplitude from knowledge of kinematic limits [4HI0}, [3T].
Understanding the origin of this property, and the theo-
ries to which it can be applied, is central for unraveling
the mathematical structure of more general gauge theo-
ries. As of yet, there is no clear picture of which theories
have amplitudes of uniform weight, or how deviations
from it can be best understood. Amplitudes in QCD do
not have uniform weight, though there is accumulating
evidence that amplitudes in N' = 8 supergravity have the
same uniform weight as in ' =4 SYM [32].

More general understanding comes from studying the
BFKL gluon Green’s function to high loop orders in
SU(N.) Yang-Mills theory with generic matter con-

tent [33]. It was observed that a necessary condition for
obtaining results with uniform weight is that the matter
content coincides with that of a weakly-coupled super-
conformal gauge theory, such as A" = 4 SYM, or corre-
sponding superconformal A/ = 2,1 theories. However,
it is not expected to be a sufficient condition, and ad-
ditional data concerning the weight properties of more
general gauge theories is needed. Furthermore, if weight
properties are to have lasting impact on bootstrapping
techniques for the real-world problem of QCD, one needs
to develop insight for better controlling the deviations
from uniform weight.

In this Letter we study a two-loop amplitude in SU(N,)
N = 2 supersymmetric QCD (SQCD) — a theory which
has tuneable matter content like QCD, namely Ny su-
persymmetric quarks, as well as a weakly-coupled super-
conformal phase, like N' = 4 SYM, at the critical point
Ny = 2N.. The Lagrangian of N' =2 SQCD can be con-
structed as the unique N = 2 supersymmetric extension
of QCD. Its perturbative spectrum consists of an adjoint
vector multiplet containing the gluon field, two gluinos,
and a complex scalar. Matter fields assemble into Ny fun-
damental hypermultiplets, each containing a quark and
two complex scalars. We only consider the limit where
the quarks and superpartners are massless.

As the main result, we present a closed analytic form of
the two-loop four-gluon amplitude in /' = 2 SQCD, for
arbitrary N. and Ny. Our starting point is the integrand
of Ref. [34], which is characterized by a particularly ele-
gant presentation that exhibits the duality between color
and kinematics [35], [36]. The duality was critical for ob-
taining the non-planar integrand contributions through
kinematic identities that relate them to the simpler pla-
nar ones. It was later observed that the numerators dis-
play a remarkable simplicity when re-expressed in terms
of Dirac traces [37], from which one may expect that the
final result should share some of the simplicity of the
integrand.
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FIG. 1: Ten cubic diagrams that describe the four-gluon two-loop amplitude of N’ =2 SQCD. At the conformal point,
Ny = 2N,, diagrams (d), (e), (i), and (j) manifestly cancel out from the integrand.

THE COLOR-DUAL INTEGRAND

N =2 SQCD has a running coupling constant ag(pu%),
and loop amplitudes need to be renormalized to remove
ultraviolet (UV) divergences. Prior to renormalization,
we may perturbatively expand n-point amplitudes in
terms of the bare coupling a%,
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where S, = (4m)e™ 7 anticipates dimensional regular-
ization in D = 4 — 2¢ dimensions. At multiplicity four,
we will always use kinematics defined by s > 0; t,u < 0,
where s = (p1 +p2)?, t = (p2 +p3)*, u = (p1+p3)?, with
s+t +wu =0, and all momenta are outgoing.

The two-loop integrand of Ref. [34] was constructed
to make manifest separations at the diagrammatic level
between distinct gauge-invariant contributions. For ex-
ample, it manifests the difference between N' = 4 SYM
and the N/ = 2 superconformal theory (SCQCD), with
Ny = 2N,, as a combination of simple diagrams that are
manifestly UV finite. The diagrammatic separation will
allow us to have a clear partition of the integrated answer
into terms with distinct physical interpretation.

The integrand of Ref. [34] consists of 19 cubic dia-
grams. Of these only ten, shown in Fig. [T} give rise to
non-vanishing integrals. Using these ten diagrams (a—j)
the N' = 2 SQCD amplitude is assembled, with an Sy
permutation sum over external particle labels, as
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where d?P¢ = dP¢,dP ¢, is the two-loop integration mea-
sure and |i| is the number of matter loops in the given
diagram. Diagrams are described by kinematic numera-
tor factors n;, color factors ¢;, symmetry factors S;, and
propagator denominators D; [34] [37].

Color-kinematics duality requires that the kinematic
numerators n; satisfy the same general Lie algebra re-
lations as the color factors ¢; [35]. Through these rela-
tions the numerators of diagrams (e—j) were completely
determined by the four planar diagrams (a—d). The in-
tegrand was constructed through an Ansatz constrained
to satisfy (D < 6)-dimensional unitarity cuts. The upper

bound corresponds to the D = 6, N' = (1,0) SQCD the-
ory, which is the unique supersymmetric maximal uplift
of the four-dimensional N' = 2 SQCD theory.

For later convenience we quote the relevant numerator
contributions to diagram (b) for different gluon helicities,
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where k;; is proportional to the color-stripped tree ampli-
tude — for instance, in the purely gluonic case we have
K12 = ist M((O) +4)> and M(O) ) = —i(12)2[34]? /st.
The try are chirally projected Dirac traces taken strictly
over the four-dimensional parts of the momenta, and
Mij = —4725] 0729 contain the extra-dimensional loop
momenta. Numerators of the other diagrams are of com-
parable simplicity, see Refs. [34],[37]. Note that four-gluon
amplitudes with helicity (£+++) exactly vanish in su-
persymmetric theories due to Ward identities, so we need
not consider them. Without loss of generality we focus on
gluon amplitudes with helicity configurations (——++)
and (—+—+); the general vector multiplet cases are ob-
tained from these by supersymmetric Ward identities.
In general, we note that any gluon amplitude in N = 2
SQCD can be decomposed into three independent blocks
that have different characteristics after integration,
MEP) = MEPW=I L RID 1 (Cy — NS . (4)
C4 is the quadratic Casimir; for SU(NV,) we normalize it
as Cy = 2N,.. The decomposition involves three terms:
MPW=4 g gluon amplitude in N' = 4 SYM, R is a
remainder function that survives at the conformal point
Ny =2N,, and S,gL) is a term that contributes away from
the conformal point. By definition the first term will have
the same (uniform) weight property as N' =4 SYM, and
the first two terms will be free of UV divergences. The
two-loop integrand of Eq. is particularly well suited
to this decomposition: only four diagrams (b,c,g,h) con-

tribute to Rf% and six diagrams (b,c,e,g,h,j) contribute



to Sf). Diagrams (a,d,f,i) may be ignored as they only
contribute to the two-loop N’ = 4 SYM amplitude, which
is already known in the literature [I], 12} [13].

INTEGRATING THE TWO-LOOP AMPLITUDE

In order to promote the integrand to a fully inte-
grated two-loop amplitude, the following steps are taken.
First, all contributions are reduced to scalar-type inte-
grals in shifted dimensions using Schwinger parametriza-
tion (see e.g. Ref. [38]). This technique works particu-
larly well when Dirac traces are involved as the number
of resulting scalar integrals tends to be small. The extra-
dimensional components i;; are treated in the same way.

Next, the higher-dimensional scalar integrals are re-
duced to D dimensions using dimensional recurrence re-
lations [11[39,[40]. The resulting integrals are reduced to a
basis of master integrals using integration-by-parts (IBP)
relations [41], for which we used the Mathematica pack-
age LiteRed [42]. These master integrals are known an-
alytically [40, [43-45], and their insertion yields our final
result. Manipulation of the master integrals expressed
in terms of harmonic polylogarithms [46] was done using
the Mathematica package HPL [4T].

The complete one- and two-loop amplitudes are pre-
sented in Mathematica-readable ancillary text files [48].
(The one-loop results are adapted from Ref. [49]) We
have performed several checks on our result. First, we
have integrated an alternative representation of the inte-
grand — given also in Ref. [34] — non-trivially obtaining
the same result. Second, we have checked that our re-
sult reproduces the high-energy behavior expected from
the known two-loop Regge trajectory for supersymmetric
gauge theories [50]. Finally, the amplitude is divergent,
and we have checked that the amplitude has the correct
IR-pole structure after UV renormalization.

UV divergences are captured by the S-function. From
the all-order NSVZ S-function [5I] it can be seen that
the S-function of N'= 2 SQCD is one-loop exact,
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where 8y = C4 — TrNy, with C4 = 2N, and we take
Tr = 1 in this Letter. UV-renormalized amplitudes
./W%L) are defined by Eq. , except with a%S. replaced
by as(pg). In the MS scheme the renormalized and bare
couplings are related by
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See e.g. Ref. [52] for more details.
The IR singularities of a scattering amplitude are uni-
versal and independent of the hard scattering process.
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At one loop a color-space operator I(1) (e) may be defined
that encodes all IR singularities [52],

MY = MPE 10 (M (7)

where M is finite as € — 0.
The IR singularities of two-loop amplitudes are en-
coded into the formula [52] 53]
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In our case we have K = —(3C4 + 2(1 + 2¢)By. The
tensor H®)(¢), which determines the O(e~1) pole, is
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The color-diagonal part is fixed by H_(SQ) = C3(3/2 +
Bo (280 + Cala/4). The non-diagonal part H® matches
what was found in Ref. [38] for QCD and N =1 SYM.

As previously mentioned, the integrated amplitude can
be decomposed as in Eq. , where the remainder Rf) is
strikingly compact and discussed further in the next sec-
tion. The contribution Sf) is given in the ancillary files
for the unrenormalized amplitude [48]. We note that var-
ious SU(IV,) color relations allow us to eliminate certain
partial amplitudes in favor of the independent compo-
nents. For example, in Sf) only the planar leading-color
part is independent under the SU(N,) color algebra. Our
results make this property manifest [48].

Having at our disposal the full analytic result for the
two-loop N = 2 SQCD amplitude, we can use it to study
its transcendental weight properties as a function of Ny
and N.. This is the first time that the weight properties
of a full-color two-loop amplitude are explored in a gauge
theory which is neither superconformal nor equal to QCD
(or the pure Yang-Mills theory). We observe that the
unrenormalized amplitude in NV = 2 SQCD for generic
Ny and N, shares the same weight properties as the two-
loop QCD amplitude. In particular, the coefficient of e ¥
of the function Sf) contains MPLs of weight up to 4 —k,
including weight 0 (note that the smallest value of k is
k = 3, and the coefficient of 1/€3 has weight 0).

THE REMAINDER OF SCQCD

Consider the UV-finite remainder function R%L) in
Eq. needed to describe the N' = 2 SCQCD ampli-
tude. By definition R%L) vanishes at tree level, and it
also vanishes at one loop in the large-N, limit for any

number of external legs [54]. Beyond leading color, R



is non-zero and IR finite. At four points, we read off the

coefficient of M(® | | NOTr(TT%) Ty(T4*T4), which
we denote by R(l)[o] )(+4) (and analogously for other he-

licity conﬁguratlons) giving [49]

RV L =2r [(T-UP+6G]+0(),  (10a)
2T
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where we have introduced the shorthand notation 7 =
—t/s, v =—u/s, T =log(r), and U = log(v). We recall
that s > 0; t,u < 0, so T and U are real. We see that the
one-loop remainders have uniform transcendental weight
two, just like the corresponding N' = 4 SYM amplitudes.
The two-loop remainder functions are finite and non-
zero already at leading color [55, [56]. Beyond leading
color, the two-loop remainders develop IR divergences
which can be cast in a form reminiscent of Eq. ,

R =R L 1D (RWY (11)
with R finite as ¢ — 0. Using the integrand in
Eq. we can easily isolate individual diagrams that
contribute to Rf) at different orders of N.. For exam-
ple, at leading color O(N?2), only graph (b) is needed
to compute the SCQCD remainder. The coefficient of
N2 Tr(T*T2T%T%) can be compactly written as
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where the numerators are given in Eq. , and D), con-
tains the propagator denominators of diagram (b).

As the integral with the p15 factor in Eq. begins
at O(e), we need only integrate the two Dirac traces in
Egs. and . They are manifestly IR finite, giving
the leading-color remainders (for s > 0; ¢,u < 0)

(22
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where Li, (2) are the classical polylogarithms and Sy, p(2)
(2)[2]

(=+—1)
paratively simpler as cancellations occur between two
cyclic permutations of the numerator . The leading-
color remainder of N' = 2 SCQCD was presented in

Ref. [55], and the R(2)[21r+)

are Nielsen generalized polylogarithms. R is com-

remainder was first published
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in Ref. [56]; we confirm the correctness of those results.
Furthermore, the diagrams in precisely match the
simple IR finite integrals considered in Ref. [57].

Inspecting the leading-color result, it is clear that re-
mainder does not have uniform weight four, in agreement
with Refs. [55] [56]. The deviation from uniform weight,
however, is very minimal and entirely captured by a con-
stant 12(3 times the tree amplitude. This leads to some
hope that the deviation from maximal weight is simple
enough that it can be understood in general, at least at
leading color.

The subleading-color part of ’Rf)

ficients of M(( ) )

for the finite parts

is given by the coef-
N, Tr(TeT2) Tr(T*T%). We find
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Finally, the subsubleading-color parts of Rf) are, for all

helicity configurations, given by the relation
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It follows from consistency conditions on the SU(N,)
color algebra, and using the fact that only four diagrams
(b,c,g,h) are required to fully specify Rf). We have ex-
plicitly checked that this relation is satisfied by the inte-
grated amplitude.

Equations and 7 give the full analytic re-
sult for the remainder Rf). We find it striking that the
complete result for four-gluon scattering at two loops in
N = 2 SCQCD can be cast in a compact form which
fits into a few lines. Analyzing the weight properties of
Rf), we observe that the finite terms of the subleading-
color part involve MPLs of weight 2, 3 and 4, but no
lower-weight MPLs are present. Moreover, we observe a



striking cancellation between lower-weight terms in the
two-loop remainder and the higher-order terms in € in
Eq. (11). As a result, the finite remainders Rf)ﬁn in
Eqs. and only involve MPLs of weight 3 and
4. In other words, there seems to be conspiracy between
the lower-weight terms and the structure of the IR di-
vergences described by Eq. , resulting in a minimal
departure from the property of maximal weight in the
finite remainder. It would be interesting to understand
better this interplay between the structure of infrared
divergences and the appearance of lower-weight terms.

Finally, we note that the integrand is valid for
any gauge group and matter representation — for conve-
nience, results for U(N.), SO(N,), and USp(N,.) groups
are included in the ancillary files [48] — making it possi-
ble to study the group-theory impact on the weight prop-
erties. For abelian U(1) /' = 2 SQED, only diagram (b)
is non-vanishing; hence the full amplitude is obtained
by summing over all permutations of the external legs in
the leading-color remainders Eqgs. and , multi-
plied by the respective tree amplitudes. Since the weight-
3 terms are constants, they cancel in the sum due to a
photon-decoupling identity satisfied by the tree ampli-
tudes. As a result, the two-loop N' = 2 SQED amplitude
has uniform weight four, in agreement with Ref. [58].

A curious observation is the following: if we work with
gauge group SO(3) and a fundamental hypermultiplet
(Ng = 1), the amplitude in N' = 2 SQCD is identical to
the amplitude in SO(3) N' =4 SYM, and thus has uni-
form transcendental weight. We expect this equality to
hold to any loop order since both the structure constants
and fundamental generators of SO(3) are described by
rank-3 Levi-Civita tensors, so the fundamental hypermu-
tiplet behaves as if it belonged to the adjoint representa-
tion. This observation shows that the weight properties
are tightly connected not only to the matter content and
the symmetries of the theory, but also the choice of gauge
group and representation play an important role.

CONCLUSIONS AND OUTLOOK

In this Letter we have presented the fully integrated
two-loop four-gluon A/ = 2 SQCD amplitude, generaliz-
ing previous results to full N, and N¢ dependence. Using
our result we have, for the first time, performed a com-
plete analysis of the transcendental weight properties of
an amplitude beyond one loop and beyond leading color
in a gauge theory that is neither A' = 4 SYM nor QCD.
While the one-loop amplitude has uniform weight two,
just like in N' = 4 SYM, we find that for generic mat-
ter content the two-loop amplitude contains MPLs of all
possible allowed weights, just like in QCD.

Interestingly, when restricting to the conformal point
many of the lower-weight terms in the amplitude disap-
pear. Moreover, we observe striking cancellations be-

tween lower-weight terms when the infrared poles are
subtracted. Based on these observations one may specu-
late that conformal symmetry and infrared singularities
play a vital role in understanding the detailed transcen-
dental weight of scattering amplitudes. Finally, we ob-
serve that the choice of the gauge group also has an im-
pact on the transcendental weight, and we have identified
two instances where a gauge group other than SU(N,)
leads to amplitudes of uniform and maximal weight.

Looking forward, it will be interesting to extend the
analysis of transcendental weight to higher loops, higher
multiplicities, or to N/ < 2 supersymmetric theories. In
the latter case, further decomposition into superconfor-
mal remainders may reveal additional hidden structure.
Generalizing our N' = 2 SQCD amplitudes to massive hy-
permultiplets, or to other external state configurations
would also be interesting. The latter study has been
initiated in Ref. [37], where color-kinematics-dual inte-
grands for two-loop amplitudes with external hypermul-
tiplets are available.
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