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The problem of the quantization of gravity from the beginnings until last time meets
with the difficulty of definition of physical degrees of freedom of gravitational field [1]- {10].
The procedure of identification of physical variables and their separation from nonphysical
ones has been called the reduction procedure. There are two ways for the realization of
the reduction in the classical and quantum theories: the gaugeless and the gauge—fizing.
In the former, independent physical variables are constructed by the explicit resolution of
constraints. To avoid the difficulties with the resolution of very complete constraints in
gravity commonly used, the latter, gauge —fixing, method' isbased on the introduction  into
the theory of some new ” gauge constraints” {1, [9]. However, such coordinate fixation
due to the nonlinear character of gravitation meets with the problem of determination of
the class of "admissible gauges”, which allows us to obtain gauge independent results [11].
Recall that the gauge equivalence theorem has been proved only for the asymptotical flat
space time [7]. It seems to us that the last problem of definition of admissible gauges is
not easier than the problem of resolution of constraints.

In the present paper we try to follow the gaugeless reduction {12}~ [17] of gravity,
based on explicit resolving of the classical Hamiltonian constraints for nonphysical field
momenta and the corresponding fields coordinates .

The application of the gaugeless approach to the relativistic particle model is quite
simple. The resolving of the mass-shell constraints for relativistic particle

1
HZE(“P3+P?+7"2):D» (1)

leads to the notion of particle energy

po=7tw; w=+ptm?, (2)

and resolution of motion equation of corresponding coordinate gives us the definition

of observable time. It is very attractive to transfer these clear notions of energy and



observable time for a relativistic particle to the case of gravity. We shall deal with this
analogy and show that the resolution of constraints and corresponding equations of general
gravity leads to the new notion of "spectral energy” &, of the type of (2) and spectral
time 7, as a variation of the reduced action with respect to the spectral energy

oW,

T, = .
0,

(3)

The main aim of our paper is to clear up the physical meaning of spectral energy and
spectral time in gravity .

The paper is organized as follows. In section 2 we consider the method of gaugeless
reduction for the examples of QED and relativistic quantum mechanics. We show that
after the reduction both the theories contain only the observable gauge invariant variables
(two transverse photons and the "time-reparametrization” invariant physical coordinates
and spectral time, correspondingly). Section 3 is devoted to the calculation of the reduced
action and spectral Hamiltonian for the system of gravitation and electromagnetic fields.
The latter is used as the test of correct reduction. We investigate here the flat space-time
limit of the reduced action. Section 4 is devoted to the spectral history of the quantum

Universe.

1 Gaugeless reduction of Abelian gauge theory

Before considering a rather complicated case of gravity it is worth to illustrate the method
of ”gaugeless reduction ” [12]- [17], by the simplest examples of free Maxwell field and
relativistic mechanics.

Let us consider, first, the action for the Abelian gauge field
WiA] = —/d‘x%FwF“" = %/d“z[(aoA‘ — 8'A0)* - BY], 4)
where

B" = e,-]-kBjA" .



There is Lagrangian constraint in the theory { Gauss law)
Ag = 8 0o As. (5)

It is easy to check that the electric tension on the constraint—shell (5) becomes functional

from the gauge field
EiA] = 0oA; — 8iAo[A] = BoAT(A], (6)
where
Af[A] = ( — b aza) 8,AT[A] = 0. (n

The action (4) on the constraint-shell has the following form

weilaT) = [ atal@oal) - (BT (®)

As a result we obtain action in terms of the gauge invariant functionals AT[A + 0] =
AT[A] and it contains only two observable transverse fields. Then we can pass to the
Hamiltonian form for our theory by using the conventional Legandre transformation for
physical coordinates AT[A]. Thus we get the reduced phase space without exploiting any

gauge, using the explicit resolving of constraint (3)

i4 3 9'%Aly)

AolAi] = (a )= (9)
e y\

The transversality constraint here arises as a result of reducing but not as an additional

gauge requirement. As regards relativistic covariance, it is not manifest. It is easy to

check that the Lorentz transformation of physical variables [15] has the form
AT[A + 6LA] — AT[8LA] = s AT + 8:A[AT],

where &, is the conventional Lorentz transformation with the parameter ¢*, which is

supplemented by the gauge transformation:
. 1
AlaT) = ekakE((?oAT) .

This form has been interpreted by Heisenberg and Pauli [18] (with reference to the

unpublished note by von Neumant) as the transition from the Coulomb gauge with respect



to the time axis in the rest frame 7% = (1,0,0,0) to the Coulomb gauge with respect to

the time axis in the moving frame

Tu=ny+ 61, .

This fact reflects the Lorentz covariance of the reduced theory, and has been proved
in quantum theory by B.Zumino [19].

For gravitational field there are more complicated Lagrangian constraints than (5).
From this point of view it is useful to rewrite the initial action (4) in the first order

formalism

N

WilA, E} = /d“m (E,(aOA.) + AdiE) — (£ + (B)?) - (’),(AoE.)). (10)

In this form the action (10) describes the generalized Hamiltonian system, where E;, A;
are the canonical conjugate variables, and A, is Lagrange factor. Conventionally, to fix
this factor one uses a gauge constraint F(A) = 0. Instead of this we can repeat the
described above procedure of the gaugeless reduction. It is clear that the Lagrangian

constraint {5) can be got from the equation of motion for A4

1174
ar 9. — i
5A; 0 = 0ok =0 (11)

and the longitudinal part of the equation of motion for F£;

W
§E

0 = E = (dA — Ao (12)

For the theory with vanishing the surface term 9;(AgE,), to remove all nonphysical
components Ag, 9;A;, 0:F; without gauge fixation it is cnough to resolve explicitly only
secondary constraint (11).

For two-dimensional Abelian theory it is known how to deal with the nonvanishing
surface terms. In this case the explicit solutions of the constraint contain zero-modes as

solutions of the corresponding homogencous equations [13], [20]

E(z,t) = Eo{t) + ET(x,t), dET" =0. (13)



The existence of these zero-modes is connected with the nontrivial topological invariant
of the Chern-Simons type. In quantum theory they correspond to the plane wave in
the functional space of the type of the Coleman electric field {13] unlike the oscillator

excitations of the transverse photons in QED.

2 Relativistic mechanics without gauge fixing

We have demonstrated the procedure of the gaugeless reduction for the singular theory
with the Lagrangian constraint by example of free electromagnetic field. Now let us study
this method for the singular theory without the Lagrangian constraint. The well-known

example of such a theory is relativistic particle with the action

T
Wlz] = —m/dr\/;ﬁ‘ (14)

This action is invariant under reparametrization of time

T—1 = s(7),
z(r) = (7Y = z(7) (15)

with ds/dr > 0. Therefore, there is an arbitrary function in the solution of equation of
motion. So, beside fixing initial conditions, it is necessary to eliminate this function from
the solution. The usual manner is gauge choosing. For example, the proper time fixing
zo{7) = 7 leads to the instant form of dynamics for relativistic particle [4] . However, let us
act in the spirit of the previous section and try to solve the problem without gauge fixing.

For our final aim — gaugeless reduction of the Einstein gravity - it s more transparent

to rewrite action (14) in the following form
T
2'32
Wiz, e] = I/Q/dr (—5 + emz) . (16)
e
0

The phase space corresponding to the system (16) contains five variables (e,z0, i)

and their five canonical momenta (p,, po, p;). From (16) we obtain the primary constraint

pe=0, (17)



and the canonical Hamiltonian H = eH,where H is defined from eq. (1). The Poisson

bracket of this constraint and the Hamiltonian gives the secondary constraint
{pe HY = H =0. (18)

Thus the initial action (16) is rewritten in the Hamiltonian form

T
Wiz, e, p} = /dT(poio — piz; — eH). (19)
0

In accordance with the case of electromagnetic field let us express one of the momenta

(po,p;) in terms of the others

po = Fw(p); w(p) =/} +m% (20)

we shall call this quantity the "spectral energy”, to distinguish it from (18) (in the Einstein
theory of gravity (18) corresponds to the "energy density”). Note that the resolution of
constraint with respect to p corresponds to choice of the instant form of dynamics. In
the present paper, we shall restrict ourselves only to this form of dynamics. As a result

we get the following reduced action

zo{T)
dI,’ &
Wh [z, pi] = / dzgo (?w(l’) - Pi—z—(—(ﬁ) . (21)
To
0(0}

The reduced phase space contains only z;,p; as dynamical functions of zo. The initial
action (19), which is the functional from zo(r), transformed into the action (21) as the
function from the boundary values z4(0),zo(7'). To elucidate this dependence, we can

exploit the following equations of motion

6chd d
g =0 = d—x—opi =0. (22)

The reduced action (21) on classical equations (22) is the function

W (X,p) = Fw(p)Xo + piXi (23)



of the global reparametrization invariants

X, = 2,(T) — z,(0). (24)

From the point of view of the Hamilton - Jacobi theory just these invariants represent

the observable time and coordinates. In the following we shall call them the spectral time

and coordinates.

Now we can immediately write down the spectral representation for the wave function

for our reduced system

P(X;, Xo) = /@%fﬁ {a(“(p) WS, +al- ( Je W )}, (25)

Note that in the initial theory (14) there is a geometrical invariant of the proper time
dlp = medr;  (Tr(r') = Tr(7)), (26)

which coincides with the spectral one for the lowest values of the spectral energy w = m.
We would like to emphasize that the spectral time (unlike the mathematical one ) has the

absolute origin.

3 Gaugeless reduction of Einstein gravity

3.1 The Hamiltonian form

The previous examples give hope to fulfil the gaugeless reduction of gravitation theory

without gauge fixation.

We start with the conventional scalar curvature action including the electromagnetic

field to control the reduction procedure

Wig, A] = /d“X\/“( - R(g) + 4FWFW>. (27)

It is well known that the Einstein equations

W
5gou

=0



are the Lagrange constraints. In the Hamiltonian approach they correspond to the sec-
ondary constraints, and the reduction consists in their explicit resolving with respect to
the definite momentum and coordinate.

The Hamiltonian approach with the instant form of dynamics enforces us to assume
that the space time manifold M can be represented as M = RxY, where ¥ is three-
dimensional surface. The space time foliation is realized by introducing the so-called
embedding variables X (x,t) [21] which are maps from a point x of the surface ¥ to a space
time point X of the manifold M, and ¢ labels the leaves of the foliation. This foliation

leads to the well-known Dirac-Arnowitt Deser-Misner ( Dirac-ADM) metric (1], 4]
ds® = NYdt): — a’hyldr' + N'da®)(da* + N de), (28)

where N is the lapse function, N* is the shift vector . « the "scale-space” component of

metric, ki is the "graviton component” with determinant equal to unity:

V=g=Nd’. det(hy)=1. « = expp - (29)

The Einstein ~Hilbert action (27) in terms of this metric possesses the manifest sym-

metry under the following group of transformations [22]:

t o =t

—

’ (30)
Let us rewrite the action (27) in terms of the embeddings. The scalar curvature can be
decomposed in three terms: a "kinetic” A the three-dimensional curvature R, and

"surface” X:

WR = - + PR, (31)
@? @?

. K h 2¢
N=-b6% + e (42)

3) 4 K ! ok ! Py
R=— [F"Vi0p + ;(r)k,u() w| + = R(R). (33)

a Z a
1 38 el dh

L = N O [aakN + —N~Nk ,L] — 'm"(_N—'Z) , (34)



where

o) . 1 "
= p— 3?(%(031“)5

o . 2 :
h;c = A (hH — VN — VN + %/zk,&N‘),
1
R(h) = Z&h",(a‘hlk —20'h'%) + O.BhK.
The canonical momenta conjugated to #, b, and A are the following
ac 6a®i?

Py= = = 1
) 7 N #

ac a3k
pkoo 95 k
(R} K
ahl, 4N
oL _a

Be= ok = N

. ) a®
(Ak — Ok Ao — N[sz) = NAI:-

Here c‘),-h“, = hkiajh” , Ny =h;N'and V, is a covariant derivative in metric hik.

In terms of these variables the action (27) has the following form

- . 2
W = /d%dt [Pmp + P(’;),hjc + E* Ay + A E* — NH + N*P, — (T“) — 3, S*

with the surface action term
| .
5% = +%ak1v + 2PNt — ENFPuy + Aok,

In (41) H is the Einstein energy density:

2 PR 4RPPL. O Gip
3 A ) (h) 0
= —— — + T°%(E
e { 2-6 af 208+ gz T To(E)
and P is the momentum density:
3 P,
Pr = %81: (*(%) + 2V Py — E'Fu;

T%(E) is the electromagnetic energy density

EE'  F,Fi
TDO(E) = l < E + - ) .

2 at 2a4

10

(43)

(44)



Now it is clear that the action (41) describes the generalized Hamiltonian dynamics

for (i, ke, Ax) and Fluy, Piryre, By with Lagrange factors Ag, Ni, N, and the constraints
H =0, P =0, &E* =0. (46)

Note that the action (41) differs from the ADM action by the surface terms, as will

be seen later, they will be important for the definition of the spectral energy.

3.2 Reduction of phase space

We shall act in the direct analogy with the relativistic particle case and QED. As we
verified,  the resolution of constraints leads to the construction of gauge invariant vari-
ables (QED) and to the observable time as the global invariant of the reparametrization
group (relativistic particle). This program for gravity has been realized in the framework
of the cosmological perturbation theory on the level of the classical equations, with the
choice of the conformal time [23]. Here we discuss the dynamical aspect of this program

” and "spectral time”. The

connected with the construction of ” spectral Hamiltonian
main point is the resolution of the "energy” constraint H = 0 against the space scale

momentum

1/2
e a6 4/{213(2;) GR
6

Puys = Fw; + 7 +2T% - (47)

K a

The explicit resolution of constraints (46) generally allows one to express F(,) and u as
functionals from the physical variables ® = (A4, h), Py = (E, P,) within the zero mode

sector (compare with eq. (13))
po= polt) + urf® Payl - (48)

The explicit time dependence of u is not defined in the same way as for the particle case,
where the z¢ dependence remains unknown. Recall that the notion of observable time
appears only after the resolving Hamiltonian constraints and motion equations.

On the constraints (46) the initial action (40) has the following reduced form

T .
erd:/d}z‘/o dt [P(mq)q:(pw— %)—&csk]_ (49)

11



This expression is the basis for construction of the Hamiltonian scheme in terms of gauge
invariant variables P(Iq,), !
T«(T) ¢!
Wi = /de/T dT, [P({I,)ﬁ T H[P(0), '] . (50)
s(0) s
For the zero mode sector (in the homogeneous approximation) the global observable time
can be introduced from the following condition
%—?f = 0. (51)
The representation for the wave function of the reduced homogeneous system in terms

of eigenfunctions of the spectral Hamiltonian

H,¥, = &Y,

(D) = (ALY exp (—if,Tu(po))Wa(®') + AL exp (1€,T, (1)) ¥™,(7)).  (52)

Here T;(po) describes the evolution of the quantum Universe with the absolute begin-
ning of time Ty(po). Below we consider the simplest examples of this evolution.
®
Before we would like to note that the surface term (34) (time derivative) and # P,y on

the constraints give us the following part of the spectral Hamiltonian

0] 1
KBy — ?E = (53)

2 0°

6ath [MP,? . 0}

k2w | k2aS

In the flat space time limit from (53) we get the conventional action for electromagnetic

field (8) in contrast with the ADM approach, where the full time derivative is neglected.

4 Spectral energy density and time

4.1 The Misner anisotropic Universe

In the limit of the small space scale factor a , (47) transforms to

W(P(h)) = 21/6P(h)2_ (54)

12



50) we conclude that

From (
E = w(Py) and T, = p (55)
and the small earlier Universe is described by the action
WhY = /dr [Pt (Be(Tox) = hif0.2)) T wiPu)) (T, z) = u(0,2))] . (56)
The constraint P in this limit reduces to the condition of homogeneity

VPl = 0.

So, we get the Misner anisotropic model [24] - [23] with the following spectral repre-

sentation for the wave function

V(g k) /d5 1(+) WA 4 /\(p) W (57)

The spectral time coincides with the logarithm of space scale

.
T = loa @o; ) ’

and has absolute beginning. The positive sign of time corresponds to the expansion of

the Universe,and negative sign to the contraction of (anti) Universe. The "Observer” is
seeing that the small Universe is created with finite volume and deunsity and undergoes
the inflation with respect to the "spectral time”

The inflation lasts till the size becomes so large that the next radiation term dominates.

4.2 Radiation dominance

At the radiation dominance stage
Pw't =0

the Universe is described by the following reduced action

02 2
Wi’ = /d3 /‘“ [’” 2, (58)

13



where the spectral energy density coincides with the conventional Hamiltonian electro-

magnetic density, and spectral time 7} in the homogeneous limit

k
Bp — . L —
R = —a2—rl2) (k—:f:l()) ,()ka = 0,
is the conformal one n
. 6aa )
T, = 5= = roi (59)

within the factor of the size of the Universe [16], [17].

In the flat space limit 7, = 1 and the spectral Hamiltonian
EZ B2
H, = / Pt (60)

represents the generator of evolution . Recail that this Hamiltonian is obtained from
Wi — % in the reduced action (49). The latter term is omitted in the ADM scheme.This

is the reason why the flat limit for radiation cannot be reproduced in ADM approach.

4.3 The dust dominance

Finally, at the classical dust dominance stage

M(d)_
Va(ro)a®

Ty =

it is easy to see [16],[17] that the reduced action (49) has the following form

M
Wit = £ =0Tk (a). (61)
Here the spectral time
T 6d%a
Tr(a) :/ dt— (62)
o K*w

coincides with the Friedmann (proper) time for any type of the Universe k& = 0, %1, as
in the case of relativistic particle. Due to considering only the localizable part of the
spectral energy in the representation (58) we got only one half the mass of the Universe
in accordance with Tolman’s result of 1930 [26]. In the quantum theory (52) the spectral

energy &, = 1/2M|q4) is a conserved quantity and represents the relict of the age of creation

14



of the Universe. It is naturally to suppose that at this moment the Universe had the size
of its Compton length My ™", which defined the minimal scale a(0) = (KM(d))_l = 107%°
in eq.(58).

5 Discussion

In the present paper, we have tried to fulfil the gaugeless reduction of the phase space
of gravity. The main peculiarity of this reduction is the appearance of the concepts of
the spectral energy and spectral time. These quantities have been obtained from all the
surface terms of the initial Einstein action (including the total time derivative). In the
quantum theory they correspond to the nonzero phases of the wave function. Just from
these phases an ” Observer” forms the spectral energy and spectral time.

We calculate these quantities for the set of simplest examples.

e In the limit of a small space scale component a of the metric, the ”Observer” is
observing that the creating Universe expands from the finite volume and density and
it is filled with only the Misner anisotropic gravitons [24]. This Universe undergoes
the inflation under the spectral time. The inflation corresponds to the energy density

1/a®, but not the de Sitter one.

e In the radiation stage, the reduced action has two correct limits. At the large
cosmological scale limit the spectral time coincides with the conformal one. For the
small scale (in the flat space time limit) the spectral energy is nothing else as the

energy of transverse photons, in contrast with ADM scheme.

o In the stage of dust filled Universe, the "Observer” discovers that his spectral time,
as the phase of the wave function, transforms to the classical Friedmann time, as the
invariant interval (like the observable time for relativistic particle at rest transforms

to the proper one).

The ”Observer” sees the changes of the character of spectral time T, in the process of

15



the evolution of the Universe. Who is the ”Observer ”, whose conclusions strongly differ

from the conclusions of a modern scientist {27)?
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BeskamubpoBouHasd peIyKIus rpaBuTaluy
1 oBoTIOMS BeeeHHOM

Ousnueckoe ¢a3oBoe NPOCTPAHCTBO TCOPUH TPaBHTAINH DuHmTelHA
¢ Merpukoir [dmpaka — ApHOBATTa — Ilesepa — MmusHepa CTPOMTCH
6e3 NpUBJIEUEHUS AOTIOTHUTEIBHBIX KaJMOPOBOUHKX YCJIOBHHA MYTEM SBHOTO
paspemeHus cBs3edl IS HEPUIHUECKHX nosieik. B pesyasrare IToM 6es-
KanuOpOBOYHON pPEJYKUMM [CHCTBHE BHIPaXaeTcA B TEPMHMHAX KHHE-
METPUYECKH WHBAPUAHTHHIX AWHAMAYCCKHX MEPEMEHHBIX. PeayunpoBaHHOE
JEHCTBHE IIO3BOJISET BBECTH MOHSTHS JIOKAIN3Y EMOM «CNIEKTPAJIbHOM JHEPIUM»
¥ «CTIEKTPA/IPHOTO BPEMEHM» B IPSMO# aHAJIOTHH C SHEPrUeH U HabM0aeMBIM
BPEMEHEM JUTSl PEJIITUBHCTCKOH YaCTHLIBL. O6cyxaaKTcs IPEAE IJIOCKOTO Npo-
CTPAHCTBA BPEMEHM H «CTIIEKTPAIbHAS HCTOPHS» IBOIIOLHM kBanTOBOM Beenex-
HOM OT MHGIAINH 0 Kaaccuyeckoi cranuu PpuaMana.

Pa6oTa BHIIOIHEHA B JIaB0paTOpHH TEOPETHUECKON (PU3NKH UM. H.H.boro-
mobosa OUSA.
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Khvedelidze A.M., Papoyan V.V., Pervushin V.N. E2-94-163
Gaugeless Reduction of Gravity
and Evolution of Universe

The physical phase space of the Einstein gravity with the Dirac —
Arnowitt — Deser — Misner metric is constructed without using a gauge-fixing
condition by the explicit resolving of the constraints for nonphysical fields. As
a result of this gaugeless reduction, the Einstein action is expressed in terms
of independent kinemetric invariant dynamical variables. The reduced action
allows us to introduce the notions of the localizable «spectral energy»
and «spectral time» in direct analogy with the energy and observable time for
a relativistic particle. We discuss the flat space-time limit and the «spectral
history» of the evolution of the quantum Universe from inflation until the
classical Friedmann stage.
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