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We perform a phenomenological study of Z plus jet, Higgs plus jet and di-jet production at
the Large Hadron Collider. We investigate in particular the dependence of the leading jet cross
section on the jet radius as a function of the jet transverse momentum. Theoretical predictions
are obtained using perturbative QCD calculations at the next-to and next-to-next-to-leading order,
using a range of renormalization and factorization scales. The fixed order predictions are compared
to results obtained from matching next-to-leading order calculations to parton showers. A study
of the scale dependence as a function of the jet radius is used to provide a better estimate of the
scale uncertainty for small jet sizes. The non-perturbative corrections as a function of jet radius are
estimated from different generators.

I. INTRODUCTION

The production of a single object like a Z or Higgs boson, or a jet, at high transverse momentum has been
studied intensely in hadron collider environments, both theoretically and experimentally. These processes are used
for measuring standard-model parameters, to constrain parton distribution functions (PDFs), and to understand
backgrounds to new physics searches. They probe the structure of the QCD interactions in great detail. On the one
hand, the large scales associated with the production of a high-pT object make QCD perturbation theory a prime
analysis tool. For H/Z+ ≥ 1 jet production, the large boson mass also provides a large scale to further stabilize
the QCD prediction. On the other hand, the exclusive nature of the reactions may induce logarithmically enhanced
higher-order corrections, which must be resummed to all orders. Both aspects must be incorporated into simulations
used for experimental and phenomenological analyses to provide accurate predictions.

In the past few years, the state of the art in QCD perturbation theory has advanced considerably. Next-to-next-
to-leading order QCD predictions are now available for Z-boson plus jet [1–5], Higgs-boson plus jet [6–10], and
for inclusive jet and di-jet production [11–15]. Next-to-leading order accurate results have been available for some
time [16–18]. They can now be computed in an automatic fashion using general-purpose event generators [19–27] and
the matching to parton showers can be carried out with a number of different approaches [28, 29]. Analytic results
for jet radius [30] and combined jet radius and threshold resummation are available as well [31, 32].

A contribution to the Les Houches 2017 workshop compared predictions for H+j production at LO, NLO and NNLO
to those from parton-shower matched NLO calculations using different event generators, for a variety of jet radii [33].
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The goal for this comparison was multi-fold: using identical boundary conditions, to check the consistency of the
matched predictions, and to demonstrate that the matched results revert to their underlying fixed order predictions
in kinematic regions where Sudakov resummation can be neglected. Good agreement was observed between different
parton showers, and between the matched predictions and the fixed order results. The best agreement of the jet shape
was obtained in the comparison between NLO+PS matched and fixed-order NNLO predictions, which is expected
given the more complete description of the jet shape upon including double-real radiative corrections at NNLO.

In this study, we follow up with further comprehensive comparisons for Higgs+jet, and for two additional processes,
Z+jet and dijet, concentrating on inclusive observables, such as the lead jet transverse momentum distribution.
Contrary to popular opinion, the agreement among the various NLO+PS matched predictions (including POWHEG
for dijet production) for these observables is good, as is the underlying agreement with the relevant fixed order
calculation, especially at NNLO, if each prediction is used properly, and with identical parameters. One of the
powerful and indeed unique aspects of this study is the comparison of jet cross sections for a wide variety of jet
radii (beyond what is commonly used by the ATLAS and CMS experiments). This allows for a better fundamental
understanding of the underlying physics, both perturbative and non-perturbative.

In addition, we examine the scale uncertainties of the three processes, at LO, NLO and NNLO, as a function of jet
radius, and comment on the implication of our results on the determination of reasonable scale uncertainties.

The paper is organized as follows. In Sec. II we detail the setup of the generators used in this study. In Sec. III
we discuss the the shape of jets for the three processes. Sec. IV focuses on the transverse momentum dependence of
the cross-sections and the influence of higher order corrections at fixed order. In Sec. V we describe and compare
results from the fixed order expansion to parton level Monte Carlo simulations. In Sec. VI we consider cross section
uncertainties that arise due to the jet definition. Before we give concluding remarks and an outlook in Sec. VIII we
examine the possible influence of hadronization and multiple parton interactions on the measurement of cross-sections
in Sec. VII.

II. SETUP

We investigate Higgs+jet, Z+jet and inclusive jet production, taking advantage of the NNLO calculations available
for all three processes. The latter two reactions are important for global PDF fits, where only fixed order predictions
(along with the relevant non-perturbative corrections) have been used so far, and thus it is important to understand
the possible impact of resummation effects.

The analyses use the anti-kT jet algorithm [34], with varying jet size as described below, with a jet transverse
momentum threshold of 30 GeV, along with a cut on the jet rapidity of 4.5. To avoid generation cut effects, the
comparisons are performed above a jet transverse momentum of 50 GeV. Further, any cross-section that is sensitive
to the colourless system is to be taken above a transverse momentum of 90 GeV to ensure the possibility of having
three well-separated partons (at NNLO) recoiling and resulting in generation cut migration.

As a further test of the impact of parton showers versus fixed order, the jet size was varied across the values
0.3, 0.4, 0.5, 0.6, 0.7, and 1.0, using the anti-kT jet algorithm. Indirectly, this tests how well the one (two) extra
parton(s) at NLO (NNLO) reproduce resummation effects. This is of particular interest as the Higgs (Z) boson +
jets measurements that have been performed at the LHC in Run 2 have typically used a jet size of 0.4, which is only
slightly above the region where small R effects become important 1. Taking the small R effects into proper account
would require resummation, as discussed in [30–32]. The NLO+PS predictions provide this resummation by means
of the parton showers.

In this study, predictions from NLO+PS programs were carried out at the parton shower level to make them
comparable to the fixed order calculations 2. To the degree to which it was possible, the fiducial setups have been
constrained to be the same for all calculations. We used the PDF4LHCNNLO 30 PDFs [35], with its central value of
αs(mZ) of 0.118. We do not address PDF uncertainties. The renormalization and factorization scales used to compute
the fixed-order perturbative results have been chosen as similar as possible, providing a greater level of control than
was available in a similar study during the 2015 Les Houches workshop [36]. More details will be provided in the
sub-sections. We use the Rivet framework [37] to analyze events. A CMS routine from the 13 TeV inclusive jet
analysis [38] was modified to add the different R values, as well as additional observables.

1 Inclusive jet production has been measured at two different jet radii, for example R= 0.4 and 0.6 for ATLAS. The global PDF fiting
groups almost always use the larger jet size, where the jet shape is not as critical.

2 As a reminder, the non-perturbative corrections used for fixed order predictions are determined from a comparison of the parton shower
predictions with and without the non-perturbative effects, as a function of jet radius. This implicitly requires the integrated jet shape
determined by fixed order predictions to agree with those determined by parton showers.
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A. NNLOJET

The NNLO corrections to pp → X + j receive contributions from three types of parton-level subprocesses: the
X+5 parton tree-level (double-real correction), the X+4 parton process at one-loop (real–virtual correction), and the
two-loop X+3 parton result (double-virtual correction). The double-real, real-virtual and double virtual corrections
to pp→ H + j production were computed in [39–41], [42–44] and [45], respectively. The double-real, real-virtual and
double virtual corrections to pp→ Z + j production were computed in [46–49], [50–53] and [54–57], respectively. The
double-real, real-virtual and double virtual corrections to inclusive jet and di-jet production were computed in [58],
[59–61] and [62–68], respectively.

Each of the above components of the NNLO calculations is separately infrared (IR) divergent, and the divergences
cancel upon integration over the unresolved phase space by virtue of the Kinoshita–Lee–Nauenberg theorem. In order
to compute a fully differential prediction using Monte-Carlo integration techniques, a procedure for the subtraction
of IR singularities is required to make this cancellation manifest, and to construct a locally finite integrand. To this
end, we employ the antenna subtraction formalism [69–77], which is implemented in the NNLOJET framework.

For the central predictions of our current study, we use the following dynamical scale for H+jet and Z+jet produc-
tion processes,

µ0 =
HT,j

2
=

1

2

(√
m2
X + p2T,X +

∑
jets

pT,j

)
. (1)

The LO and NLO differential cross sections using this dynamical scale choice were validated against Sherpa and
Herwig7. The renormalisation (µR) and factorisation (µF ) scales are varied independently around µ0 by factors of 1

2
and 2 to estimate the size of missing higher-order contributions. Here, the two extreme variations are excluded such
that we arrive at the custom 7-point scale variation:

(µR, µF ) =
{

(1, 1), (2, 2), ( 1
2 ,

1
2 ), ( 1

2 , 1), (1, 12 ), (2, 1), (1, 2)
}
× µ0. (2)

The inclusive jet production process has been studied at NNLO in Ref. [78], using a standard scale choice of

µ0 = pjetT where this quantity refers to the transverse momentum of each individual jet. Thus, for each jet in a NNLO
event, there is a corresponding entry in the plot with the matrix element weight evaluated at the jet pT as the scale.
This is the very definition of an inclusive cross section. An alternative choice is to use as a scale the transverse
momentum of the highest pT jet in the event (pjetmax

T ) [13]. The use of these two scales creates a sizeable difference at
NNLO at low transverse momentum [15], which is larger than the nominal scale uncertainty around either scale. This
effect was examined in detail in Ref. [15], leading to the observation that large-scale cancellations between different
kinematical configurations in the second jet contribution are aggravated for certain scales. An event based scale (HT )
built from the scalar sum of transverse momenta of all partons in the event was found to be stable, leading to an
improved perturbative convergence on the transverse momentum distributions, with overlapping scale uncertainty
bands between NLO and NNLO. In this study this is the default scale choice to perform a standard comparison with
the ME+PS predictions, unless otherwise stated in the text.

In order to obtain the results for the various jet sizes in Higgs+jet and Z+jet (R = 0.3, 0.4, 0.5, 0.6, 0.7, and 1.0)
required in this study, we have exploited the fact that the Born-level kinematics for all processes is insensitive to R.
As a result, the difference between two cone sizes can be obtained from a calculation of the H+2 jet and Z+2 jet
process at NLO accuracy:

σNNLO
H(Z)+j(R)− σNNLO

H(Z)+j(R
′) =

∫ [
dσNLO

H(Z)+2j(R)− dσNLO
H(Z)+2j(R

′)
]
Njets≥1. (3)

Note that the difference has to be taken at the level of the integrand, since one term acts as a local counter-term
of the other in all IR-divergent limits where a jet becomes unresolved and the H+2 jet / Z+2 jet configuration
degenerates to H+jet / Z+jet. Using Eq. (3), predictions for different R values can be obtained from a single NNLO
computation.

B. Setup for Sherpa

We use a pre-release version of the Sherpa Monte Carlo event generator [79, 80], based on version Sherpa-2.2.4.
The NLO matching is performed in the S-MC@NLO approach [81, 82]. We use a modified version of a parton shower
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algorithm [83], which is based on Catani-Seymour dipole subtraction [84, 85]. We use a running coupling consistent
with the PDF, and employ the CMW scheme to include the two-loop cusp anomalous dimension in the parton-
shower simulation [86]. To make the result comparable to the fixed-order predictions we set the renormalization and
factorization scales to3

µ0 =
HT

2
=

1

2

(√
m2
X + p2T,X +

∑
partons

pT

)
for Higgs/Z+jet production, (4)

µ0 = HT =
∑

partons

pT for inclusive jet production, (5)

and we set the resummation scale to (pT,H/Z +
∑

partons pT )/2 for Higgs/Z+jet production and to
∑

partons pT /2

for inclusive jet production. There will be some small differences with respect to NNLO for Higgs/Z+jet production
due to the summing over partons rather than jets.

C. Setup for Herwig

We used Herwig 7 [25, 87–89] based on version 7.1.4 and ThePEG version 2.1.4 with minor changes to standard
Herwig 7 scale settings to match Eq. (4). The NLO matching was performed with matrix elements from OpenLoops [22]
and MadGraph [90] interfaced using the BLHA2 standard [91]. For parton distributions the PDF interface from

LHAPDF6 [92] was used. In the results we show matched NLO⊕PS predictions with the Q̃-shower [93]; using lower
statistics it was confirmed that merging according to [94, 95] and matching to the Herwig 7 dipole shower [96] display
similar behaviour. For parton level comparisions, hadronization and MPI models were switched off and the αS of the
hard process was synchronized with the PDF set. We include the effects of the CMW scheme [86] by an enhanced
shower αS = 0.124. The scale used for the core process in the matching is defined as in Eq. (4), and the resummation
scale was set to the transverse momentum of the hardest jet.

D. Setup for POWHEG BOX

Inclusive jet production was simulated using POWHEG BOX (v2) [29, 97, 98], using the implementation described
in Ref. [99]. The hard matrix elements entering the B̄ function have been evaluated using the scale choice in Eq. (5).
In order to match the setup of Sherpa and Herwig7, we used the options btlscalereal 1 and btlscalect 1,
thereby computing the real matrix elements using values of µR and µF obtained using the corresponding phase space
kinematics, rather than the underlying Born one. The running of the strong coupling is consistent with the PDF
choice, and the CMW scheme is used in the POWHEG Sudakov form factor. The partonic events were then showered
using Pythia8 (version 8.230) [100], using the default tune and hence the default PDF choice for the showering stage.
For this study, vetoing in parton showering has been achieved using the settings "SpaceShower:pTmaxMatch = 1"
and "TimeShower:pTmaxMatch = 1".

III. JET SHAPES

In Fig. 1, we investigate the difference between the fixed-order NLO and NLO matched predictions for integrated
jet shapes for Higgs+jets, Z+jets and dijet production. The integrated jet shape is defined as

Ψ(r) =
1

N jet

∑
jets

pT(0, r)

pT(0, R)
, (6)

with r being the radius of a cone which is concentric to the jet axis and pT(r1, r2) being the magnitude of the scalar
sum of transverse momenta in the annulus between radius r1 and r2. We also compare to a parton-shower matched

3 Note the slight difference compared to Eq. (1), where the sum runs over partonic jets, as opposed to all partons. Using the same scale
would lead to slightly better agreement between the two predictions.
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FIG. 1: Jet shapes for Higgs and Z plus jets and inclusive jets

prediction, where the number of final-state partons generated in the simulation is limited to at most two. This
simulation presents the closest possible approximation to the fixed-order NLO result that we are able to generate
using the matching algorithms. It reflects the kinematical restrictions of the NLO calculation (i.e. that only up
to one additional final-state parton can be present), but it also includes additional approximate higher-order virtual
corrections by means of Sudakov factors. Nevertheless, we observe that the full NLO result and the truncated matched
result approach each other well within the jet cone, and the convergence is naturally faster for larger jet transverse
momenta. Note that the truncated matched result approaches the full NLO result from above, which indicates that
the NLO calculation predicts less radiation close to the center of the jet. This is explained by the following effect:
The radiation probability in the fixed-order calculation diverges as r → 0, while it smoothly approaches zero in the
parton-shower matched result, due to Sudakov suppression. If the parton-shower approximation to the real-emission
cross section is good, this implies that at any given value of r, the fixed-order prediction for the differential jet shape
will be larger than the parton-shower result, and conversely, that the fixed-order prediction for the integrated jet
shape will be smaller than the parton-shower result. This effect is somewhat reduced by the different scale choice in
the two calculations, but it can still be observed in Fig. 1.

The good agreement between the truncated matched prediction and the fixed-order calculation strongly suggests
that the differences between the fixed-order predictions and matched results in Fig. 14 below are due to higher-
multiplicity final states. The discrepancies at small and large R should therefore be reduced for higher-order pertur-
bative calculations, especially at NNLO. The jet shape for the Z+jets process is noticeably narrower. We attribute
this to the lead jet accompanying the Z-boson being predominantly a quark jet, which is more collimated than a
gluon jet due to its reduced color charge.

IV. K-FACTORS AND R-DEPENDENCE AT FIXED ORDER

Fig. 2 top (middle) shows (left) the transverse momentum spectrum of the Higgs boson (Z-boson) as predicted by
the fixed-order LO, NLO and NNLO calculation, as well as the results from an NLO matched computation using the
Sherpa event generator and the NLO-matched Herwig result. The NLO, Sherpa and Herwig results are all in very
good agreement with each other over the entire range of the plot (≥ 100 GeV). The NNLO normalizations are larger
due to the higher order effects included in these calculations.

Fig. 2 top (middle) shows (center) the K-factors (NLO/LO, NNLO/LO, NNLO/NLO), from NNLOJET as a
function of the Higgs boson (Z-boson) pT , for different jet radii; as expected there is no jet size dependence for this
variable in the plotted region. Also shown (right) are the local K-factors as a function of the lead jet transverse
momentum for the two processes, for various jet sizes. The K-factors for H+ ≥ 1 production are relatively flat as a
function of jet pT . The K-factors (NLO/LO and NNLO/LO) for Z+ ≥ 1 production grow rapidly with jet pT , due
to the increasing dominance of dijet production, followed by a Z-boson emission. The K-factors (NNLO/NLO) are
relatively flat, indicating that there are no substantial new subprocesses being added at NNLO.
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FIG. 2: K-factors for Higgs plus jets (top), Z plus jets (middle) and inclusive jet production (bottom).

Fig. 2 (bottom left) shows the inclusive jet transverse momentum spectrum as predicted by the fixed-order LO,
NLO and NNLO calculations, for an R-value of 0.7, as well as the results from an NLO matched computation using
the Sherpa event generator and the NLO-matched Herwig result. In addition, a prediction from Powheg is included
as well. The NLO, Sherpa, Herwig and Powheg results are all in very good agreement with each other over the
range of the plot (≥ 100 GeV), i.e. there is no significant parton shower systematic and the predictions with parton
showers reflect the underlying fixed-order NLO results. The NNLO normalizations are larger due to the higher order
effects included in these calculations. K-factors (NLO/LO, NNLO/LO, NNLO/NLO, from NNLOJET are shown as a
function of jet size, and as a function of the inclusive jet pT , for two different rapidity intervals. Again, the K-factors
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FIG. 3: The cross sections for H+ ≥ 1 jet, Z+ ≥ 1 jet, and dijet production from NNLOJET, as a function of the inclusive jet
pT at LO, NLO and NNLO. To illustrate the spread induced on the cross section, representative values of R ∈ [0.3, 0.5, 0.7, 1.0]
are shown.

grow with increasing jet size, and also have a slight slope (NLO/LO, NNLO/LO) as a function of the jet transverse
momentum.

The cross sections for H+ ≥ 1 jet, Z+ ≥ 1 jet, and dijet production from NNLOJET are shown in Fig. 3, as a
function of the inclusive jet pT at LO, NLO and NNLO. The figure shows representative values for R ∈ [0.3, 0.5, 0.7, 1.0]
to illustrate the spread induced on the cross section. It is interesting to note that for H+ ≥ 1 jet production, the
R-dependence is larger at NNLO than at NLO. The R-dependence for Z+ ≥ 1 jet production is relatively small
both at NLO and NNLO. For dijet production, the R-dependence is relatively large at both NLO and NNLO. The
larger R-dependence for H+ ≥ 1 jet production at NNLO than at NLO can be traced back to the large radiative
corrections to the signal at NLO. A significant part of the large higher-order corrections in inclusive Z- and Higgs-
boson production originates in the well-known ratio of the Sudakov form factor between the timelike and the spacelike

region [101]. This ratio, given by
∣∣Γa(Q2)/Γa(−Q2)

∣∣2 = 1 + αs(Q
2)/(2π)Caπ

2 + O(α2
s) is enhanced by the color

charges of the partons annihilating into the electroweak boson and is therefore larger in Higgs- than in Z-boson
production. While the analysis is more complicated in processes with an additional final-state jet, universal terms of
the same form are present there, which might explain the larger NNLO / NLO K-factors in the case of Higgs-boson
plus jet production [102].

V. RESULTS: FIXED ORDER VS. PARTON LEVEL MONTE CARLO

Fig. 4 shows the scale dependence of the differential cross section as a function of the Higgs or Z-boson transverse
momentum. The NLO-matched parton shower predictions have been scaled by K-factors derived from the constraint
that the inclusive cross section for heavy boson transverse momenta above p⊥ > 150 GeV match the fixed-order
result. The reduction of the scale dependence in the transition from LO to NNLO is striking. It is also encouraging
that the scaled NLO-matched parton shower calculations agree very well with the fixed-order results over the entire
range in transverse momentum. This implies that the Monte-Carlo generators can be utilized to reliably predict the
heavy boson transverse momentum spectra in boosted Higgs and Z-boson analyses.

If the renormalization and factorization scales are defined using partonic variables, we expect a very mild dependence
of the Higgs/Z transverse momentum spectrum on both the jet pT cut and the jet radius in the plotted region. At
leading order QCD, this transverse momentum is compensated by a single hard jet. The collinear evolution of the
jet is governed by the DGLAP equations, which prefer highly asymmetric branchings of the jet into softer sub-jets.
Only if this evolution reaches the extremely unlikely final-state configuration with all jets below the pT threshold or
outside the rapidity region covered by the detector, the event can be lost and the cross section can be changed. Due
to the restricted final-state multiplicity, the probability for this is even more reduced at fixed order. In fact, without
any jet rapidity cuts, the cross section could not be modified up to N5LO, where the opportunity arises for the first
time to have all partons forming individual jets at pT = 150 GeV/6 < 30 GeV, albeit in a very small phase space.

In the context of Higgs boson measurements at high transverse momentum, the difference between predictions
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FIG. 5: The ratio between results computed in HEFT and the full Standard Model for the transverse momentum spectrum
of the Higgs boson (left) and the leading jet (right) in Higgs plus jet events. Results labeled NLO’ are derived using the
approximation of [103].

computed in the Higgs effective theory (HEFT) and the full Standard Model, (including dependence on the top-
quark mass), becomes important. The full Standard Model features a significantly steeper transverse momentum
spectrum as well as different scale uncertainties. A complete calculation at NNLO precision in the full Standard
Model is currenly out of reach. One can, however, assume that top-quark mass effects factorize from higher-order
QCD corrections, such that they can be treated independently. In Fig. 5 we test this hypothesis, both for the Higgs
boson and leading jet transverse momentum spectrum. The results labeled NLO’ are derived using an approximate
virtual correction [103]. This approximation is motivated by the good agreement between such approximations and
the full NLO result observed in [104]. We note that the ratio between the full SM and the HEFT result behaves very
similar at LO and at NLO’, both as a function of the Higgs and the leading jet transverse momentum. Note that it
has a jet radius dependence as a function of the leading jet transverse momentum. This originates in the different pT
dependence of the cross section in the real-emission and Born kinematics at NLO.
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Fig. 6 top (bottom) panel shows the cross section scale variations at LO, NLO and NNLO for H(Z)+ ≥ 1 jet
production, as a function of the leading jet transverse momentum, for various jet sizes. The uncertainty bands are
given by the highest and lowest cross section predictions at each order. As expected, the uncertainties on the cross
sections decrease from LO to NLO to NNLO. They also decrease (slightly) as the jet size decreases, perhaps not
surprising given that larger jet radii lead to inclusion of more real radiative corrections.

The scale uncertainties for H+ ≥ 1 jet production are relatively constant as a function of the lead jet transverse
momentum. For Z+ ≥ 1 jet production, the NLO scale uncertainties increase as the lead jet transverse momentum
increases. This can be understood as the effect of new kinematical channels, which correspond to the radiation of a
soft Z boson off a hard di-jet event. Such configurations arise at leading order in the NLO result, and they become
more important as the lead jet transverse momentum increases.

Also shown for comparison are the predictions from the two NLO+PS calculations. For the sake of shape comparison,
we scale these predictions with inclusive K-factors derived from the Higgs(Z) pT distribution above 150 GeV. This has
two reasons: First, as described earlier the generation cut on the jet requires high enough boson pT cuts to mitigate
simulation setup effects. Second, in the parton shower simulation, we use the jet transverse momentum to define
the shower starting condition. If the Higgs(Z) mass is of similar size this choice of scale would have an increased
ambiguity, which could, however, be eliminated by performing a multi-jet merged computation. For H+ ≥ 1 jet
production, the two NLO+PS predictions agree very well with each other and tend to be at the lower end of the scale
uncertainty bands for R= 0.4, at center of the scale uncertainty bands for R= 0.7 and slightly above the center of
the scale uncertainty bands for R= 1.0. For Z+ ≥ 1 jet production, the NLO+PS predictions again are in agreement
with each other, but rapidly increase over the LO results as the lead jet pT increases (again due to the impact of
the dijet contribution, arising only at NLO or above). At NLO, a similar behavior with respect to the NLO scale
uncertainty band is observed as was seen for H+ ≥ 1 jet. At NNLO, the NLO+PS predictions are close to the scale
uncertainty bands, which are extremely small, especially for R= 0.4. This will be discussed further in the context of
Fig. 8 and in Sec. VI.

Fig. 7 shows the leading jet pT cross sections for H+ ≥ 1 jet production for the different scale choices, at LO, NLO
and NNLO, as a function of the jet size R. In this case, a minimum transverse momentum requirement of 150 GeV
has been placed on the leading jet. We assume this scale to be large enough to replace MH as the largest scale in the
process, see discussion of Fig. 6. The dots for each scale choice have been fit to a functional form motivated by the
expected behavior for jet cross sections. We assume the leading functional form [105]:

f(R) = a+ b log(R) + cR2 (7)

which is motivated by the logarithmic behaviour scaling of the cross section with the jet size R and an area-dependent
contribution from initial-state radiation. The lines in Fig. 7 are then interpolations with Eq. (7) and the fitted values.
Again, the scale variation band is given by the upper and lower curves at each order. It is notable that the scale
uncertainty bands shrink as the jet size decreases, as mentioned earlier. For very low values of R, this improvement
in the uncertainty can be regarded at least partially due to accidental cancellations that stem from the restrictions in
phase space. It can also be observed that for each particular scale, the slope is greater at NNLO than at NLO. The
NLO+PS predictions are also plotted in the figure, and can be observed to have a greater slope than even the NNLO
predictions. This can be seen as an effect of either including (at large R) or not excluding (at small R) additional
semi-hard real emissions, which have a leading-order scale dependence and therefore induce a large change in the cross
section. The ratio panels of Fig. 7 to Fig. 11 will be discussed in Sec. VI in the context of improved scale uncertainties.

Fig. 8 shows the leading jet pT cross sections for Z+ ≥ 1 jet production for the different scale choices, at LO, NLO
and NNLO, as a function of the jet size R, and again with a minimum transverse momentum requirement of 150 GeV
placed on the leading jet. The behavior at NLO is similar to what was observed for Higgs + jet. As for Higgs +jet,
there is a large decrease of the scale uncertainty at NNLO at all R values. In fact, the scale uncertainty decreases to
zero at R=0.3, emphasizing the accidental cancellations noted for Higgs+jet. This may indicate that the especially
small scale uncertainties for R=0.4, as observed for example in Fig. 6, may be underestimated.

Figures 9, 10 and 11 show the inclusive jet cross section from dijet production, again at LO, NLO and NNLO, as

a function of R, using scale variations around a central scales of HT , pjetT and µR/F = plead jet
T , respectively. Here, the

behavior is in some sense more extreme in that e.g. for the scale choice HT the jet R value for essentially zero scale
uncertainty is at R=0.4 which is one of the jet sizes that is commonly used at the LHC4.

Fig. 12 shows the cross sections for the Higgs(Z) transverse momentum and leading jet transverse momentum for
several different jet sizes, at LO, NLO and NNLO (from NNLOJET) and from the two NLO+PS predictions. All

4 Note that this statement is dependent on the functional form used for the scale.
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FIG. 6: The scale variations at LO, NLO, and NNLO from NNLOJET for 3 jet sizes, as a function of leading jet transverse
momentum, are shown. For comparison, the nominal NLO NLO+PS predictions are also shown. The generator predictions are
scaled with the inclusive Kincl factor with Higgs(Z) p⊥ > 150 GeV, see Fig. 2.

cross sections have been scaled to their respective value for the reference jet size of R = 0.7. Near this value we
observe the best agreement between fixed-order and NLO matched results, save for an overall normalization which
can be extracted from the Higgs(Z) transverse momentum spectrum, cf. Fig. 2.

The absolute value of the difference between the fixed-order and the NLO matched predictions away from R = 0.7
increases roughly proportional to log(R/0.7) (cf. Fig. 14), which is expected due to the higher-multiplicity emissions
included in the PS simulations. Depending on kinematics they either enhance (at R > 0.7) or reduce (at R < 0.7)
the cross section.

The differences between the NLO+PS predictions and those from NNLOJET decrease as the order is raised from
NLO to NNLO for both Higgs and Z-boson production. The difference for Higgs boson production is of the order of
5-10% for R = 0.4 at NLO and of the order of less than 5% at NNLO, relatively flat with pT . For Z-boson production,
the differences between the NLO+PS predictions and those from NNLOJET at NLO slightly increase with increasing
pT , and are relatively flat and small at NNLO.

Fig. 13 shows the cross sections for the inclusive jet pT distribution for several different jet sizes, at LO, NLO and
NNLO (from NNLOJET) and from the two NLO+PS predictions. The ratios to R= 0.7 decrease as a function of
increasing jet pT at all orders. The differences between the three NLO+PS predictions and those from NNLOJET
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FIG. 7: The R-dependence of the cross sections at NLO, NNLO and NLO+PS are shown, for particular scale values, as a
function of the jet radius, for H+ ≥ 1 jet production, for leading jet transverse momenta above 150 GeV.

are of the order of 10% at NLO and of the order of 5% or less at NNLO.
Given the better description of the jet shape provided by the NLO+PS predictions, this is an indication of the

theoretical uncertainty associated with the truncation of the perturbative series. The uncertainty is reduced at NNLO
as expected. It is noteworthy that the ratios in Fig. 12 are relatively flat as a function of the transverse momenta.

Fig. 14 shows the dependence of the relative difference between a NLO-matched prediction from Sherpa and the
NLO fixed-order result for H+ ≥ 1 jet production, as a function of the leading jet transverse momentum for varying
jet radii. The ratio is flat as a function of the leading jet pT . In Fig. 7 we compared integrated cross sections, while
here we observe interestingly a similar behaviour for the differential cross sections. In the right plot, the projection
is with respect to the radius, and displays, in grey, the various transverse momentum intervals and, in coloured, the
lowest and highest energies. Assuming the leading behaviour is given by Eq. (7), and with the flatness in the leading
jet transverse momentum, the linear, (but slightly quadratic) behaviour in the logarithmic plot is expected. We note
the zero crossing of the curve on the right-hand side, which corresponds to the best agreement between fixed-order
and NLO-matched result, is located at R ≈0.8 (see the discussion of Fig. 12). In configurations where the jet rapidity
is zero, this corresponds to a roughly equal partitioning of the rapidity phase-space into collinear sectors for color
dipoles spanned between the initial-state partons and the final-state jet, and thus to a roughly equal partitioning of
soft-enhanced radiation. This geometric argument favours the commonly used R = 0.7 with respect to smaller values
when experimental data is compared to fixed order calculations, although the precise value will depend on the color
structure of the process and on the parton luminosity.
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FIG. 8: The R-dependence of the cross sections at NLO, NNLO and NLO+PS are shown, for particular scale values, as a
function of the jet radius,for Z+ ≥ 1 jet production, for leading jet transverse momenta above 150 GeV.

Fig. 15 shows the dependence of the relative difference between a NLO-matched prediction from Sherpa and the
NLO fixed-order result, for Z+ ≥ 1 jet production, as a function of the leading jet transverse momentum for varying
jet radii. In contrast to the Higgs boson case, the distributions are not flat as a function of lead jet transverse
momentum for small-R jets and for large-R jets. Note also that the zero-crossing for the curves on the right-hand
side is closer to R = 0.9 than to R = 0.8.

Fig. 16 shows the dependence of the relative difference between a NLO-matched prediction from Sherpa and the
NLO fixed-order result, for the inclusive jet transverse momentum, for dijet production, as a function of the inclusive
jet transverse momentum for varying jet radii. The curves are relatively flat as a function of inclusive jet transverse
momentum, for jet R values less than 0.7, but fall more steeply for larger R values. Note that the zero-crossings for
the curves on the right-hand sides of the figures (for lead jet and inclusive jet) are around R = 0.8.

Fig. 17 shows the dependence of the relative difference between a NLO-matched prediction from Sherpa and the
NLO fixed-order result, for the lead jet transverse momentum, for dijet production, as a function of the leading
jet transverse momentum for varying jet radii 5. The curves are relatively flat as a function of lead jet transverse
momentum, for jet R values around 0.5, but fall (rise) more steeply for larger (smaller) R values.

5 Note that for this distribution the R-dependence is larger than for any of the other distributions.
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FIG. 9: The R-dependence of the cross sections for inclusive jet production at LO, NLO, NNLO and NLO+PS are shown,
for scale variations around a central scale of HT , as a function of jet radius, for dijet production, for leading jet transverse
momenta above 196 GeV.

Comparing the Figs. 14 - 17 we note the relative narrow distribution of grey lines that sample the different pT bins
in the case of Higgs production. One might expect that this behavior is due to the Higgs production process being
gluon-initiated. However, the decomposition into flavor channels shows that initial state quarks do play an important
role and that quark-gluon initiated processes start to dominate for high transverse momenta. This diverse flavour
composition of initial and final state does not allow us to make a definite statement without further studies.

VI. UNCERTAINTY ESTIMATES IN PROCESSES WITH FINAL-STATE JETS

The reduction of scale uncertainties achievable at NNLO is remarkable. However, the R-dependence of the uncer-
tainty discussed in Sec. V indicates that some of the improvements may be due to accidental cancellations. It is well
known, that the scale variation for exclusive cross sections is prone to the accidental compensation of logarithmically
enhanced higher-order corrections that appear both as a result of scale variations and as a result of the phase-space
restrictions. The very definition of a final-state jet implies an exclusive measurement and effectively acts as a veto on
real-radiative corrections that fall outside the jet area. This effect has been studied in different contexts [30, 106] An
accurate assessment of the perturbative uncertainties is important for inclusive jet production (and to a lesser extent
for Z+jet production), as the PDF fitting groups are working to incorporate scale uncertainties in their analyses, and
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FIG. 10: The R-dependence of the cross sections for inclusive jet production at LO, NLO, NNLO and NLO+PS are shown,
for scale variations around a central scale of pjetT , as a function of jet radius, for dijet production, for leading jet transverse
momenta above 196 GeV.

jet production serves as one of the major constraints on the gluon distribution, especially at large x. The impact is
also especially important for smaller jet sizes (R=0.4), commonly used for many measurements at the LHC, such as
Higgs + jet production. The accidental cancellations can also be an issue at NLO, but it is less noticeable, given the
larger intrinsic uncertainties at that order.

The ansatz advocated in [30] is to view the differential cross section as a combination of a fixed-order term and
the normalized all-orders resummed result. The two are then combined through multiplicative matching, and their
perturbative uncertainties are added in quadrature. Upon re-expanding this result to fixed-order, one obtains the
NnLO-mult prescription given in [30], Eqs. (3.5) and (4.3). The result can be written as

σ(R) = σ(R0)
σ(R)

σ(R0)
≈ σ(R0) ·

(
1 + αS ∂αS

σ(R)

σ(R0)

∣∣∣
αS=0

+ α2
S ∂

2
αS

σ(R)

σ(R0)

∣∣∣
αS=0

)
. (8)

Clearly there are several possible choices in regards to the implementation of the factorization of terms on the right-
hand side of Eq. (8). Results from the original proposal in [30] are shown in the lower panels of Figs. 7-10. We refer to
this technique as “Ansatz 3”. While the red and blue dotted lines in Figs. 7-10 correspond to typical scale variations
the green dashed lines show the ratio of “Ansatz 3” (and other choices explained in the following) to the central scale
prediction. The uncertainty of “Ansatz 3” has a more realistic-seeming value for all R, but the central value of the
prediction is modified at small R, in some cases leading to the resultant uncertainty not encompassing the central
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FIG. 11: The R-dependence of the cross sections for inclusive jet production at LO, NLO, NNLO and NLO+PS are shown,
for scale variations around a central scale of µR/F = plead jet

T , as a function of jet radius, for dijet production, for leading jet
transverse momenta above 196 GeV.

value of the original NNLO prediction. We therefore investigate two alternative approaches. In the first (“Ansatz 1”),
the ratio σ(R)/σ(R0) on the right-hand side of Eq. (8) is not expanded, and we combine the uncertainties from the
ratio and the seed cross section σ(R0) in quadrature. The results of this procedure are shown in the top ratio panels
of Figs. 7-10. Our second alternative method (“Ansatz 2”), is based on the parametrization of the cross section as
a function of R according to Eq. (7). We then determine the scale uncertainties of the fit coefficients a, b and c and
combine them in quadrature to arrive at the full uncertainty. It can be seen in comparison between the top and middle
ratio panels of Figs. 7-10. that Ansatz 1 and Ansatz 2 give similar results, and both preserve the central value of the
original NNLO fixed-order result. Although larger than the original uncertainties, the perturbative scale variations
determined in this way are still smaller than the uncertainties observed at NLO, as would be expected from a higher
order calculation.

It is important to note that all of the aforementioned approaches of estimating the theoretical uncertainty from
missing higher-order corrections have an intrinsic dependence on the arbitrary reference value R0. By varying R0 it
is possible to create again a situation where the logarithmic corrections due to higher-order effects and due to phase-
space restrictions compensate each other and the scale uncertainty is reduced to nearly zero. Based on the analysis
in Secs. III-V we advocate to fix the reference radius R0 by comparing the higher-order result to a parton-shower
matched calculation and choose the reference point where the two (approximately) agree. As discussed in Sec. V, this
corresponds to selecting a reference radius where large logarithmic higher-order corrections are minimized. Here we
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FIG. 12: The ratio of each cross section (either Higgs(Z) pT or lead jet pT ) for specific jet sizes, scaled to the cross section for
each prediction for a jet size of R = 0.7.
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jet size of R = 0.7.

choose R0 = 0.7 for all uncertainty ansätze.

VII. HADRONIZATION CORRECTIONS AND UNCERTAINTIES

In this section we examine the non-perturbative corrections on the predictions presented before. We determine the
hadronization uncertainties by taking the difference between NLO matched and hadronized results from Sherpa, using
either the cluster fragmentation model as implemented in Sherpa [107] or an interface to the Lund string fragmentation
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FIG. 14: Relative difference between the NLO-matched prediction and the fixed-order result as a function of the leading jet
transverse momentum and the jet radius, for H+ ≥ 1 jet.
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FIG. 15: Relative difference between the NLO-matched prediction and the fixed-order result as a function of the leading jet
transverse momentum and the jet radius, for Z+ ≥ 1 jet.

model as implemented in Pythia [108].
Fig. 18 (top and middle) shows that the hadronization corrections for the lead jet in H+ ≥ 1 jet and in Z+ ≥ 1

jet are very similar. For the commonly used jet size R=0.4, the corrections are of the order of 5% or less. String
fragmentation leads to slightly larger corrections, but the differences between the cluster and string fragmentation
models are significantly smaller than the magnitudes of the corrections, on the order of 2% or less for R=0.4 and
decreasing for larger R, as expected.

The pattern is similar for the inclusive jet transverse momentum spectrum for dijet production, as shown in Fig. 18
(bottom), although the impacts are magnified given the dijet final state at Born level. For R=0.4, the difference
between cluster and string fragmentation is of the order of 2.5% or less.

The combined corrections from hadronization and the underlying event, modeled through multiple parton interac-
tions (MPI) are shown in Fig. 19. As the two corrections are in opposite directions, and are of similar magnitude for
jet sizes of the order of 0.4, the combined correction is small, of the order of 2% or less for R=0.4, except for dijet
production, where the combined correction can be as large as 5%. The related uncertainties shown on the right-hand
side of Fig. 19 are determined by taking the difference between predictions from Sherpa and Herwig, both using their
default MPI tunes and Cluster fragmentation.
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FIG. 16: Relative difference between the NLO-matched prediction and the fixed-order result as a function of the inclusive jet
transverse momentum and the jet radius, for dijet production.
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FIG. 17: Relative difference between the NLO-matched prediction and the fixed-order result as a function of the leading jet
transverse momentum and the jet radius, for dijet production.

VIII. CONCLUSION AND OUTLOOK

Searches for new physics, as well as a better understanding of standard model physics, require an increasing level of
precision, both for measurement and for theory. For differential distributions, the highest level of precision is obtained
with NNLO calculations. Matched NLO plus parton shower predictions (NLO+PS) start form less accurate fixed-
order results, but provide a more complete description of the event structure, including resummation effects at leading
logarithmic accuracy. Most physics measurements at the LHC make use of relatively small jet sizes (anti-kT with
R = 0.4), and H(Z)+ ≥ 1 jet production and dijet production are no exception. There can be differences between
fixed order and NLO+PS predictions for the same observable just due to the different estimates of the amount of jet
energy contained in a jet of radius R. These differences can be comparable to the size of the scale uncertainty for the
cross section at that order.

In this contribution, we have reported on an investigation of the impact of different jet sizes on Higgs plus jet, Z
boson plus jet, and dijet physics at the LHC, paying close attention to the impact of the jet size on K-factors, on
scale uncertainties, and on differences between fixed order and NLO+PS predictions. Better understanding of the
issues described here may allow an improvement in the accuracy, and precision, of such predictions at the LHC.

Our comparisons of the jet shapes for the three processes at fixed-order, full parton shower level, and truncated
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FIG. 18: Hadronization corrections and uncertainties for Higgs+jets (top), Z+jets (middle) and inclusive jets (bottom).
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FIG. 19: Hadronization plus MPI corrections for Higgs+jets (top), Z+jets (middle) and inclusive jets (bottom).
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parton shower level indicated that the differences observed between fixed-order and NLO-matched results are due
to higher parton multiplicity final states. We have observed the best agreement, for predictions involving jets,
between fixed-order and NLO-matched predictions, occur when the jet size R is relatively large, and/or the fixed-
order prediction is at NNLO compared to NLO. In the former, the jet shape is not as critical, and in the latter the jet
shape is better described. We have found excellent agreement among the NLO-matched predictions for all observables.

The scale uncertainty naturally decreases in going from LO to NLO to NNLO, and also tends to decrease as the
jet size decreases. We have observed that the (suitably normalized) NLO-matched results are within the fixed-order
scale uncertainty bands at LO, NLO and NNLO, for H+ ≥ 1 jet for all jet sizes, but are typically outside the NNLO
scale uncertainty bands for Z+ ≥ 1 jet, due to the very small values of the scale uncertainties for this process at this
order. The scale uncertainties at NNLO can in fact be at or near zero for small jet sizes, indicating that the standard
scale uncertainty paradigm does not provide an accurate description of the uncertainty of the calculation. These small
uncertainties are due to accidental cancellations arising from the restriction of the phase space for small-R jets. We
have constructed several ways of providing more robust determinations of the scale uncertainties.

Lastly, we have compared the non-perturbative predictions for all three processes as a function of jet size R and jet
transverse momentum, and have found very good agreement between string and cluster fragmentation, and between
the full non-perturbative corrections, fragmentation plus MPI, between Sherpa and Herwig.

In summary, we expect parton-shower matched predictions to differ from the underlying fixed-order results in
regions where (1) there is a large sensitivity to jet shapes (typically small R jets), (2) there is another restriction
in phase space such that soft gluon resummation effects become important, (3) the observable contains multiple,
disparate scales, (4) the observable is sensitive to higher multiplicity final states than those described by the fixed-
order calculation. Such differences should be smaller at NNLO than at NLO. Large parton shower effects in the
absence of large higher-order corrections of type (1)-(4) should be viewed with suspicion, as should large differences
between parton shower predictions in general.
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