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Abstract
We present our calculation of contributions to the pre-equilibrium emission
cross section coming from two-step direct processes, using a fully microscopic
approach based on the nuclear matter method, and treating explicitly the non
locality in the potentials. Collective states are included using the Random
Phase Approximation (RPA) nuclear structure model. Collective excitations
enhanced the two-step cross section when compared to a calculation performed
with uncorrelated particle-hole excitations. This results, as well as possible
improvements of our modeling, are discussed.

1 Introduction
The preequilibrium stage of a nucleon induced nuclear reaction corresponds to the situation in which the
projectile shares enough of its kinetic energy and angular momentum with a few nucleons of the target,
and excitation lying in the continuum can be reached. This stage can be observed in the experimental
energy spectrum of particles emitted, that present a continuous behavior. A quantum-mechanical treat-
ment of the first part of the preequilibrium nuclear reactions, that are associated with Multistep Direct
processes (MSD) is a complicated task that requires an accurate description of the target’s excited states
even in the continuum, along with an appropriate effective interaction. Moreover, in order to reach a
usable form of the transition amplitude for practical calculations, a number of approximations have to
be made. The three well-known statistical MSD theories are form Tamura-Udagawa-Lenske (TUL) [1],
Nishioka-Weidenmüller-Yoshida (NWY) [2] and Feshbach-Kerman-Koonin (FKK) [3]. A review and
thorough comparison of the assumptions and approximations in each of these models is given in [4] and
references therein and in [5].

There has been some practical calculations made with MSD models [6,7], which use uncorrelated
particle-hole (p-h) excitations for the target. Recently, Dupuis achieved a microscopic calculation of the
contribution coming from one-step processes [8] using RPA states for the target (implemented with the
Gogny D1S force [9]) and the Melbourne G matrix [10] as effective interaction between the nucleon
projectile and the target nucleons. In this calculation, non-natural parity transition are taken into account
explicitly and the knock-out exchange term is also accounted for without any localization procedure.
The results of this study show a good agreement with experimental data where one-step processes are
believed to contribute the most, namely at low excitation energy and forward angles; but the analysis of
the calculated preequilibrium angular distribution and energy spectrum of the emitted particle shows that
at backward emission angles and for excitation energies above approximately 20 MeV, contributions are
missing.

The present work is to be seen as a first stage towards the inclusion of two-step direct processes
using the same ingredients as in [8], namely an RPA description of the target’s states corresponding to
two-step processes, the Melbourne G matrix as effective interaction and a modified version of the NWY
model. We compare calculations using RPA states, represented by phonons, to calculations with uncor-
related p-h states and investigate interference effects. In section 2, we briefly remind the approximations
we use in our MSD model and we present the microscopic ingredients we use for this calculation. In
section 3 we display our results and give some comments, and we draw a conclusion and give some
perspectives in section 4.
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2 MSD model and microscopic ingredients
2.1 Hypotheses for the MSD calculation
The quantum mechanics description of the MSD process starts from the Born expansion of the transition
amplitude for an inelastic process leading to the excitation of a target in its ground state (GS) ψi to a final
target states |ψf 〉, namely

T i→f = 〈χ−−→
kf
, ψf | V + V GV + V GV GV + · · · |χ+−→

ki
, ψi〉 , (1)

where V is a residual interaction acting between the the nucleon projectile and the target nucleons. The
state χ+−→

ki
/χ−−→
kf

is the distorted wave in the entrance/exit channel, ki/kf and Eki /Ekf are the associated

wave number and kinetic energy. The system Hamiltonian reads H = HA + t + V , where HA is the
target Hamiltonian, t is the kinetic energy operator for the relative motion. The distorted waves in eq. (1)
are solution of the Schrödinger equation (t+ U − Ek)χ±−→

k
= 0, where U is the optical potential defined

as U = 〈ψi|V |ψi〉. The many-body propagator G in eq. (1) is G = 1
Eki−U−t−HA+iε , and its spectral

decomposition on eigenstates of HA and t+ U or t+ U † reads

G =
∑

N

∫
d
−→
k

(2π)
3
2

|χ̃+
k , ψN 〉〈χ+

k , ψN |
Eki − Ek − E∗N + iε

, (2)

where E∗N is the target excitation energy, namely HA|ψN 〉 = (E0 + E∗N )|ψN 〉 if E0 is the GS energy,
and χ̃+

k solves
(
U † + t− Ek

)
χ̃+
k = 0.

The doubly differential cross section for a nucleon emitted at given outgoing angle and energy is:

d2σ(
−→
ki ,
−→
kf )

dΩfdEkf
=

µ2

(2π~2)2

kf
ki

∑

f

δ(Eki − Ekf − E∗f )|T i→f |2 . (3)

The n-step direct process corresponds to the nth order of the series (1). Second order involves the excita-
tion of two particle-hole (2p-2h) states, or two phonon states. Such a process is schematically described
on Fig. 1. Since we use the Melbourne g-matrix to represent the effective interaction V , contributions to
elastic scattering that comes from the coupling of excited states to the GS are already accounted for in the
effective interaction, so in our calculation we must not keep them. We also apply the never-come-back
approximation, which assumes that at each step of the reaction the process leading to the creation of a
new pair p-h is dominant over the processes of scattering and annihilation. Consequently, the coupling
terms that are not included in our calculation are displayed in Fig. 1 by dash, thin arrows while the terms
we explicitly calculate are embodied by full thick arrows. Considering these assumptions, one-step and
two-step processes lead to distinct final states, thus interferences between the first and the second order
of the transition amplitude (1) vanish when the cross section is calculated.

Fig. 1: Schematic representation of the coupling
potentials involved in the calculation of a 2-step
process. The GS is labeled |0̃〉, target states excited
after one-step processes are labeled |N1〉 and |N2〉,
and |N3〉 is the target state excited after the second
step. Here, we describe the situation where the final
state is a 2p-2h (or two-phonon) states made of the
N1 and N2 1p-1h (or 1-phonon) components. The
arrows are defined in the text body.
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In our modeling, we consider the two cases in which the target’s real states |ψN 〉 are a linear combi-
nation of either p-h states or RPA states. Moreover, we make use of the sudden approximation used in
the NWY model that assumes that configuration mixing is slower than the projectile-target interaction
processes. In our approach, this implies that the real intermediate states N1 and N2 are shrunk from a
linear combination of 1p-1h, 2p-2h, ... (resp. 1-phonon, 2-phonons, ...) states to simply 1p-1h (resp.
1-phonon) states. Consequently of this assumption associated to our use of a 2-body interaction is that
the only matrix elements connecting the intermediate state to 2p-2h (reps. 2-phonon) component of the
final state remain. Note that we account for the finite life time of the target final states. This leads to
replace the delta functions in eq. (3) by the Lorentz distribution ρN (E) = 1

π
ΓN

(E−EN )2+
(

ΓN
2

)2 where ΓN

represents the sum of the escape and damping widths. In the present work, we make use of the on-shell
approximation which means that we neglect the principal part in eq. (2). Finally, the second order double
differential cross section we calculate reads:

d2σ(
−→
ki ,
−→
kf )

dΩfdEkf
=

π2µ2

(2π~2)2

kf
ki

∑

f

ρf (Eki − Ekf )

∣∣∣∣∣∣
∑

β

〈χ−−→
kf
, ψf |V |χ̃+−→

k
, ψβ〉〈χ+−→

k
, ψβ|V |χ+−→

ki
, ψi〉

∣∣∣∣∣∣

2

. (4)

Final states f are 2p-2h (resp. 2-phonon) states, β labels 1p-1h (resp. 1-phonon) states, and ρf is the
density of 2p-2h (resp. 2-phonon) states. This formula includes interference terms between various
intermediate β states. The effect of these interferences is shown in section 3.

2.2 Microscopic ingredients
In our calculation, the use the Melbourne G matrix as residual two-body interaction, which is the solution
of Bruckner-Bethe-Goldstone equation in all spin and isospin channels for a mapping of nuclear matter
densities ρ. The Melbourne G matrix is a local finite range interaction parameterized as a sum of Yukawa
form factors:

G(−→r ,−→r ′, ρ, E) =
∑

j

Gj(ρ,E)
e
− |
−→r −−→r ′|
µj

|−→r −−→r ′| , (5)

with µj denoting the range of the interaction, and where the energy and density dependent amplitudes
Gj(ρ,E) are complex. This interaction is made of a central, a spin-orbit and a tensor terms. Since
the Melbourne G matrix is calculated in infinite nuclear matter, we use a local density approximation
to make calculations in finite nuclei, following the prescription used in the DWBA98 code [11]. As
we earlier mentioned, the potentials obtained from the nuclear matter approach and with a finite-range
2-body effective interaction are non local in the space coordinate basis.

As for the nuclear structure input of our calculation, we first describe uncorrelated states. A 1-body
potential between an initial state i and a final state f can be written:

U i→f = 〈f |V |i〉 =
∑

α,β,k,k′
〈k′, α|V |k̃, β〉ρi→fα,β a

†
k′ak , (6)

with α labeling single particle states, and |k̃, β〉 = |k, β〉 − |β, k〉. The term −|β, k〉 generates the
knock-out exchange potential which is non-local if V has a finite range. The quantity ρi→fα,β is a one-body
transition density matrix element between initial and final state defined by:

ρi→fα,β = 〈f |a†αaβ|i〉 (7)

In our study, we calculate the target’s GS with the Hartree-Fock (HF) theory implemented with the Gogny
D1S force. Details on this implementation can be found in [12]. In the HF theory, the GS is a Slater
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determinant written as:

|ψHF 〉 =

hFermi∏

h=1

a†h|−〉 , (8)

with hFermi labeling the Fermi level and |−〉 the void of particles. A 1p-1h excited state can be built on
this GS using the angular momentum coupled creation and annihilation operator:

|1p1h〉 =
[
a†p ⊗ ah̃

]J
M
|ψHF 〉 =

∑

mpmh

(−)jh−mh 〈jpmpjh −mh|JM〉 a†pah|ψHF 〉 , (9)

with a
h̃

the time reversed annihilation operator of a hole state, J the total spin of the excitation and M
its projection on the quantization axis, and ji the intrinsic total angular momentum of the particle i. A
2p-2h state is built by coupling two 1p-1h states to the correct total spin and parity (of the 2p-2h state):

|N3〉 = n|N2⊗N1〉=n
[[
a†p2
⊗ a

h̃2

]J2 ⊗
[
a†p1
⊗ a

h̃1

]J1
]J3

M3

|ψHF 〉 (10)

with N3 the 2p-2h state, N2 and N1 the two 1p-1h states, n a normalization factor. We can use similar
definitions for the RPA cases, considering first the definition of a 1-phonon creation and annihilation
operators. Let |ψ0̃〉 denote the void of phonon, describing the GS of the nucleus. We define Θ†N the
operator that creates a phonon labeled |ψN 〉. We associate to the creation operator its adjoint operator
ΘN that annihilates the vibrational mode N . Formally, these definitions read:

|ψN 〉 = Θ†N |ψ0̃〉 , 〈ψN |ΘN = 〈ψ0̃| , 〈ψ0̃|Θ
†
N = 0 , ΘN |ψ0̃〉 = 0 (11)

We use the same definition for the angular momentum coupled operators that we introduced for uncor-
related p-h states, and also for 2-phonon states which reads:

|ψN3〉 = n
[
Θ†N2 ⊗Θ†N1

]J3

M3

|ψ0̃〉 , (12)

with n a normalization factor.

2.3 The ECANOL and MINOLOP codes
From the definitions previously given, we have written a code called MINOLOP that computes the non
local coupling potentials using the Melbourne G matrix and nuclear structure input. In the present work,
our practical applications were done using only the central part of these potentials, for the spin-orbit and
tensor parts still require some validations. Furthermore, we developed the ECANOL code that solves
coupled-channel equations with non local potentials. This code uses a numerical method developed by
Arellano and successfully applied to the description of charge exchange reactions [13]. We extended this
method to take into account other excitations and be able to make calculations for inelastic scattering,
and use the results in our preequilibrium calculations.

3 Results
In equation (4), we mentioned that interference effects are expected to occur. In order to evaluate the
effect of these interferences, we made the calculation in the same spirit of that made by Kawano et al. [6]
of a few random cases with and without interferences. We display on the left panel of Fig. 3 the results
for the following case: the GS of 90Zr is 0+, the states corresponding to one-step processes are a 3− and
a 5−, and we display the results for the 2+ and 4+ 2-phonon states. On the right panel, we display a
similar calculation but in the case of uncorrelated p-h excitations, and only in for the 2+ final state.
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Fig. 2: Angular distribution to 2-phonon (left) and 2p-2h (right) states built by coupling the first, 1-phonon (left)
and 1p-1h (right) 3− and 5− states in 90Zr for an incident neutron.

We notice that interferences modify the shape of the angular distribution but not the magnitude,
and the positions of the relative minima and maxima between coherent and incoherent calculation present
a random nature. Also, the relative difference of the integrated cross section is below 10%. This cal-
culation indicates that interference effects should average out provided we include in the preequilibrium
calculation a very large number of states. In 90Zr, there are about 10,000 2-phonon states with an ex-
citation energy below 22 MeV, and such a number should be significant enough so that we can make a
calculation without interferences (the situation is similar in the case of p-h excitations).

So, we have made a calculation of the contribution to the preequilibrium cross section that comes
from 2-step processes, considering a incident neutron with 80 MeV of kinetic energy on 90Zr. We have
done two separate calculations: one in which we consider uncorrelated p-h excitations of the target, and
one in which we use RPA states. We have included all states with an excitation energy below 16 MeV. As
the excitation energy increases, the number of states that correspond to 2-step processes becomes larger
and larger than the number of states for one-step processes. Therefore, we expect that the tendencies we
observe in the excitation energy range of our calculation will be more pronounced at higher excitation
energies. The results are displayed on Fig. 3.
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Fig. 3: Comparison between the angular distribution ob-
tained with RPA states for 1 (red curve) and 2-phonon
states (blue curve), and with uncorrelated 2p-2h (black
curve) state. The excitation energies considered in this
calculation range from 0 to 16 MeV.

The contribution that comes from 2-step processes is bigger than the contribution of one-step
processes for emission angles above approximately 100◦. This can be understood by the larger transfer

105



of angular momentum in the case of 2-step processes, which leads to emitted particles at higher angles.
The contribution that comes from 2-phonon states is bigger than the contribution from 2p-2h states.
Two reasons explain this difference: 2-phonon states are collective states, and here the impact of this
collectivity is to increase the cross section. The other reason is that in our RPA calculations, we used
the Quasi-Boson Approximation (QBA)which can cause a strong violation of the Pauli principle and
may artificially enhance the cross section. In the present calculation, it is not possible to distinguish the
separate contributions of collectivity and of the QBA.

4 Conclusion
This work is a first step towards the extension of the microscopic calculation of MSD emissions carried
out by Dupuis [8] to 2-step processes. Our results indicate that with the present modified version of
the NWY model, interference effects should average out with a sufficient number of states. Also, our
calculations show the enhancement of the angular distribution at backward emission angles when 2-step
processes are accounted for, even at low excitation energies. Finally, we observe the effect due to both
collectivity and the use of the QBA in RPA calculations. Possible improvements for this work are the
inclusion of all components of the effective interaction so that states with non-natural parity can also be
included, lifting the on-shell approximation and check if our observations on interferences are modified,
and make a larger calculation that includes states with a higher excitation energy. With the MINOLOP
and ECANOL codes that we have developed, such study should be feasible in the near future.
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