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Analytic arguments and numerical simulations show that bosonic ultra-light dark matter (ULDM) would
form cored density distributions (“solitons”) at the center of galaxies. ULDM solitons offer a promising
way to exclude or detect ULDM by looking for a distinctive feature in the central region of galactic
rotation curves. Baryonic contributions to the gravitational potential pose an obstacle to such analyses,
being (i) dynamically important in the inner galaxy and (ii) highly non-spherical in rotation-supported
galaxies, resulting in non-spherical solitons. We present an algorithm for finding the ground state soliton
solution in the presence of stationary non-spherical background baryonic mass distribution. We quantify
the impact of baryons on the predicted ULDM soliton in the Milky Way and in low surface-brightness

galaxies from the SPARC database.

PACS numbers:

I. INTRODUCTION

An ultra-light bosonic field oscillating around a mini-
mum of its potential @—@] can play the role of dark matter
(DM). On cosmologically large scales ultra-light dark matter
(ULDM) behaves similarly to cold weakly-interacting mas-
sive particle (WIMP) dark matter, reproducing its success
with respect to the cosmic microwave background and large-
scale structure. On smaller scales comparable to the de
Broglie wavelength, ULDM behaves differently to WIMPs.
In particular, at the centre of galactic halos ULDM develops
cored density profiles that lead to markedly different predic-
tions than those found for ordinary WIMPs [1, [5-30]. The
cored ULDM distributions correspond to quasi-stationary
minimum energy solutions of the equations of motion. We
will follow common convention and refer to these solutions
as “solitons”.

Ref. ] analysed the rotation curves of well-resolved
low surface-brightness (LSB) disk galaxies from the SPARC
database M] and pointed out that these galaxies fail to
show the soliton feature predicted by numerical simula-
tions E 10, @]1 This led to the bound m > 102! eV.
A similar constraint? was found in @] considering the
dwarf spheroidal galaxy Eridanus-II. The matter power spec-
trum inferred from Ly-« forest analyses yields a comparable
bound M‘@P These lower bounds on m are interesting

*Electronic address: |nitsan.bar@weizmann.ac.il

TElectronic address: [kfir.blum®@cern.ch

Electronic address: [joshaeby@gmail.com

§Electronic address: [ryosuke.sato@desy.de

I Ref. ﬂ@] reported independent evidence against soliton cores.

2 Ref. |26] noted that dynamics of a central star cluster in Eridanus-I|
could potentially probe ULDM up to m ~ 10719 eV.

3 See also IE ] A bound, m 2 10723 eV, comes from scalar
metric perturbations induced by ULDM [41] that were searched for
in pulsar timing signals ] Heating of the MW disk suggests
m > 0.6 x 10722 eV [43]. More tentative constraints include m >
1.5x 10722 eV ﬂ@], based on preliminary analysis of stellar streams

because they probe DM using gravity alone, without re-
quiring any direct interactions with SM fields; because they
define how light DM could possibly be; and also because
ULDM with m ~ (10722 — 10~2!) eV was suggested as an
explanation for puzzles facing the WIMP paradigm on small
scales [16, [47].

In the attempt to constrain (or detect) ULDM with galac-
tic kinematics, an important issue is the modelling of the
baryonic contribution to the gravitational potential which
can distort the soliton*. Ref. ] analysed the solution in
the presence of a spherically-symmetric background poten-
tial, in order to estimate the size of the effect. That was
found to be significant for the Milky Way (MW), but not
significant for the relevant SPARC LSB galaxies. However,
both in the MW and in rotation-supported SPARC galaxies,
the baryonic mass distribution is non-spherical, following
disk-like morphology. In a non-spherical system dynamics
in the central region of the galaxy can be affected by the
mass distribution at larger radii. It is therefore important
to extend the soliton+baryon analysis to non-spherical con-
figurations.

In this paper we present an algorithm to calculate the
soliton solution in the presence of a non-spherical back-
ground gravitational potential. The algorithm is simple, fast
and accurate and can replace the standard one-dimensional
shooting method used for solving the spherically symmetric
soliton.

Our goals in presenting this tool are twofold. First, it
allows to perform a self-consistent analysis of the velocity
profile in disk galaxies. Once the baryonic mass distribution
is specified (presumably with input from photometry), the
soliton contribution to the gravitational potential requires
a single free parameter in the fit. This parameter can be

in the Milky Way, and m > 8 x 102! ] assuming that 21cm
results by EDGES [46] are confirmed.

4 See IE] for a preliminary study of the dynamical impact of stars in
ULDM numerical simulations.
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chosen to be, e.g., the soliton mass. For example, stellar
kinematics in the MW could provide a testing ground for
ULDM up tom ~ 10719 eV [23]. To this end, implementing
the soliton in a self-consistent manner would be crucial and
we expect that our tool would be useful.

Second, we revisit the analysis of Ref. [23] of baryonic
effects in SPARC galaxies. As noted in ] the soliton—
halo relation predicted by DM-only numerical simulations
strongly over-predicts the circular velocity in the centres
of dozens of galaxies if m < 1072! eV. In many cases,
the predicted soliton mass in the central ~ 100 pc of the
galaxy exceeds the observationally allowed total mass (bary-
onic+DM) in that region by factors of order 10. This large
mass mismatch led [23] to expect that baryonic effects are
unlikely to change the constraints. Here, focusing on two
sample galaxies, we determine the soliton solution while ac-
counting for the non-spherical baryonic mass distribution.
When noting that the gas and stellar distributions are highly
non-spherical, and when naively counting the mass outside
of the soliton region, the total baryonic mass in both galaxies
is comparable to or larger than the soliton mass. Neverthe-
less, in both cases our analysis largely confirms the expec-
tations of m] showing that the baryonic mass external to
the soliton region does not significantly affect the solution.

Some recent work in the literature investigated non-
spherical distributions of condensed dark matter @ @]
Ref. @] considered a non-spherical parametrisation of
ULDM halos and solitons and applied it to a Jeans analysis
of dwarf spheroidal galaxies. Differently to our work here,
Ref. [49] did not base their parametrisation of the ULDM
core on a solution of the equations of motion (EOM). To
our view, one of the main points of beauty in the discussion
of ULDM in galaxies is that numerical simulations — with
and without stars — actually do consistently show soliton
solutions that satisfy the EOM®. The tools we present here
solve the EOM and find the self-consistent soliton, allowing
to refine the analysis of [49]. Ref. [50] looked for disk con-
figurations of self-interacting condensed dark matter. How-
ever, while @] looked for non-spherical configurations, at
no point do they solve the EOM. Instead, they restrict the
solution to certain disk-like geometries and define and solve
a modified 1D system.

The outline of this paper is as follows. In Sec. [ we
recall the ULDM equations of motion that define the soli-
ton solution in the presence of an external (non-dynamical)
background gravitational potential. The standard one-
dimensional shooting method, that can be used to solve
the spherically-symmetric problem, becomes impractical (in
general) once the background potential is not spherically-
symmetric because it requires a discrete infinity of shooting
variables®. A simple numerical recipe to solve this problem,
assuming an axisymmetric background potential, is detailed

5 See Secs. Il and V.A in Ref. [23].
6 If the problem is axisymmetric, for example, then one independent
shooting variable is needed for every azimuthal Legendre [-mode.

in App. [Al While we do not pursue this here, extending the
algorithm to full 3D is straightforward.

In Sec. [[TAl we discuss the soliton—host halo mass re-
lation found in DM-only numerical simulations E , @]
Ref. B] showed that this relation is equivalent to the state-
ment, that the specific energy (total energy per unit mass)
of the host halo is equal to the specific energy of a self-
gravitating soliton. Here we point out that a more physical
representation of the soliton—halo relation is obtained by
equating the kinetic — rather than total — energy per unit
mass of the soliton and the halo. This distinction is unim-
portant for DM-only simulations of massive halos, but be-
comes relevant once a background potential is introduced.

In Sec. [l we take the MW as an illustrative example of a
system where the potential due to baryons (mostly stars in
this case) cannot be neglected in assessing the soliton prop-
erties. The analysis demonstrates the use of our numerical
tool, but is not intended to provide constraints on ULDM:
that would require a more comprehensive treatment that we
postpone to future work.

In Sec. we consider two sample LSB galaxies from
the SPARC database. For these galaxies, we reconstruct
the circular velocity decomposition presented in the SPARC
database using photometric data, reproducing the SPARC
analysis. The baryonic mass models (stars+gas) derived in
this way are used as input for the numerical non-spherical
soliton solution, allowing us to revisit in detail the earlier
rough estimates of Ref. ] We show that the total en-
ergy per unit mass, £//M, of the soliton is modified by the
baryonic potential of these galaxies. However, the bulk of
this effect is unphysical: it comes from a non-dynamical
shift of the energy due to an external gravitational poten-
tial that is mostly constant throughout the relevant region
of the galaxy. This is supported by the fact that — as we
show — the specific kinetic energy, K/M, is essentially un-
affected both for the soliton and the halo.

In Sec. [Vl we summarise our results.

A number of technical details are postponed to appen-
dices. As mentioned above, App. [Al describes the non-
spherical soliton-finding algorithm. App. [A1] specifies the
steps required to implement a black hole in the code. In
App. Bl we discuss tests of the algorithm and show evi-
dence that the solutions we find are indeed ground-state
solutions. In App. IC] we recall a convenient formula con-
verting an axisymmetric mass distribution into the gravi-
tational potential induced by it. In Sec. [Dl we collect a
useful auxiliary parametrisation for galactic discs, that we
have found useful in modelling SPARC galaxies. App. [E
explains our reconstruction of the neutral gas distribution
in UGC01281. Finally, our results in the main text are pre-
sented — for concreteness — assuming ULDM particle mass
of m = 10722 eV; in App. [E]l we show relevant results for
m = 10721 eV.



Il.  SOLITONS IN A NON-SPHERICAL BACKGROUND

We consider a real, massive, free” scalar field ¢ satisfying
the Klein-Gordon equation of motion and minimally coupled
to gravity. In the non-relativistic regime it is convenient to
decompose ¢ as

1
V2m

with complex field ¢ that varies slowly in space and time
and satisfies the Schrodinger-Poisson equations (SPE) [53]

o(x,t) = e~ Mh(x,t) + c.c., (1)

10 = —ﬁv2¢+m(¢+¢b)w, (2)

V20 = 4rnG|y|*. (3)

In Eq. [2)) we include an external contribution to the gravi-
tational potential, given by ®,. We consider ®;, as the effect
of a distribution of baryonic mass. Our working assumption
is that ®; should be constrained by external information
such as photometry and microlensing measurements.

We look for a quasi-stationary phase-coherent solution for
the ULDM, described by the ansatz

mMpl
Vamr

where My, = 1/v/G. The parameter v is an eigenvalue
of the SPE subject to the bound-state boundary conditions
that we describe below.

We rescale the spatial coordinate,

Pla,t) = e”Mx () (4)
()

xr — maz, (5)

keeping this convention throughout the rest of the paper.
Then in terms of the dimensionless x and x the SPE are

V2 =2(® + @, — 7)x, (6)
V20 = \2. (7)

We assume cylindrical symmetry and parity symmetry
(z3 = z — —=z), and define the radial coordinate in the

plane R = \/2% + 23. At VR? + 22 — oo the potentials &
and @, are assumed to decay  1/v/R? + 22, implying that

x decays approximately exponentially oc e~ V27I(F*+2%) - A
given value of x at the origin, specified by

X(R=0,z=0) =\ (8)

with X a real positive number, fixes the minimal energy solu-
tion of Egs. (GH]) consistent with the boundary conditions.

In the case of vanishing ®;, solutions of Egs. (BH7]) admit
a scaling symmetry, the orbit of which can be parametrised
by A.  This scaling symmetry is, in general, broken by

7 Analyses of interacting fields can be found in, e.g. ﬁ, [g, 51, @]

®y, # 0. It remains true, however, that varying the value of
A in Eq. (8) generates the continuous family of solutions of
Egs. ([@H7]). Thus, A remains a useful tool to parameterise
the mass, energy and any other property of the solution.
For reference, the self-gravitating soliton (found for ®, = 0)

2 —
satisfies M ~ 2.06A 22 ~ 2.8 x 102\ (r—2—) Mo
2
and E/M =~ —0.23)\% ~ —0.054 (%) . When baryons
pl

induce @, # 0 these relations are modified in a way that
we will discuss below.

We have developed a numerical relaxation method to
find the ground state soliton solution for any axisymmetric
background potential satisfying the boundary conditions de-
scribed below Eq. (7). The algorithm is described in App.[A]
and is one of the main results of this paper. We discuss
some theoretical aspects of the solutions in App. first,
the evidence for (but difficulty to rigorously prove) that the
solution is indeed the ground state, and second the issue of
stability against small perturbations.

In the next subsection we clarify some issues related to
the soliton—host halo relation found in DM-only numerical
simulations. Then, in the following sections we illustrate
the use of the numerical tool of App. [Al by analysing the
baryonic effects on the predicted ULDM soliton in the Milky
Way and in two disk galaxies from the SPARC database.

A. Soliton — halo relation: E/M vs. K/M

We can compute the soliton mass M and energy E (recall
that 2 is measured in units of 1/m),

m —1
M =~ 1011 M@ (m) /d3IX2, (9)

- 11 m -1
B~ 10" Mo () X (10)

/d% (% (Vx)* + (% + @b) XQ) .

It is useful to separate the total energy into kinetic energy
+ potential energy,

E = K+P, (11)

where K comes from the gradient term and P comes from
the ®/2+®;, term in Eq. ([I0)). For a self-gravitating system
in virial equilibrium, P = —2K and E = — K. This applies
to the self-gravitating soliton obtained for &, = 0. When
we turn on a background potential the soliton ceases to be
self-gravitating, so that F # —K for &, # 0.

Ref. m] showed that the empirical soliton-host halo rela-
tion found in the DM-only numerical simulations of Ref. [10]
is equivalent to the statement

soliton

E
— . 12
M Ihalo ( )

E
M



Note that on the LHS of Eq. (I12), — 1 is defined
soliton

for the self-gravitating soliton without including the grav-
itational potential induced by the large-scale halo. The
halo gravitational potential ®; is approximately constant
in the halo inner region where the soliton occurs and can

be estimated as ®j, ~ 10—‘ , up to O(1) corrections

depending on the detailed shape of the halo B] If we
were to include the correction to the soliton energy due

to this constant background potential, it would change:

FE
— — — + ®;,. This discussion suggests that
M lsoliton M lsoliton h ge

the soliton—host halo relation is better expressed using ki-
netic energy, rather than total energy:

K

M

K
= . 13
M |halo ( )

soliton

Because &}, is approximately constant over the region where
the soliton is supported, the soliton shape is not distorted
and its kinetic energy is not modified from its value for
the self-gravitating solution. This means that for massive
halos in DM-only simulations, Eq. (I3) and Eq. [I2) are
indistinguishable.

Eq. (I3) and Eq. (I2) become distinguishable when we
turn on @, # 0, with a nontrivial spatial profile such that
®;, is not constant throughout the large-scale halo.

I1l. APPLICATION: THE MILKY WAY

We now consider soliton solutions in the background of
a gravitational potential ®;, chosen to roughly mimic the
inner region of the MW. Our goal is to illustrate the ap-
proximate size of the baryonic effects on the soliton, and
not to characterise these effects in full; a detailed, accu-
rate and precise modelling of the inner MW stellar and gas
mass distributions is challenging and is postponed to fu-
ture work. For concreteness, throughout this section we set
m=10"22 eV.

The dominant contributions to the stellar mass profile of
the MW inner few hundred pc were described in the photo-
metric analysis of Launhardt et al @] as a spherical nuclear
stellar cluster (NSC) and a nuclear stellar disk (NSD), com-
posing together the nuclear bulge (NB).

In addition to the stellar components, dynamics in the
central ~ 1 pc is dominated by a super-massive black hole
(SMBH) with mass Mpy ~ 4 x 10 M. Here we omit the
SMBH contribution, which was studied in m] and shown to
have negligible impact on the soliton for m < 10720 eV. We
note that the numerical code in App. [Alis capable of han-
dling the SMBH contribution via the procedure described
in App. [Adl A gas torus at scale radius of ~ 100 pc con-
tributes ~ 2 x 107 M. For simplicity, the gas is also ne-
glected here in comparison to the stellar components.

The NSC density profile was modelled as

PNSC
)nNSC

W@ (200 —7), (1)

pnsc(r) =

where 7 = /R2+ 22 is stated in pc. pysc = 3.3 X
10 Mg /pc? for r < rg and pysc = 9.0 x 107 Mg, /pc® for
r > 1, with rg = 6 pc. Theindex nysc = 2 forr < rg and
nysc = 3 for r > 1 (keeping the profile continuous at 7).
With these parameters we have® Mygc ~ 5.3 x 107 M.

We parametrise the NSD stellar mass density as follows,

PNSD 4 R _lzl
R = ————— (1 —tanh
pvsp 2 = 7y ( o (140))

750
(15)

where pnsp = 330 Mg /pc® and where z and R are stated
in pc. This parametrisation approximately reproduces the
NIR stellar volume emissivity model derived in @] and
yields an NSD mass Mysp ~ 10° Mg, consistent within
the uncertainty with the value of (1.440.6) x 10° Mg
quoted by [54].

A kinematic detection supporting the disk-like morphol-
ogy of the NSD was given in @] and the mass and ap-
proximate scale estimates are consistent with the dynamical
modelling of [56] and with microlensing analyses [57] that
probe the outer boundary of the NSD region.

In what follows we define Y, = Y /Y Launhards as the
mass-to-light ratio of the stellar distribution compared to
the one used in Ref. @] We vary T, to explore the con-
sequences of different total stellar mass in the NB region.

In Fig. [l we plot the soliton mass vs. A, which allows us
to access different solutions. For A > 103 we retrieve the
self-gravitating soliton result, shown by the dashed line. For
smaller X we find M oc \* ﬂﬂ]9 Fig. D can be compared to
Fig. 16 in Ref. B] which considered a spherically-averaged
approximation to the same stellar mass model. It shows an
O(1) difference in the M vs. X relation in the phenomeno-
logically interesting range A ~ 10~% — 1073,

8 This NSC mass is larger than that quoted in Iﬂ] by a factor of
~ 1.8. We are not sure of the reason for this mismatch, but it does
not have an important effect on our results.

9 This can be understood as follows. For small ) the external potential
dominates and the SPE reduce to V2x ~ 2(®;, —7)x. Since this
equation is homogeneous and linear in x, the normalisation at x = 0
is a multiplicative factor and M fd3:c x2 o< AL
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FIG. 1: Soliton M- relation in the stellar-induced background
gravitational potential of the inner MW. For a halo mass M}, =
10'2 Mg, the soliton host-halo relation found in DM-only numer-
ical simulations predicts A = 4.9 x 10~*. The ULDM particle
mass is m = 1022 eV. T, is defined in the text.

In Fig. [2] we study the deformation in the soliton shape
caused by the stellar mass distribution, at fixed soliton mass
M = 1.35 x 10° Mg, predicted by DM-only numerical sim-
ulations for a halo mass Mj; = 10'2 M. The contour
lines show the soliton mass density normalised to a refer-
ence value of 23.6 M, /pc®. Solid lines show the result for
the self-gravitating soliton and dashed lines show the result
obtained when @, is included in the SPE. In Fig. 3l we plot
the density profile of the deformed soliton from Fig. [2] on
the plane of the disk (z = 0, dashed line) and along the z-
axis (R = 0, dot-dashed). The solid line shows the density
profile of the self-gravitating soliton. The dotted line shows
the density profile of the soliton when the baryonic potential
is replaced by a radially-averaged version of the potential®.

It is instructive to consider the observable (in principle)
soliton-induced effective circular velocity,

Vet () = Va - V. (16)

In Fig. @ we plot veg, analogously to Fig. The dashed
line is veg on the plane of the disk. The dot-dashed line is
Veft transverse to the disk on the z-axis. For comparison, we
also plot vesr computed for a self-gravitating soliton with the
same mass (solid blue). The main effect of the background
stellar potential is to contract the soliton-induced peak ve-
locity deeper into the inner halo, enhancing the peak veloc-
ity; this is an O(1) effect that cannot be ignored in realistic
modelling of kinematic data. The deviation from radial sym-
metry is, however, small: a simplified treatment taking as
input a radially-averaged baryonic mass distribution could

10 Specifically, we define the spherical rearrangement via M(r) =

Jo o)z, $(r) = — [ dr' GM (") /)2,
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FIG. 2: Mass density contours of a soliton in the inner MW.
The density is normalised to a reference value of 23.6 Mg /pc?.
We set m = 10722 eV in the plot. The soliton mass is fixed at
M =~ 1.35 x 10° Mg. Solid lines show the result for the self-
gravitating soliton and dashed lines show the result when &, is
included in the SPE.
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FIG. 3:  Mass density of solitons corresponding to the inner

MW. We set m = 10722 eV in the plot. The soliton mass is
fixed at M = 1.35 x 10° M. The solid line shows the result for
the self-gravitating soliton and the dashed lines show the results
when @ is included in the SPE. The dotted line shows the result
when the NSD is replaced by a spherical rearrangement of the
same mass.

suffice for practical purposes. For comparison, the result of
such a procedure is plotted in the dotted line in Fig. [l

In the top (bottom) panel of Fig. B we plot the total
energy (kinetic energy) per unit mass as a function of soliton
mass M. For M > 10'° Mg the self-gravitating soliton
result is retrieved. For small M we find that £/M and
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FIG. 4: Effective circular velocity induced by a MW soliton. We
set m = 10722 eV in the plot and fix the soliton mass at M ~
1.35 x 10° Mg, predicted by DM-only numerical simulations for
a halo mass Mj, = 10" My. The solid line shows the result for
the self-gravitating soliton and the dashed lines show the result
when @y is included in the SPE. The dotted line shows the result
when the NSD is replaced by a spherical rearrangement of the
same mass.

K /M approach constant values. The reason for this scaling
follows along the same lines of footnote 9 which shows that
at small A\, when the background potential dominates, M,
E and K all scale as oc A\* leading to constant E/M and

For a halo mass M; = 10'?2 Mg, the soliton—host halo
relation found in DM-only numerical simulations of E ]
(summarised by Eq. (I3)) predicts K/M ~ 5.5 x 10~% [23],
shown by the black dot-dashed line. The shaded band de-
notes a factor of two spread around this prediction, moti-
vated by the halo-to-halo spread seen in the simulations.

Fig. Bl shows that because of the stellar-induced back-
ground potential, K/M for an actual soliton solution in
this background is significantly deformed. This means that
baryonic effects are likely to significantly modify the soliton
properties, and the soliton—halo expectation from DM-only
numerical simulations cannot be taken at face value. A
consistent way to constrain (or possibly detect) an ULDM
soliton in the MW, would be by a combined analysis of kine-
matical modelling and photometry, where the stellar poten-
tial constrained by photometry is used to self-consistently
calculate the soliton shape and where the soliton mass is
taken as a free parameter.

Ref. [58] argued for dynamical evidence in favour of
an ULDM soliton in the MW, with m ~ 10=22 eV and
M =~ 10° Mg in tantalising agreement with the expecta-
tions of DM-only numerical simulations. The dynamical evi-
dence for a dense central mass component is consistent with
earlier studiesmg, @-@] Unfortunately, as we reviewed
here and in [23] (see Sec. V.B there), there is room for
and photometric evidence of about 10° M, in stars within
the ~ 200 pc would-be soliton region [54]. Thus, the cen-
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FIG. 5: Specific energy |E|/M (top) and specific kinetic energy
K /M (bottom) for a soliton in the MW. For a halo mass M, =
10'? Mg, the soliton host-halo relation found in DM-only nu-
merical simulations predicts |E|/M = K/M ~ 5.5 x 10~% [23],
shown by the black dot-dashed line with a shaded band denoting
a factor of two spread (see text for more details).

tral mass component could well be due to ordinary baryonic
matter. Other systems, such as well-resolved LSB galaxies,
offer much cleaner laboratories in which to look for ULDM
solitons. We turn to such systems in the next section.

IV. APPLICATION: LOW SURFACE-BRIGHTNESS
SPARC GALAXIES

Our second discussion of non-spherical solitons involves
two low surface-brightness (LSB) disk galaxies from the
SPARC database [31]: UGC01281 and F571-8. We choose
these galaxies as representative examples of a larger sample
including dozens of well-resolved LSB galaxies. For con-
creteness, throughout this section we set m = 10722 eV.
Results for m = 1072! eV are collected in App. [l

The baryonic mass contributions in SPARC galaxies is



divided into a spherical bulge component and axisymmetric
disk and gas components. The stellar mass distribution is
calibrated to match surface brightness data from Spitzer.
The computation of the gravitational potential due to the
disk is detailed in App. We focus here on galaxies that
are consistent with negligible bulge.

The gas mass distribution for UGC01281 (not relevant for
F571-8) is calibrated to approximately match the HI surface
brightness data reported in @] normalising to the total gas
mass reported in @] We provide details on the gas fitting
procedure in App. [El

In our computation we fix the total gas mass to match the
total mass inferred from the photometry and vary the stellar
mass-to-light ratio of the disk from T; = 0 up to larger
values that saturate the observed kinematic velocity @]

In Fig. [ we plot the M — X relation for a soliton in
UGCO01281. In the top (bottom) panel of Fig. [l we plot
the total energy (kinetic energy) per unit mass vs. M.
The dashed black line denotes the soliton—halo prediction
of DM-only numerical simulations. The shaded band shows
a factor of two spread around this prediction.

uUGC01281
10%¢ 3
10%F -7 3
= 10"¢ 1
10° ¢ 1
— — Without Baryons
—— With Baryons (Y4=0.5)
5 With Baryons (Y4=1.07)
1077 —— With Baryons (Y4=2.14) |
10% 10" 10°

FIG. 6: Soliton M-\ relation in the baryonic-induced back-
ground gravitational potential of UGC01281. The soliton host-
halo relation found in DM-only numerical simulations predicts
A =2.2x10"* The ULDM particle mass is m = 10722 eV.

Inspecting Fig. [1l we see that in the neighbourhood of
E/M values that conform to the DM-only simulation pre-
diction, the actual E/M for a soliton in UGC01281 is sig-
nificantly shifted compared to the self-gravitating solution.
However, the effect on K/M is much less pronounced: the
soliton shape is essentially unaffected.

We can also estimate the baryonic effect on the dynamics
of the large-scale halo. To do this, we can compare the
observed kinematic velocity at large distances (r ~ 5 kpc in
this example) with the contribution to the velocity that can
be attributed to the baryons. The velocity decomposition is
shown in the top panel of Fig. [I0 (discussed in more detail
at the end of this section). We find v, . ./vaps ~ 0.26
(~ 0.39), when adopting T4 = 1.07 (T4 = 2.14). This
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FIG. 7: Specific energy |E|/M (top) and specific kinetic energy
K/M (bottom) for a soliton in UGC01281. The soliton host-
halo relation found in DM-only numerical simulations predicts
|E|/M = K/M =~ 10~% [23], shown by the black dashed line
with a shaded band denoting a factor of two spread.

means that the baryonic potential distorts the ULDM large-
scale halo K/M by no more than 40%.

The next galaxy we consider is F571-8. Soliton proper-
ties for this galaxy are presented in Figs. [Bl and Here,
for simplicity, we ignore the (negligible) gas contribution
in computing the soliton. Again, K/M for a soliton in
F571-8 is unaffected by baryons in the parameter region ex-
pected from DM-only simulations. The case of F571-8 is
even clearer than UGC01281 because the baryonic effect on
the dynamics of the large-scale halo, as seen by inspecting
the rotation curve decomposition (bottom panel of Fig. [I0]),
is not larger than ~ 5%.

In the top (bottom) panel of Fig.[I0l we show the rotation
curve decomposition of UGC01281 and F571-8, as found in
the SPARC database. The contribution due to soliton so-
lutions with different values of A (indicated in the plot) are
overlaid in red, blue and black. The solitons are computed
assuming different values of the disk stellar mass-to-light ra-
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FIG. 10: Top: Rotation curve SPARC data of UGC01281, over-
laid with soliton solutions assuming background baryonic-induced
potential parametrised by stellar disk mass-to-light ratio T4 aug-
mented by neutral gas mass distribution consistent with the ob-
served HI brightness measurements. The highest T, is chosen
to saturate the error budget of the innermost kinematic velocity
data points. The central value, A = 107%% (blue) is based on
the DM-only numerical simulation prediction. Bottom: Same
for F571-8 (for this galaxy, the gas contribution is neglected
in the soliton computation). The DM-only simulations predict
A =10"3%22,

We conclude that if Eq. (I3) correctly captures the
soliton—halo relation of the simulations, then UGC01281 and
F571-8 are clean systems in which to constrain the ULDM
model, in the sense that the baryonic contribution to the
gravitational potential is not important both for the large-
scale halo and for the central soliton. These conclusions
stay unchanged when we consider more massive ULDM with
m = 10721 eV (see App. [F]). Dozens of other comparably
clean systems exist in the SPARC database. The constraints



derived in Ref. B] should therefore apply and ULDM with
m < 10721 eV is in tension with the data.

V. SUMMARY

An ultra-light bosonic field oscillating around a minimum
of its potential can play the role of dark matter (DM). On
scales of order the effective de Broglie wavelength, wave me-
chanics dictates the dynamics of this ultra-light dark matter
(ULDM) opening potential avenues to constrain (or detect)
ULDM in various astrophysical and cosmological systems.

Stellar and gas kinematics of rotation-supported low
surface-brightness (LSB) galaxies were used in Ref. [23] to
derive the constraint m > 1072! eV. This constraint re-
lies on the validity of a soliton—host halo relation, found in
DM-only numerical simulations. It is important to assess to
what extent baryons could affect these results. For a non-
spherical baryonic distribution, a new numerical tool was
required in order to calculate the properties (shape, mass,
energetics) of the non-spherical soliton obtained in the pres-
ence of the baryonic-induced background gravitational po-
tential. In this paper we provided a simple algorithm (see
Sec. Il and App. A) that achieves this goal.

To illustrate the potential use of the non-spherical soliton
solver, we estimated the impact of a Milky Way (MW) nu-
clear stellar disk (NSD) on an ULDM soliton. Adopting a
plausible parameterisation of the stellar distribution, moti-
vated by photometric measurements, we find that the NSD
would distort the shape and energetics of an m = 10722 eV
ULDM soliton at the O(1) level. Thus, an attempt to con-
strain ULDM in the MW should self-consistently account for
the gravitational effect of stars. While we did not enter such
an analysis, the numerical tool we provided is an important
step in this direction. Having said that, we note that while
the soliton can be compressed by an internal clump of stars
it is not easily deformed into non-spherical shape. In the
MW example, the highly non-spherical nuclear stellar disk
(NSD) leads to a soliton that is significantly contracted but
remains spherical to a good approximation. As a result,
a spherical rearrangement of the stellar mass distribution
(namely, replacing the disk-like baryonic distribution by a
radially-averaged profile) would most likely be sufficient to
calculate the soliton in a kinematical analysis.

Next, we revisited the SPARC galaxy analysis of @] Us-
ing two LSB galaxies as a concrete example, we modelled
the baryonic potential consistent with photometric data and
bracketed the possible impact on the shape and energetics of
the predicted soliton. Our results reinforce the conclusions
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of B] implying that baryons are not expected to change
the constraints derived on ULDM based on rotationally-
supported LSB SPARC galaxies.
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Appendix A: Numerical algorithm for solitons in a
non-spherical background potential

In what follows we describe a numerical method to find
the ground state solution of Eqgs. (@HZ]). This tool is one of
the main results of our work: it is intended to be simple,
fast, and robust enough to allow it to be used in detailed
analyses of galactic kinematics with ULDM, in cases — such
as the Milky Way galaxy — where the baryonic contribution
to the gravitational potential in the soliton region cannot
be neglected.

We assume that the baryonic-induced gravitational po-
tential is a direct input to the code. Often, an input in
terms of the stellar and gas mass density could be more
natural. Converting an axisymmetric mass distribution into
its corresponding gravitational potential is a straightforward
exercise that we recall in App.

We use an N x N discretised lattice with physical size
L x L in the R — z plane. The lattice spacing is § =
L/(N —1). The physical coordinate of each point (recall
that distance is measured in units of 1/m) is

i—1 j—1
The Laplacian in cylindrical coordinates is
0? 10 0?
= (=4 === |D+ 0. A2
v orz T RoRr) " T 022 (A2)

We discretise it:
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2 10 12— ®1y) (i =1)
Lo - 52 (A3)
oRZ " ROR . Di1,5— 20 + D1 n 1 Py — iy (1<i<N)
) 02 R; 20
2(Pio—Pin .
[3_2¢] _ ( 5 ) G=1 (A4)
022" |, Lij1 — 2‘(1;;]‘ TRl 1y

Note that we do not need to define V2® at i = N and/or
j=N.

We start by initialising ® as zero everywhere, assigning an
initial test profile of x that is conveniently chosen as some
numerical approximation of the known self-gravitating solu-
tion; see, e.g. M] Throughout the calculation we enforce

Xi,N = XN, = 0. (A5)

The discretised Eq. (7)) is then solved iteratively using the
successive over-relaxation (SOR) method (see, e.g., ch.19.5
in [62]). In each iteration of the program, ®; ; (i, # 1, N)
is improved by the SOR method as

2
new __ old wq>5
iyt = P+
old old new old new
PPy — 2905 + 205, N P, — P
02 20R;
P — 2091 4 ppew,
J+ 62,] 2] _ ng,j) , (A6)

where wg is an auxiliary parameter!! that we set O(1). For
i =1and/orj =1, the RHS of Eq. (Af]) should be modified
according to Egs. (A3HAZ). Ati = N and/or j = N, @, ;
is fixed by the following boundary conditions,

M

O;n=PNn; = — .
4mr; N

(A7)

Here, r; v = \/1+ (i — 1)2/(N — 1)2L and the dimension-
less'? M is calculated as

N

- w3 9 N 9 9 w3 9
M = —=xia+ D 2R %X, | + ZTXLj
i—2 =

N
+ Y A RO,

i,j=2

11 To obtain our results in this paper, we have used wg = 1.6 in all
computations. This value was chosen somewhat arbitrarily based
on tests of the rate of convergence.

12 N7 is related to M, the physical mass of the soliton, via M =

M2\ -
(47rl;n ) M.

consistent with Gauss’ Law (see Sec. [AT] below).

Next, once @ is fixed, the ground state solution of Eq. (@),
X0, can be found by considering the following imaginary
time evolution (see also App. [B)):

0

() =V 2@+ @) x(r). (A9)
In the large 7 limit, the asymptotic behaviour of y is
1Lm X(T) < e xq. (A10)

Thus, in each iteration, x; ;(i,j # 1, N) is improved as

Xij = Xi5
wy 02 X?}rdl.,j - 2X§),ljd + X(i),ljdfl
4 2
L L, Xy
i 20
Xosn — 205 + X35
62
—2(®; ; + P, j) X?lf) , (AL1)
1d
X1, -
o = xiix” (A12)

where w,, is an auxiliary parameter'® that we set O(1). For
i = 1 and/or j = 1, the RHS of Eq. (ALl should be
modified according to the prescription in Eqs. (A3lA4]). At
i= N and/or j = N, x;; is fixed by Eq. (AD).

We repeatedly update ® and y, using Egs. (Af)
and (A1), until convergence is attained. The eigenvalue v
is calculated as

_ =1 [ Xit1,5 — 2Xi5 + Xij—1 " 1 Xip1,j = Xi-1
" 2Xi,j 52 Rl 26
Xij+1 = 2Xij + Xij-1
4+ Xb 6;] i,j —2((I)i7j+q)b7i7j)xi7j).

(A13)

13 To obtain our results in this paper, we have used wy = 0.8 in all
computations. This value was chosen somewhat arbitrarily based
on tests of the rate of convergence. We note that setting wy < we
appears to be useful (see footnote 11).



To calculate the total soliton energy, we use Eq. ([IQ) (av-
eraging over adjacent grid sites can be useful in order to
reduce numerical error):

E /d3x (% (Vx) + (% + (I)b> x2>

N-1
= > 2n5 (R}, - R})

i,j=1
% [ei,j + e j+1 + (Z‘Jrl,j + €i+1,j+1] (A14)
with the integrand
o, — Xi (Xitrg = 2Xig + Xigo1 L Xi1g — Xim1y
d 2 02 R; 20

Xij+1 = 2Xij + Xij-1
4 Abd 5;J =1 (®;,; + 2<I)b7i7j)xi7j),

(A15)

For i = 1 and/or j = 1, the RHS of Eq. (AI}) should
be modified according to the prescription in Eqs. (A3HAZ).
We do not need to include ¢ = N and/or j = N, because
there the integrand vanishes due to the boundary condition
in Eq. (A5).

This concludes the description of the numerical scheme.

1. Adding a black hole

Here we explain how a central black hole (BH) can be
added to the discretised grid calculation of App. [Al To this
end we derive a discretised version of Gauss's Law.

Using Eqs. (A3HA4), for n < N, we obtain

- 0? 10
>n | (3 * 7om) ?).,

m(2n —1)
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where n;,n; < N. This becomes the usual Gauss's law
fV V20 = fav dS - V& in the limit 6 — 0.

Consider a black hole with physical mass Mg, translated
in our conventions to Mpy = (Mgl/élwm)MBH. It gives the
potential dpy = —MBH/(47r:c). The Poisson equation is
V2® = p; thus, the discretised p configuration that leads
to ®py and that is consistent with Gauss's Law, Eq. (A1),
is

4Mpy N S
Pij = { T3 (Z_] - 1) ) (A20)

0 (i#1lorj#1)

Finally, to interface to the code described in App.[A] it is
convenient to utilise the gravitational potential induced by
the BH which is given on the axisymmetric grid as follows,

_ 11Mgy
_ 1276
PpH,i; = v

(g orj )

The tricky point here is ®pp,1,1: this is determined by solv-
ing the discretised Poisson equation at the origin.

Appendix B: Is it the ground state?

In this section we present evidence that these solutions
obtained by our algorithm are indeed ground state solutions.
At the same time, we also highlight the difficulty to obtain
a rigorous proof. Finally, we comment about stability to
perturbations.

Let us recap a few details of the imaginary time evolution

of the Schrédinger equation [63465]. The equation reads
i0,W (v, t) = HU(r,1). (B1)

The time-independent Hamiltonian H is hypothesized to

Pri1,j — Pny have eigenfunctions ¢,,(r) with eigenvalues €, including a

) 5 " ground-state with finite ¢y < 0.

‘ (A16) Consider an initial condition
z":A S(PP) i — B (A1) U(r,0) = antn(r), (B2)

=1 SN 0 ’ !
which can be propagated in time as

where ; and \; are defined as )

U(r,t) =Y e "“ani(r). (B3)
4 =1 1 (j= n
P (=1, =1 U=D A

20—-1m (1#1) 2 (U We can define 7 = it and rewrite the Schrodinger equation

From these equations we obtain

ng "Ny

Z Z Iii)\j53(v2¢)i_j

i=1 j=1

"
. Dinir1— Pip,

= 2 E Ki52 X —2 -7
; )

=1

L mi—1, DB, — P,
+ 2y N "2 6% x il (A19)
=1

as

0, U (r,7) = —HU(r,7), (B4)
with the initial condition
U(r,0) = anthn(r) (B5)
and a general solution
U(r,7) =Y e " Tanih(r). (B6)



In the limit 7 — oo, we have:

Hjn U(r,7) = e “Tagyo(r),

(B7)
thus providing the sought-after ground-state, 1.

The difficulty in this formalism, which becomes appar-
ent in the regime where the self-gravitation is dynamically
relevant, is that the Hamiltonian is not constant between
iterations but rather changes as we iterate on the wave func-
tion and the Newtonian potential induced by it. Thus, while
the solutions found by our solver are (within the numerical
accuracy) indeed solutions of the EOM, we have no rigor-
ous proof that these are in fact the ground state solutions.
Having made this cautionary remark, we now present some
evidence that our solution is indeed the ground state, at
least when it comes to ULDM in the background baryonic
potential of realistic galaxies.

The first thing to note is that in the limit that self-
gravity is negligible compared to the external potential, the
problem becomes linear, the Hamiltonian is constant and
the derivation leading to Eq. (BT) is applicable without
particular complications. Then, the formalism leading to
Eq. (B7) suggests that our solution does indeed isolate the
true ground state, as long as the initial test function has
some non-vanishing overlap with this ground state. In spe-
cific examples we can compare the numerical results to an-
alytic solutions. The case of a strong baryonic potential
concentrated near the origin is a good example: in this case
the exact solution converges to the Coulomb wave function
x(r) oc eA7.

On the other hand, in the opposite limit where the exter-
nal potential is negligible and self-gravity dominates, we find
that our algorithm converges to the known self-gravitating
ground state solution.

Many examples in the paper (e.g., Figs. IBIBI7IBIO) ex-
plicitly examine the behaviour of the solution while going
smoothly between the two limits of negligible external po-
tential and all the way to where the external potential dom-
inates the solution. The two limits are smoothly connected
by a continuous deformation. This lends support to the
notion, that also in the intermediate regime our solver is
finding the true ground state solution.

We have also made sure that the solutions are not sensi-
tive to the details of the test function used as initial condi-
tion. For a given external potential ®;, we checked a vari-
ety of initial conditions of the field x; ;, including gaussian
forms with different slopes as well as randomised indepen-
dent realisations of the field on different grid points (always
keeping Xi=n,j = Xi,j=~ = 0 as prescribed in Eq. (AD)).
For some of these initial conditions the solver converges on
a solution, while for others it does not. Importantly, when-
ever the solver does converge, the different initial conditions
all lead to the same solution. Note that the solver some-
times does not converge when the initial conditions do not
fall steeply enough as a function of distance away from the
origin. In addition, convergence also shows some depen-
dence on the function ®; used in the test. A simple choice
which works well for all of the problems we experimented
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with, was to use the spherical self-gravitating solution as
the initial test function.

We now make a short comment about the linear stabil-
ity of our solutions. It is useful to first recall the stability
argument for the self-gravitating soliton: in the Newtonian
limit, the mass and the energy of the field are conserved sep-
arately; since the soliton is the field configuration that min-
imises the energy at fixed value of the mass, it is guaranteed
on general grounds to be dynamically stable ﬂﬂ]“. Once we
“turn on" an external potential (spherically symmetric or
not), however, linear stability could become a concern.

Our solver finds solutions of the EOM while holding the
value of the field fixed at the origin (via the x(0) = A\? pre-
scription). Let us assume, based on the arguments given in
the previous paragraphs, that the solution we find is indeed
the lowest energy solution compatible with the boundary
conditions. One can show that both in the self-gravitating
case, and in case that the external potential fully dominates
the dynamics, the value of x(0) is in one-to-one correspon-
dence to the mass of the ground state. Therefore we expect
that our solutions remain minimisers of the ULDM energy
at fixed mass also in the presence of the external potential.
This settles the stability question for the limit where the ex-
ternal potential strongly dominates: as long as the external
potential is static and does not rearrange itself dynamically
following a change in the ULDM system, there is no energy
exchange between the ULDM and the external system and
the soliton stability is guaranteed.

The intermediate limit, where the external potential is
comparable to that coming from the ULDM, is much more
complicated. Addressing the question of stability in this
case requires a joint analysis of the baryonic system and
the ULDM. This analysis is beyond the scope for the cur-
rent paper. Indeed, our goal in this work is not to solve
the (in general, very difficult) dynamical problem of find-
ing stable gravitating solutions of the joint baryonic and
ULDM system. Instead, our starting point is to assume
that the baryonic part of the system is already known via
observational constraints like stellar luminosity and gas line
emission (as was the case for the LSB galaxies we analysed),
and then derive the minimum energy soliton consistent with
this known external background.

Appendix C: Gravitational potential of an axisymmetric
mass distribution

The solution of the Poisson equation in axisymmetry can
be found directly using the method of Fourier-Bessel trans-
form. Following @] the gravitational potential is given

14 Relativistic corrections do cause soliton decay Iﬂ,m], but the decay
time is long and of no phenomenological relevance in the range of
ULDM and soliton masses considered in this work.



by

o(Rz) = —21G [ dc [ duplu, OK (R |z~ )
— o0 0

(C1)
where the kernel K is given by
K(R,u,z) = u / dkJo(kR)Jo(ku)e (C2)
0
2 2, .2
_ ViRl , (w2
ﬂ'\/ﬁ 2 2Ru

with Q_% the Legendre function of the second kind of order
—3. See also 6.612 (3) and 8.834 (1) in Ref. [67].

Appendix D: Modelling stellar disks

In order to simplify the analysis we take advantage of the
Miyamoto-Nagai (MN) [68] disk parametrisation, described
by the density profile
M nb?

— X

4am

aR? + (a+3Vz2 +b2) (a+ V22 + b2)2
(R2 + (a + V21 09)2)%% (22 + 12)*/?
(D1)

pun(R,z) =

for which the gravitational potential is known analytically:
GMyn
\/R2 + (a+ V22 4+ 1?)?

The parameters a, b, and M, define the disk scale-radius,
thickness and mass. A sum of three MN profiles provides a
reasonable approximation to the exponential disks of typical
galaxies [69].

In the SPARC database the surface brightness ¥ (R)
of the disk component is reported. Assuming an exponen-
tial approximation for the vertical direction, the stellar mass
density is given by

dun(R,2) = — (D2)

_l=l

e Zd

p(R,z) = TaXL(R) (B3)

22,1

where z,4 is specified in the database for each galaxy. One
can then fit the MN density on the disk plane,

(a+ 3b)(a+ b)2]
(a+ b))/

MMN [CLR2 +

pun(R,0) =
(£.0) 47b [R? 4+

,(D4)

(or a sum of such functions) to

TeXr(R
p(R,0) = —”‘2;( ),
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FIG. 11: MN fit for the disk of UGC01281. The disk fit is shown
by the solid purple line, while the orange circles show the velocity
attributed to the disk in the SPARC database for T4, = 1.

fixing b = z4.

In Fig. 1l we show the rotation curve decomposition for
UGC01281, superimposed with a MN fit for the disk ob-
tained with the above prescription.

Appendix E: Modelling the gas distribution in UGC01281

The SPARC database M] does not contain sufficient in-
formation to allow a direct reconstruction of the gas mass
distribution'®. We have therefore done an independent anal-
ysis of the gas component for the example of UGC01281,
using the HI surface brightness profiles reported in Ref. @]

Our analysis is less sophisticated than that in @] but
captures the key features of the gas profile with sufficient
accuracy. We model the gas density profile as a collection
of K co-planar rings, with the mass density of each ring
taking to be constant on the plane (z = 0) and decaying
vertically with a Gaussian profile:

22

K
Peas (R, 2) 29 (R— Rp)0 (R + A — R)pre 2,
k=1

(E1)

where 0(x) is the Heaviside function. The gravitational
potential due to this mass distribution is computed by the
procedure given in App.

The surface brightness profile from this gas distribution
is easily computed. Matching the model to the vertical pro-
file reported in @] we find a good fit for d, = 0.65 kpc.
Considering the radial profile and matching (approximately,

15 We thank Stacy McGaugh for clarifications on this point.



by eye) to the average profile shown in Fig. 2 of Ref. [59]
(which averages the HI column density over a slab in the
vertical direction), with find that a model of K = 50 rings
of equal width Ay = 0.2 kpc, located with inner radii
starting at R; = 0 kpc up to R59 = 10 kpc, reproduces
the brightness profile radial shape for the density assign-

ment pr = p (0.5 + Rk)1'2 exp (— (f—’g)w), where Ry, are
noted in kpc and j is an over-all normalisation factor. We
set p = 3.9 x 10° My /kpc?, so that the total gas mass
(including a factor of 1.3 to account for He) is fixed to
Mgas = 3.2 x 10® Mg, inferred in Ref. @] from the total

HI luminosity.

The gas-induced rotation curve we find with this proce-
dure is shown by the line in Fig.[I2] compared to the velocity
contribution attributed to the gas in the SPARC database
(circles). The comparison is good enough for our purpose
in the current work: as we show in the body of the work,
the total baryonic effect (stars and gas combined) on the
predicted soliton and on the large-scale halo of UGC01281
is small.
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FIG. 12: Modelling the gas contribution to the rotation curve of
UGC01281.

We conclude this technical discussion with an amusing
comment. The toroidal gas profile of UGC01281 prompted
us to look for toroidal soliton solutions, that could co-exist
in the background potential of such a baryonic mass dis-
tribution. Indeed, varying the gas mass and the soliton
mass, we can find toroidal solitons; we show an example in
Fig. The parameters chosen to achieve this toroidal so-
lution were: m = 10722 eV, with A = 107° and a gas mass
50 times larger than the observed one in UGC01281. These
parameters do not represent an actual galaxy from SPARC:
we merely bring it as an observation about deformed soli-
tons and as demonstration of the versatility of the numerical
code.
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FIG. 13: Density profile of a toroidal soliton solution.

Appendix F: Results with ULDM particle mass of
m=10"%" eV

14

Here we present a repetition of Figs. from Sec. [V
done for ULDM particle mass m = 1072! eV.
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