QCD with jets and photons at ATLAS and CMS

Jonathan Bossio - McGill University

on behalf of the ATLAS and CMS collaborations

MoriondQCD2019

La Thuile - 23-30 March 2019

- The measurements presented here collectively probe:
 - Precision QCD predictions (inclusive cross sections that probe PDFs and NLO QCD)
 - Event topologies in interesting phase space regions (i.e. multijet production, dijet decorrelations, very forward region)
 - Jet substructure (substructure observables, trimming and soft-drop, $g \rightarrow b\bar{b}$).

 $\Delta \phi_{12}$ in nearly back-to-back jet topologies at $\sqrt{s} = 13$ TeV

Submitted to Eur. Phys. J. C, arXiv:1902.04374

CMS

Measurement performed in inclusive 2- and 3-jet events

- LO MCs: Pythia, Herwig++ and MadGraph+Pythia8
- ▶ NLO MCs: Powheg(2→2)+HERWIG++, Powheg(2→2)+Pythia8 and Powheg(2→3)+Pythia8
- Discrepancies with the unfolded data are as large as 15%, mainly in 177° < Δφ₁₂ < 180°</p>
- ► The 2- and 3-jet measurements are not simultaneously described by any of models

Inclusive 2-jet events

Inclusive 3-jet events

Jonathan Bossio — McGill University

 $p_{\rm T}$ > 30 GeV and |y| < 2.5 is required.

Azimuthal correlations in 2-, 3-, and 4-jet events at $\sqrt{s} = 13$ TeV

Eur. Phys. J. C 78 (2018) 566, arXiv:1712.05471

- $\Delta \phi_{2i}^{\min}$: minimum azimuthal angles between any two of the three or four leading p_{Γ} jets
- ▶ NLO Herwig7 gives a better overall description than Powheg

∞ Dijet azimuthal decorrelations and α_{s} extraction at \sqrt{s} = 8 TeV

Phys. Rev. D 98 (2018) 092004, arXiv:1805.04691

Measurement of the rapidity and p_{T} dependence of dijet azimuthal decorrelations

- *R*_{Δφ}: fraction of dijet events w/ Δφ < Δφ_{max}
- R_{Δφ} is measured as a function of the dijet rapidity interval y*, the event total scalar transverse momentum H_T, and Δφ_{max}
- NLO pQCD predictions from NLOJET++, corrected for non-perturbative effects
- The theoretical predictions describe the unfolded data in the whole kinematic region

- Determination of \(\alpha_s\) and its running
- Combination of the data at all momentum transfers results in α_s = 0.1127^{+0.0063}_{-0.0027}

Inclusive very forward jet cross sections at $\sqrt{s_{NN}} = 5.02$ TeV

Submitted to J. High Energy Phys., arXiv:1812.01691

Cross sections are measured in proton-lead collisions as a function of jet energy

- Phase-space sensitive to the parton densities and their evolution at low fractional momenta
- Models incorporating various implementations of gluon saturation have been used
- Discrepancies btw. unfolded data and predictions of more than two orders of magnitude
- No model is currently able to describe all aspects of the data

Event shape variables in multijet final states at $\sqrt{s} = 13$ TeV

J. High Energy Phys. 12 (2018) 117, arXiv:1811.00588

CMS

- Event shape variables (ESVs) are sensitive to the flow of energy in hadronic final states
- ESVs are measured in different $H_{T,2} = (p_{Tjet1} + p_{Tjet2})/2$ bins

The complement of transverse thrust is defined as $\tau_{\perp} \equiv 1 - T_{\perp}$ with $T_{\perp} \equiv \max_{\hat{n}_{T}} \frac{\sum_{i} |\hat{\rho}_{T,i} \cdot \hat{n}_{T}|}{\sum_{i} \rho_{T,i}}$

 au_{\perp} is zero for a perfectly balanced two-jet event and is 1 - 2/ π for an isotropic multijet event

The agreement generally improves as H_{T,2} increases

Measurement of the soft-drop jet mass at $\sqrt{s} = 13$ TeV

Phys. Rev. Lett. 121 (2018) 092001, arXiv:1711.08341

Measurement of the cross section as a function of $\log_{10} \rho^2$ in dijet events

Jet reclustering: $\frac{\min(p_{\Gamma_{j_1}}, p_{\Gamma_{j_2}})}{p_{\Gamma_{j_1}} + p_{\Gamma_{j_2}}} > \zeta_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$

Smaller $\beta \rightarrow$ remove more soft particles

LO+NNLL perform well for $\beta = 0 \Downarrow$

 $\rho \equiv m^{\text{soft drop}} / p_{\text{T}}^{\text{ungroomed}}$

- Unfolded data is compared to MC simulation samples and pQCD calculations
- Bottom-up method to estimate (cluster-level) systematic uncertainties

MC event generators better for higher $\beta \Downarrow$

Measurement of jet substructure observables at $\sqrt{s} = 13$ TeV

Submitted to J. High Energy Phys., arXiv:1903.02942

Jet substructure observables in $t\bar{t}$ and inclusive jet events

- anti-k_t R = 1.0 jets groomed using two different techniques: trimming (R_{sub} = 0.2, f_{cut} = 5%) and soft-drop (β = 0, ζ_{cut} = 0.1)
- Unfolded data distributions are compared to various MC event generators
- Cluster-level uncertainties on the overall shape and scale of the observables

Observable:
$$D_2^{(\beta)} \equiv rac{e_3^{(\beta)}}{\left(e_2^{(\beta)}
ight)^3}$$

$$e_n^{(\beta)} \equiv \frac{E_{CFn}(\beta)}{E_{CF1}(\beta)^n} ; \quad E_{CF1}(\beta) \equiv \sum_{i \in J} p_{Ti}$$
$$E_{CF2}(\beta) \equiv \sum_{i < j \in J} p_{Ti} p_{Tj} (\Delta R_{ij})^{\beta}$$
$$E_{CF3}(\beta) \equiv \sum_{i < j < k \in J} p_{Ti} p_{Tj} p_{Tk} (\Delta R_{ij} \Delta R_{ik} \Delta R_{jk})^{\beta}$$

In general, reasonable agreement within uncertainties, with some discrepancies

W selection

\bigotimes Properties of $g o bar{b}$ at small opening angles at $\sqrt{s}=$ 13 TeV

Submitted to Phys. Rev. D, arXiv:1812.09283

Main background source in analyses involving boosted Higgs decaying into b-quarks

- R = 0.2 anti- k_t jets from tracks are ghost-matched to R = 1.0 anti- k_t trimmed jets
- The contribution from R = 1.0 jets that don't have 2 track-jets containing B-hadrons is subtracted from data using template fits
- Unfolding to the particle level
- Significant differences observed b/w data and MC predictions

9/13

Inclusive isolated-photon and γ +jet cross sections at \sqrt{s} = 13 TeV Eur. Phys. J. C 79 (2019) 20, arXiv:1807.00782

- Isolated-photon cross sections measured as a function of E^γ_T in different |y^γ| bins
- γ+jet cross sections measured as a function of E^γ_T in different |y^γ| and |y^{jet}| bins
- Allows to test gluon PDF in different x and Q² values
- Prompt photons are identified with a boosted decision tree algorithm
- All measurements are in agreement with the NLO pQCD predictions

The ratio $(R^{\gamma}_{13/8})$ is measured as a function of the E^{γ}_{T} in different $|\eta^{\gamma}|$ ranges

- Reduced systematic and theoretical uncertainties by taking into account the correlations between the CMEs
- Photon energy scale is no longer the dominant uncertainty (with some exceptions at high E^γ_τ)
- A small background contribution still remains after imposing the photon identification and isolation requirements and is subtracted using a data-driven method
- NLO pQCD predictions calculated with JETPHOX are corrected for non-perturbative effects
- Predictions using several PDFs agree with the unfolded data within uncertainties

Jonathan Bossio - McGill University

Isolated-photon plus jet production cross section at $\sqrt{s} = 13$ TeV

Phys. Lett. B 780 (2018) 578, arXiv:1801.00112

Isolated-photon plus jet cross-sections as a function of several observables

- Many great results from ATLAS and CMS experiments
- New interesting results for different phase spaces, jet substructure, and ratio of cross sections at different centre-of-mass energies
- Most of the results are well modelled by predictions
- Discrepancies are observed in some results
- Gives room to improve MC event simulations and pQCD predictions
- Huge effort made by performance groups to reduce experimental systematic uncertainties

Back-up slides

Monte Carlo event generators, parton densities, and underlying event tunes used for comparison with measurements

Matrix element generator	Simulated diagrams	PDF set	Tune
Pythia 8.219	2→2 (LO)	NNPDF2.3LO	CUETP8M1
Herwig++ 2.7.1	2→2 (LO)	CTEQ6L1	CUETHppS1
MadGraph+Pythia 8.219	$2 \rightarrow 2, 2 \rightarrow 3, 2 \rightarrow 4$ (LO)	NNPDF2.3LO	CUETP8M1
PH-2J+Pythia 8.219	2→2 (NLO)	NNPDF3.0NLO	CUETP8M1
PH-2J+Herwig++ 2.7.1	2→2 (NLO)	NNPDF3.0NLO	CUETHppS1
PH-2J+Pythia 8.219	2→3 (NLO)	NNPDF3.0NLO	CUETP8M1

 $\Delta \phi_{12}$ in nearly back-to-back jet topologies at $\sqrt{s} = 13$ TeV

Submitted to Eur. Phys. J. C, arXiv:1902.04374

Measurement performed in inclusive 2- and 3-jet events

- LO MCs: Pythia, Herwig++ and MadGraph+Pythia8
- ▶ NLO MCs: Powheg(2→2)+HERWIG++, Powheg(2→2)+Pythia8 and Powheg(2→3)+Pythia8
- ▶ Discrepancies with the unfolded data are as large as 15%, mainly in $177^{\circ} < \Delta \phi_{12} < 180^{\circ}$
- The 2- and 3-jet measurements are not simultaneously described by any of models

Inclusive 2-jet events

Inclusive 3-jet events

Azimuthal correlations in 2-, 3-, and 3-jet events at $\sqrt{s} = 13$ TeV

Eur. Phys. J. C 78 (2018) 566, arXiv:1712.05471

CMS

• $\Delta \phi_{2i}^{\min}$: minimum azimuthal angles between any two of the three or four leading p_{T} jets

Monte Carlo event generators used for comparison in this analysis

Matrix element generator	Simulated diagrams	PDF set	Tune	
PYTHIA 8.219 [9]	2→2 (LO)	NNPDF2.3LO [14, 15]	CUETP8M1 [13]	
HERWIG++ 2.7.1 [10]	2→2 (LO)	CTEQ6L1 [16]	CUETHppS1 [13]	
Graph5_amc@nlo 2.3.3 [17, 18] + pythia 8.219 [9]	2→2, 2→3, 2→4 (LO)	NNPDF2.3LO [14, 15]	CUETP8M1 [13]	
POWHEG V2.Sep2016 [20–22] + PYTHIA 8.219 [9]	$2 \rightarrow 2$ (NLO), $2 \rightarrow 3$ (LO)	NNPDF3.0NLO [28]	CUETP8M1 [13]	
POWHEG V2.Sep2016 [20–22] + PYTHIA 8.219 [9]	$2 \rightarrow 3$ (NLO), $2 \rightarrow 4$ (LO)	NNPDF3.0NLO [28]	CUETP8M1 [13]	
POWHEG V2.Sep2016 [20-22] + HERWIG++ 2.7.1 [10]	$2 \rightarrow 2$ (NLO), $2 \rightarrow 3$ (LO)	NNPDF3.0NLO [28]	CUETHppS1 [13]	
HERWIG 7.0.4 [23]	$2{ ightarrow}2$ (NLO), $2{ ightarrow}3$ (LO)	MMHT2014 [29]	H7-UE-MMHT [23]	

Dijet azimuthal decorrelations and α_{s} extraction at $\sqrt{s} = 8$ TeV Phys. Rev. D 98 (2018) 092004, arXiv:1805.04691

The values of the parameters and the requirements that define the analysis phase space

Variable	Value
p_{Tmin}	$100{\rm GeV}$
$y_{\rm boost}^{\rm max}$	0.5
y^*_{\max}	2.0
$p_{\mathrm{T1}}/H_{\mathrm{T}}$	> 1/3

Fit result for α_s (m_Z), determined from the $R_{\Delta\phi}$ data for $\Delta_{\phi_{max}} = 7\pi/8$ with 0.0 $< y^* <$ 0.5 and 0.5 $< y^* <$ 1.0

$\alpha_{\rm S}(m_Z)$	Total	Statistical	Experimental	Non-perturb.	MMHT2014	PDF set	$\mu_{ m R,F}$
	uncert.		correlated	corrections	uncertainty		variation
0.1127	$^{+6.3}_{-2.7}$	± 0.5	$^{+1.8}_{-1.7}$	$^{+0.3}_{-0.1}$	$^{+0.6}_{-0.6}$	$^{+2.9}_{-0.0}$	$^{+5.2}_{-1.9}$

All uncertainties have been multiplied by a factor of 10³

Inclusive very forward jet cross sections at $\sqrt{s_{NN}} = 5.02$ TeV

Submitted to J. High Energy Phys., arXiv:1812.01691

The contribution in percentage of various sources of systematic uncertainty in the highest and lowest common energy bins

	p+Pb		Pb+p		p+Pb/Pb+p	
Energy bin [TeV]	$0.\hat{6}$	2.5	0.6	2.5	0.6	2.5
Energy scale	$^{+2}_{-2}$	$^{+150}_{-71}$	$^{+1}_{-2}$	$^{+120}_{-78}$	$^{+1}_{-2}$	+35 -35
Model dependence	$^{+18}_{-18}$	$^{+41}_{-41}$	$^{+4}_{-4}$	$^{+60}_{-60}$	$^{+1}_{-17}$	$^{+47}_{-47}$
Alignment	+4	+34	+10	+33	$^{+14}_{-3}$	+34
Jet identification	+2	+24	+2	<1	<1	+25
Total	$+19 \\ -19$	$+160 \\ -92$	$+11 \\ -11$	$+140 \\ -100$	+27 -26	$^{-25}_{+77}_{-54}$

Event shape variables in multijet final states at $\sqrt{s} = 13$ TeV

J. High Energy Phys. 12 (2018) 117, arXiv:1811.00588

CMS

Event divided into upper (U) and lower (L) regions. Jets in U (L) satisfy $\vec{p}_{T,i}.\hat{n}_T > 0$ (< 0)

The total jet broadening is defined as $B_{\text{Tot}} \equiv B_{\text{U}} + B_{\text{L}}$, $B_{\text{X}} \equiv \frac{1}{2P_{\text{T}}} \sum_{i \in \mathbf{X}} p_{\text{T},i} \sqrt{(\eta_i - \eta_{\text{X}})^2 + (\phi_i - \phi_{\text{X}})^2}$

 $\eta_{X} \equiv \frac{\sum \substack{i \in X \\ i \in X} p_{T,i} \eta_{i}}{\sum \substack{i \in Y \\ i \in Y} p_{T,i}}, \quad \phi_{X} \equiv \frac{\sum \substack{i \in Y \\ i \in X} p_{T,i} \phi_{i}}{\sum \substack{i \in Y \\ i \in Y} p_{T,i}}, \quad \text{and } P_{T} \text{ is the scalar } p_{T} \text{ sum of all jets in the event}$

 $\label{eq:constraint} The agreement generally improves as \ H_{T,2} \ increases \\ {\tt Jonathan Bossio} - {\tt McGill University}$

The normalized squared invariant mass of the jets in the U and L regions of the events is defined by:

$$p_{\rm X} \equiv \frac{M_{\rm X}^2}{P^2}$$

where M_X is the invariant mass jets in the region X, and P is the scalar sum of the momenta of all central jets

The total jet mass is defined as follows:

$$\rho_{\rm Tot} \equiv \rho_{\rm U} + \rho_{\rm L}$$

The *total transverse jet mass* (ρ_{Tot}^{T}) is similarly calculated using $\vec{p}_{T,i}$ of jets

Event shape variables in multijet final states at $\sqrt{s} = 13 \text{ TeV}$

J. High Energy Phys. 12 (2018) 117, arXiv:1811.00588

CMS

Evolution of the mean of τ_{\perp} , B_{Tot}, ρ_{Tot} , and ρ_{Tot}^{T} with increasing H_{T,2}

Jonathan Bossio - McGill University

∞ Measurement of the soft-drop jet mass at \sqrt{s} = 13 TeV

Phys. Rev. Lett. 121 (2018) 092001, arXiv:1711.08341

Measurement of the soft-drop jet mass at \sqrt{s} = 13 TeV

Phys. Rev. Lett. 121 (2018) 092001, arXiv:1711.08341

Measurement of the cross section as a function of $\log_{10} \rho^2$ in dijet events

Jet reclustering: $\frac{\min(\rho_{Tj_1}, \rho_{Tj_2})}{\rho_{Tj_1} + \rho_{Tj_2}} > \zeta_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$

Smaller $\beta \rightarrow$ remove more soft particles

- $\rho \equiv m^{\text{soft drop}} / p_{\text{T}}^{\text{ungroomed}}$
- Unfolded data is compared to MC simulation samples and pQCD calculations
- Bottom-up method to estimate (cluster-level) systematic uncertainties
- LO+NNLL perform well for $\beta = 0 \Longrightarrow$

Measurement of jet substructure observables at $\sqrt{s} = 13$ TeV

Submitted to J. High Energy Phys., arXiv:1903.02942

Jet substructure observables in $t\bar{t}$ and inclusive jet events

F

- anti-k_t R = 1.0 jets groomed using two different techniques: trimming (R_{sub} = 0.2, f_{cut} = 5%) and soft-drop (β = 0, ζ_{cut} = 0.1)
- Unfolded data distributions are compared to various MC event generators
- Cluster-level uncertainties on the overall shape and scale of the observables

Observable:
$$D_2^{(\beta)} \equiv rac{e_3^{(\beta)}}{\left(e_2^{(\beta)}
ight)^3}$$

Dijet	se	lectior	
Dijet	30	000101	

$$e_n^{(\beta)} \equiv \frac{E_{\text{CFn}}(\beta)}{E_{\text{CF1}}(\beta)^n} \quad ; \quad E_{\text{CF1}}(\beta) \equiv \sum_{i \in J} p_{\text{T}_i}$$
$$E_{\text{CF2}}(\beta) \equiv \sum_{i < j \in J} p_{\text{T}_i} p_{\text{T}_j} (\Delta R_{ij})^{\beta}$$
$$E_{\text{CF3}}(\beta) \equiv \sum_{i < j < k \in J} p_{\text{T}_i} p_{\text{T}_j} p_{\text{T}_k} (\Delta R_{ij} \Delta R_{ik} \Delta R_{jk})^{\beta}$$

In general, reasonable agreement within uncertainties, with some discrepancies

W selection

Properties of $g \rightarrow b\bar{b}$ at small opening angles at $\sqrt{s} = 13$ TeV Submitted to Phys. Rev. D, arXiv:1812.09283

	$\Delta R(b,b)$	$\Delta \theta_{\rm ppg,gbb}$	$z(p_{\rm T})$	$\log(m_{bb}/p_{\rm T})$
Calorimeter jet energy	2-3%	2-3%	2-6%	2–4%
Flavor tagging	<1%	<1%	<1%	<1%
Tracking	1-2%	1-2%	2–4%	1-2%
Background fit	1%	1%	1-2%	2%
Unfolding method	2-3%	2%	2–4%	2-5%
Theoretical modeling	3-10%	2-13%	3–10%	4-11%
Statistical	1%	1%	2%	1%
Total	3-10%	3-10%	3–14%	4-12%

Summary of systematic uncertainty sizes for each observable for the normalized differential cross sections

\bigotimes Properties of $g o bar{b}$ at small opening angles at $\sqrt{s}=$ 13 TeV

Submitted to Phys. Rev. D, arXiv:1812.09283

- The contribution from large-R jets that do not have two associated track-jets containing B-hadrons is subtracted from data, before correcting for detector effects
- Correction factors are determined from data template fits to the signed impact parameter distribution (s_{d_n}) and applied for each bin of the four observables
- In each bin, the distribution of s_{d0} is fitted to data using templates from simulation while letting the fraction of each flavor component float in the fit.
- For a given track, $s_{d_0} = s_j |d_0| / \sigma(d_0)$, where d_0 is the transverse impact parameter relative to the beam-line, $\sigma(d_0)$ is the uncertainty in d_0 from the track fit, and the variable s_j is the sign of d_0 with respect to the jet axis: $s_j = +1$ if $sin(\phi_{jet} \phi_{track}) \cdot d_0 > 0$ and $s_j = -1$ otherwise.

\bigotimes Properties of $g o bar{b}$ at small opening angles at $\sqrt{s}=$ 13 TeV

Submitted to Phys. Rev. D, arXiv:1812.09283

Main background source in analyses involving boosted Higgs decaying into b-quarks

- R = 0.2 anti- k_t jets from tracks are ghost-matched to R = 1.0 anti- k_t trimmed jets
- The contribution from R = 1.0 jets that don't have 2 track-jets containing B-hadrons is subtracted from data using template fits
- Unfolding to the particle level
- Significant differences observed b/w data and MC predictions

Jonathan Bossio - McGill University

Inclusive isolated-photon and $\gamma+jet$ cross sections at $\sqrt{s}=$ 13 TeV

Eur. Phys. J. C 79 (2019) 20, arXiv:1807.00782

Impact on cross sections, in percent, for each systematic uncertainty source (The ranges, when quoted, indicate the variation over photon ET between $190-1000 \, \text{GeV}$)

Source	$ y^{\gamma} < 0.8$	$0.8 < y^{\gamma} < 1.44$	$1.57 < y^{\gamma} < 2.1$	$2.1 < y^{\gamma} < 2.5$
Trigger efficiency	0.7–8.5	0.2-13.4	0.6-20.5	0.3–7.8
Selection efficiency	0.1-1.3	0.1-1.3	0.1-5.3	0.1-1.1
Data-to-MC scale factor	3.7	3.7	7.1	7.1
Template shape	0.6-5.0	0.1-10.2	0.5-4.9	0.6-16.2
Unfolding	3.8-5.5	1.2-4.1	2.0-8.5	2.3-10.3
Total w/o luminosity	5.4-12.0	5.9-18.2	8.2-26.9	8.6-21.7
Integrated luminosity			2.3	

Ratio of inclusive isolated- γ cross sections at $\sqrt{s} = 8$ and 13 TeV

Submitted to J. High Energy Phys., arXiv:1901.10075

Relative theoretical uncertainty in $R_{13/8}^{\gamma}$ as a function of E_{T}^{γ} for different $|\eta^{\gamma}|$ regions

Ratio of inclusive isolated- γ cross sections at $\sqrt{s} = 8$ and 13 TeV

Submitted to J. High Energy Phys., arXiv:1901.10075

Relative systematic uncertainty in $R_{13/8}^{\gamma}$ as a function of E_{T}^{γ} for different $|\eta^{\gamma}|$ regions

Ratio of inclusive isolated- γ cross sections at $\sqrt{s} = 8$ and 13 TeV

Submitted to J. High Energy Phys., arXiv:1901.10075

Total relative systematic uncertainty in $R_{13/8}^{\gamma}$ as a function of E_{T}^{γ} for different $|\eta^{\gamma}|$ regions

Ratio of inclusive isolated- γ cross sections at $\sqrt{s} = 8$ and 13 TeV Submitted to J. High Energy Phys., arXiv:1901.10075

Theoretical uncertainties in $R_{13/8}^{\gamma}$:

- The uncertainties due to the PDFs, α_s, beam energy and non-perturbative effects are fully correlated between the two centre-of-mass energies
- The relative uncertainty in R^γ_{13/8} due to the uncertainties in α_s, the PDFs and the beam energy are significantly smaller with respect to the individual predictions
- However, for the scale uncertainties, the correlation is a priori unknown
- Varying the scales coherently or incoherently at both centre-of-mass energies leads to very different uncertainties
- A second approach is also investigated, which is free from ambiguity in the correlation. It consists of considering the difference between the LO and NLO predictions for R^γ_{13/8}.
- The results of this second approach support the use of coherent variations of the scales; an incoherent variation of the scales leads to an overestimation of the theoretical uncertainty.

Experimental uncertainties in $R_{13/8}^{\gamma}$:

- A proper estimation of the systematic uncertainties requires taking into account intervs correlations for each source of systematic uncertainty.
- Assuming no correlation provides a conservative estimate and full correlation is used only when justified.
- The uncertainty arising from the γ energy scale is estimated by decomposing it into uncorrelated sources for both the 8 and 13 TeV measurements
- A total of 22 individual components are considered
- Twenty of these components are common to both centre-of-mass energies
- ► The remaining two components are specific to the 13 TeV measurement
- All the components are taken as fully correlated except for the uncertainty in the overall energy scale adjustment using Z → e⁺e⁻ events, which for 2015 includes the effects of the changes in the configuration of the ATLAS detector, and the uncertainties specific to the 13 TeV measurement
- The uncertainties due the γ energy resolution are treated as uncorrelated between $\sqrt{s} = 13$ TeV and 8 TeV since they include the effects of pile-up, which was different in the 2012 and 2015 data-taking periods
- Other sources of uncertainty are treated as uncorrelated

∞ Ratio of inclusive isolated- γ cross sections at \sqrt{s} = 8 and 13 TeV

Submitted to J. High Energy Phys., arXiv:1901.10075

- In addition, the R^γ_{13/8} ratio to that of the fiducial cross sections for Z boson production at 13 and 8 TeV using the decay channels Z → e⁺e⁻ and Z → µ⁺µ⁻ is made and compared with the theoretical predictions
- In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out
- The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties

Isolated-photon plus jet production cross section at $\sqrt{s} = 13$ TeV

Phys. Lett. B 780 (2018) 578, arXiv:1801.00112

Isolated-photon plus jet cross-sections as a function of several observables

i Isolated-photon plus jet production cross section at \sqrt{s} = 13 TeV

Phys. Lett. B 780 (2018) 578, arXiv:1801.00112

