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Abstract

Future observations of the cosmic microwave background (CMB) polarization are expected to

set an improved upper bound on the tensor-to-scalar ratio of r . 0.03. Recently, we showed that

small field models of inflation can produce a significant primordial gravitational wave signal. We

constructed viable small field models that predict a value of r as high as 0.01. Models that predict

higher values of r are more tightly constrained and lead to larger field excursions. This leads to

an increase in tuning of the potential parameters and requires higher levels of error control in the

numerical analysis. Here, we present viable small field models which predict r = 0.03. We further

find the most likely candidate among these models which fit the most recent Planck data while

predicting r = 0.03. We thus demonstrate that this class of small field models is an alternative to

the class of large field models. The BICEP3 experiment and the Euclid and SPHEREx missions

are expected to provide experimental evidence to support or refute our predictions.
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I. INTRODUCTION

Improved measurements of the B-mode polarization of the cosmic microwave background

(CMB) [1, 2] are expected to be more sensitive to the tensor-to-scalar ratio r. This ratio

provides a measure of the amplitude of the primordial gravitational waves (GW), which in

turn is a telltale of inflation [3]. The final Planck data release and analysis [4] currently

suggest an upper bound of r < 0.07. The BICEP experiment [5–8] took data over the last

few years [9] which is expected to yield an upper bound of r ≤ 0.03. A discovery of a value

as high as r ∼ 0.03 could indicate a very high energy scale ∼ 1016GeV (see, for example,

[10]).

We continue our investigations [11, 12] of a class of inflationary models that were proposed

by Ben-Dayan and Brustein [13] and were followed by [14–16]. This class of models is

compatible with several fundamental physics considerations. Recently, interest in this class

of models was revived by the discussion about the “swampland conjecture”, [17–20] which

suggests that small field models are favoured by various string-theoretical considerations

(see [21] for a recent review).

In addition, for this class of inflationary models, high values of r result in a scale depen-

dence of the scalar power spectrum. Future experiments such as Euclid [22], and SPHEREx

[23] aim to probe the running of the scalar spectral index α at the level of 10% relative error.

This is a major improvement in comparison to the Planck bounds on α which are currently

at the level of ∼ 75% relative error. Such future measurements could provide additional

constraints on our models.

II. THE MODELS

The small field models that we study are single-field models. The action of such models

is given by

S =

∫
d4x
√
−g
[
R

2
− 1

2
∂µφ∂µφ− V (φ)

]
. (1)

The metric is of the FRW form and the potential given by

V (φ) = V0

[
1 +

6∑
p=1

apφ
p

]
. (2)
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FIG. 1. Polynomial potentials. The blue (solid) line depicts a potential of a model that predicts

r ' 0.03, while the red (dash-dotted) line depicts a potential that predicts r ' 0.01. The purple

(dotted) line depicts a degree five polynomial potential of a model that predicts r ' 0.001. All

models are variants of the hilltop model, with a flatter region in which most e-folds are generated.

Previously, in [11, 13] this class of models was discussed from a phenomenological and

theoretical points of view. In [11], the technical details of model building and simulation

methods were discussed, while in [12], the analysis and the extraction of the most probable

model were discussed. Additionally, in [12], the most likely model which yields r = 0.01 was

identified.

III. METHODS

We analyse the most recently available observational data [4] by using CosmoMC [24],

extracting the likelihood curves of the scalar index, its running and the running of run-

ning, ns, α, β respectively. We then simulate a large number of inflationary models with

polynomial potentials and calculate the primordial power spectrum (PPS) observables ns,

α, β, that they predict. Each simulated potential is assigned a likelihood by the combined
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FIG. 2. Field excursions in (reduced) Planck units. Different predicted values of r require different

field excursions to generate the ∼ 8 e-folds probed by the CMB. The model predicting r ' 0.03

(blue line) requires an excursion of (∆φ)CMB ' 0.28 to generate the same amount of e-folds which

the model predicting r ' 0.01 model (red dash-dot) generates in (∆φ)CMB ' 0.2. This means

more tuning is required for models that predict r ' 0.03 . The model predicting r ' 0.001 (purple

dots) requires only (∆φ)CMB ' 0.1 to generate the CMB window.

likelihood of the observables that it yields, as discussed in detail in [12]. We restrict the

models that we consider to those predicting a power spectrum that can be fitted well by a

third degree polynomial. This corresponds to the scalar index ns, the index running α, and

the running of running β. We do that by fitting the PPS and evaluating the fitting error

∆2 =
1

n

n∑
k=1

[log(PS(k))− f(k)]2 , (3)

where f(k) is the fitting curve. The threshold for considering a specific model in our analysis

is ∆2 < 10−6.

An additional complication arises due to the higher amount of tuning that is required for

these models. The coefficient a1 is fixed as a1 = −
√
r/8 [13], so when the value of r is higher,

then dV/dφ at the CMB point has a larger magnitude. This has the effect of decreasing the

number of e-folds generated per field excursion interval. If r is increased to Cr, then dN
dφ

is

decreased by a factor ∼ 1√
C

close to the CMB point. Since the first 8 or so e-folds of inflation

are fairly constrained by observations, the amount of freedom in constructing the potential
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is reduced. It follows that either greater tuning is required to construct valid potentials, or

one should consider a higher degree polynomial as suggested in [14]. Ultimately the choice

is a matter of practical convenience. We opted for using sixth degree polynomials.

We employ two methods of retrieving the most likely polynomial potential. First, we

extract by marginalisation the most likely coefficients {ap}. The other method amounts to

performing a multinomial fitting of the coefficients as a function of the observables and then

inserting the most likely observables to recover the corresponding coefficients. This method

is explained in detail in [12].

The ‘most likely model’, is the model with a potential that generates the most likely

CMB observables nS ' 0.9687, α ' 0.008, β ' 0.02, as produced by the MCMC analysis of

the most recent data available to date.

FIG. 3. Covering the observable phase space with small field models that predict r ' 0.03. The

roughly uniform cover of the 95% CL areas ensures an accurate likelihood transfer from MCMC

results to models.

IV. RESULTS

We produced many models that predict r ' 0.03 and, additionally, predict PPS observ-

ables within the likely values. A roughly uniform cover of both the (ns, α) and (ns, β) allowed

values is shown in Fig. 3. This enables us to assign likelihood to each simulated model, as
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FIG. 4. Likelihood analysis for model coefficients a2, a3, a4, using Gaussian fits to recover mean

values. The skewness of the results reflect properties of the model, not of the underlying MCMC

analysis. The width of the Gaussian fits are given by (0.016, 0.08, 0.21) and are an indication of

the tuning level required for these models.

discussed in detail in [11, 12]. Consequently, it is possible to perform a likelihood analysis

of models. The results of this likelihood analysis is an approximately Gaussian distribution

of the free coefficients as is shown in Fig. 4. Since the peaks of Gaussian fit (red line in

Fig. 4) do not quite coincide with the peaks of the distribution and the distribution tails are

not symmetric, we conclude that the distribution has a significant skewness. The required

tuning level is also evident from Fig. 4 and is given by (∆a2,∆a3,∆a4) = (0.016, 0.08, 0.21).

Using Gaussian analysis and taking into account the skewness, we recover the most likely

coefficients, which yield the following degree six polynomial small field potential:

V = V0

[
1−

√
0.03

8
φ− 0.069φ2 + 0.431φ3 − 1.413φ4 + 2.455φ5 − 1.487φ6

]
. (4)

Due to the skewness of the distribution, the values obtained by the Gaussian fit deviate

by a significant amount from the most likely values of the observables. For instance, ns as

determined by the potential in (4) is ∼ 0.98 which is about 2% away from the most likely

value. For this reason we use this method of analysis to evaluate the required tuning levels,
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whereas the most likely model is extracted by the multinomial fitting method.

Using the popular Stewart-Lyth (SL) theoretical values for ns and α [10, 25] as derived

directly from the inflationary potential around the pivot scale, one finds values that deviate

by a large amount from the Planck values. The SL values correspond to a very blue power

spectrum and large running,

ns|SL ' 1.55 (5)

α|SL ' −0.216.

This discrepancy, that was discussed in [11], is related to the magnitude of r for our class

of models. When r is smaller than ∼ 10−4 in such models, the original model building

procedure that relied on the SL values, which is outlined in [13], is valid and produces

approximately the correct values of the observables. However, when values of r are larger,

one cannot trust the analytic SL estimates.

In Fig. 5 the power spectra generated by three inflationary models are shown. (1) A

model with degree five polynomial potential that predicts r ' 0.001; (2) A model with

degree six polynomial potential that predicts r ' 0.01; and finally (3) A model with degree

six polynomial potential that predicts r ' 0.03.

Representing each coefficient ap as a function of the observables (ns, α, β) and evaluating

them at (0.9687, 0.008, 0.02), leads to the following potential,

V = V0

[
1−

√
0.03

8
φ− 0.067φ2 + 0.413φ3 − 1.419φ4 + 2.512φ5 − 1.523φ6

]
. (6)

The values ns, α, β that this model predicts deviate from the most likely values by (0.06%, 10%, 19%).

However, the deviations are within the 95% CL of all recent MCMC analyses.

V. CONCLUSION

We presented and discussed small field models of inflation with a degree six polynomial

potential that predict r ' 0.03. The most likely of these models also predicts the most likely

values of ns, α, β, within currently acceptable margins of error. The amount of coefficient

tuning for these models was calculated. This article, along with its predecessors [11, 12],

demonstrates that an interesting range of values of r, 0.001 ≤ r ≤ 0.03 can be predicted by

small field models of inflation that are consistent with the available CMB data.
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FIG. 5. Primordial power spectra of three models. A model with a degree six polynomial potential

that predicts r ' 0.03 (diamonds and blue line). A model with a degree six polynomial potential

that predicts r ' 0.01 (squares and red dash-dot) and a model with a degree five polynomial

potential that predicts r = 0.001 (circles and purple dots). The pivot scale for all three is k0 =

0.05Mpc−1 and the results are overlayed at that scale for ease of comparison.
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