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Abstract
Different shape sequences useful to describe simply the fusion, alpha emission
or capture, binary and ternary fission, planar and three dimensional fragmenta-
tion and n-alpha nuclei are gathered together. Their geometric characteristics
allowing to determine the total energy and the dynamics of a nuclear system
are provided, mainly the volume, the surface, the Coulomb function, the mo-
ments of inertia, the quadrupole moment and the rms radius.

1 Introduction
To describe macroscopically nuclear reaction mechanisms such as fusion [1], alpha emission and capture
[2], binary and ternary fission [3], fragmentation [4] and n-alpha nuclei [5, 6] one simulates the nuclear
system by geometric shapes [7, 8] and determines the main geometric characteristics such as volume,
surface, Coulomb function, moments of inertia, quadrupole moment and rms radius. In this work, the
following shapes will be investigated: elliptic and hyperbolic lemniscatoids, prolate compact ternary
shapes, tori and bubbles.
Other multibody shapes such as linear chain, triangle, square, tetrahedron, pentagon, trigonal bipyramid,
square pyramid, hexagon, octahedron, octagon and cube used to describe some light nuclei as alpha
molecules have been used recently [5, 6].

2 Elliptic lemniscatoids and pumpkin-like shapes
The fusion, alpha and cluster radioactivities and fission through compact shapes lead, in first approxima-
tion, from one sphere to two tangent spheres or vice-versa. Such a deformation valley can be simulated
using two halves of different elliptic lemniscatoids. An elliptic lemniscatoid is the inverse of an oblate
ellipsoid. One elliptic lemniscate is defined, in polar coordinates, by

R(θ)2 = a2 sin2 θ + c2 cos2 θ, (1)

and the equation of the elliptic lemniscatoid is

a2x2 + a2y2 + c2z2 = (x2 + y2 + z2)2, (2)

where the z axis is the axis of revolution. Assuming volume conservation, the ratio s = a/c of the neck
radius to the half-elongation of the system defines completely the shape. When s decreases from 1 to 0
the lemniscatoid varies continuously from a sphere to two tangent equal spheres. When the perpendicular
x axis is taken as axis of revolution the elliptic lemniscates generate pumpkin-like configurations (see
Fig. 1). For the elliptic lemniscatoid the volume and surface are given by
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Fig. 1: Evolution of the elliptic lemniscatoids generates by a revolution of the lemniscates around the horizontal
axis and of the pumpkin-like shapes generates by a revolution around the vertical axis.

R0 being the radius of the initial or final sphere and Bs the dimensionless surface function.
r, the distance between the mass centres of the right and left parts of the object, is given by

r = πc4
1 + s2 + s4

3V
. (5)

The dimensionless perpendicular and parallel moments of inertia (relatively to the moment of inertia of
the equivalent sphere 2

5mR0
2) are expressed as
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The dimensionless quadrupole moment is
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Similar formulas are available for the pumpkin-like shapes [7].

To generalize the elliptic lemniscatoid shape sequence to asymmetric but axially symmetric shapes
it is sufficient to join two halves of different elliptic lemniscatoids assuming the same transverse distance
a (see Fig. 2 and [1, 7]) and two different c1 and c2 half elongations and two different ratios s1 = a/c1
and s2 = a/c2.

Fig. 2: Two parameter shape sequence varying from two touching unequal spheres to one sphere or vice versa.
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3 Hyperbolic lemniscatoids
The most commonly admitted fission path corresponds to elongated shapes with shallow necks. It can
be simulated, in first approximation, by hyperbolic lemniscatoids.
For the one-body configurations the hyperbolic lemniscatoids are defined by

x2 = −z2 + 0.5c2(s2 − 1) + 0.5c
√
8(1− s2)z2 + c2(1 + s2)2. (9)

For the two-body shapes the separated ovals are given by

x2 = −z2 − 0.5c2(s2 + 1) + 0.5c
√
8(1 + s2)z2 + c2(1− s2)2. (10)

Assuming the volume conservation, these shapes are one-parameter dependent. The ratio of the minor
and major axes s = a/c can be used for the one-body shapes. When the ovals are separated, the opposite
s of the ratio of the distance between the tips of the fragments and the system elongation can be retained
(see Fig. 3). When s varies from 1 to -1 the shapes evolves from one sphere to two infinitely separated
spheres. The volume of the system is, respectively for the one-body and two-body shapes:

Fig. 3: Hyperbolic lemniscatoid shape sequence. At the scission point, the configuration is the Bernoulli lemnis-
cate.
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For the one-body shapes, the relative surface function reads
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E and F are incomplete elliptic integrals [7]. Bs is calculated numerically for the two-body configuration.
The distance r between the centres of the right and left parts is for the one and two-body shapes
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For the one-body shapes the parallel and perpendicular moments of inertia and the quadrupole moment
are given by
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For the two-body shapes these quantities are expressed as
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4 Comparison between the elliptic lemniscatoid and hyperbolic lemniscatoid shape val-
leys

In nuclear physics the question of reversibility of the fission and fusion mechanisms was a focus of dis-
cussions already in 1939 between Fermi and Bohr. The different possible shapes taken by a fissioning
nucleus were firstly explore using a development of the radius in terms of Legendre polynomials, think-
ing that the fission process is only governed by the balance between the repulsive Coulomb forces and
the attractive surface tension forces. This method leads naturally to smooth elongated one-body config-
urations resembling to hyperbolic lemniscatoids. This development cannot simulate strongly distorted
shapes and the rupture into compact fragments or the alpha decay or capture and cluster radioactivity.
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Furthermore, within liquid drop models, to reproduce the fusion data and the alpha and cluster radioac-
tivities one must introduce an additional term, the so-called proximity energy, to take into account the
strong nuclear interaction between nucleons of the surfaces in regard between almost spherical nuclei or
in a deep crevice in one-body shapes. This proximity energy is evidently very small for elongated shapes
with shallow necks and, then, it is often neglected but this term is important in fusion or fission through
compact and creviced shapes. It exists a degeneracy in energy between these two deformation valleys.
The main available experimental data are the moments of inertia and quadrupole moments and it has
been shown that they are similar in the two paths [9].

5 Prolate ternary shapes
One of the hypotheses to explain the nucleosynthesis in stars is the ternary fusion of three alpha particles
to form the 12C nucleus. In the decay channels the ternary fission has been observed even though its
probability is much lower than the one of the binary fission. From the asymmetric binary shapes one
may generate prolate ternary shapes (see Fig. 4) in cutting the smallest fragment along its maximal
transverse distance by a symmetry plane. The shape is still only two-parameter dependent. For s1=s2=1
the shape corresponds to the initial or final sphere and for s1=s2=0 two spheres of radius R1 are aligned
with a central smaller sphere of radius R2.

Fig. 4: Evolution of the shape from a sphere to two equal spheres aligned with a smaller sphere between them.

6 Tori and bubbles
Beyond the pumpkin like shapes, ring torus may appear to finally desintegrate into n fragments emitted
roughly in the same plane (see Fig. 5). The dimensionless parameter st allows to follow this evolution

st = (rt − rs)/2rs, (22)

where rs and rt are the sausage and torus radii.
The different geometric characteristics are given by
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Bubbles of thick skin are often formed within violent reactions where the out of equilibrium effects
play an essential role. Calculations within bubbles of constant density can give a first rough approach of
the more complex reality [7]. Assuming volume conservation, the bubble characteristics can be calcu-
lated from the ratio p = r1/r2 of the inner and outer radii.

Fig. 5: Evolution of the torus configuration.

7 n-alpha nuclei
Within an α-particle model the energy of the 12C, 16O, 20Ne, 24Mg and 32S nuclei has been determined
assuming different α-molecule configurations: linear chain, triangle, square, tetrahedron, pentagon, trig-
onal bipyramid, square pyramid, hexagon, octahedron, octagon, and cube [6].

8 Conclusion
Different shape sequences are proposed to describe simply the alpha emission or absorption, cluster
radioactivity, fusion, fission, fragmentation and n-alpha nuclei. Their geometric definitions and prop-
erties are provided, mainly, the volume, the surface, the Coulomb function, the moments of inertia,
the quadrupole moment and the rms radius. Within a liquid drop model approach, the total energy of
a nuclear system, the dynamics of the processes and the angular distribution of the fragments may be
determined.
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