

CP violation in charmless multi-body beauty decays

Cayo Costa Sobral, on behalf of the LHCb collaboration

XXXIII Rencontres de Physique de la Vallée d'Aoste – 12/03/2019

Charmless multi-body decays

- Tree-level $b \rightarrow u$ transitions are comparable to loop-level $b \rightarrow s, d$ amplitudes
 - Potential new physics in loops
 - Potential for large CP violation (CPV) in tree-penguin interference
 - Tests/input to QCD
- Multi-body decays can proceed via a number of intermediate states
 - Resonant + non-resonant contributions can interfere → variation in phase
 - CP asymmetry (A_{CP}) as a function of phase-space (+ phase-space integrated A_{CP})
 - Many techniques available: Amplitude analyses, binned phase-space asymmetries, triple-product asymmetries

Charmless multi-body decays

• LHCb is able to study the whole family of b-hadrons: B^0 , B^{\pm} , B_s^0 , Λ_b^0 , etc...

• Some recent results:

- Amplitude analysis of the $B^0 \to K^{*0}\overline{K}^{*0}$ decay and measurement of its relative branching fraction with the $B_s^0 \to K^{*0}\overline{K}^{*0}$ decay [LHCb-PAPER-2019-004, in preparation]
- Study of the $B^0 \to \rho(770)^0 K^*(892)^0$ mode with an amplitude analysis of $B^0 \to (\pi^{\pm}\pi^{\mp})(K^{+}\pi^{-})$ decays [arxiv:1812.07008, submitted to JHEP]
- Measurement of CP asymmetries in charmless four-body Λ_b^0 and Ξ_b^0 decays [LHCb-PAPER-2018-044, in preparation]
- Amplitude analysis of $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$ decays [LHCb-PAPER-2018-051, in preparation]

• Amplitude analysis of $B_s^0 \to K_s^0 K^{\pm} \pi^{\mp}$ decays [arxiv:1902.07955, submitted to JHEP]

Isobar model

• Amplitude analyses (AA) are usually carried out via the "isobar model" – full decay amplitude as coherent sum of individual amplitudes

$$\mathcal{A}(m_{ij}^2, m_{jk}^2) = \sum_{r=1}^{N} c_r F_r(m_{ij}^2, m_{jk}^2)$$

 $-c_r$ – complex coefficient describing relative contribution of the different intermediate states

- F_r describes the dynamics of the intermediate states (lineshape + angular distribution)
- Extract from the fit: $\operatorname{Re}(c_r)$, $\operatorname{Im}(c_r)$ or $|c_r|$, $\operatorname{arg}(c_r)$
 - And the corresponding values for \bar{c}_r , the coefficient of the charge conjugate decay
- Other quantities are derived from these e.g. branching fractions, A_{CP}

$$A_{CP} = \frac{|\bar{c}_r|^2 - |c_r|^2}{|\bar{c}_r|^2 + |c_r|^2}$$
 Fit fraction: $FF_r = \frac{\iint |c_r F_r|^2 dm_{ij}^2 dm_{jk}^2}{\iint |\mathcal{A}|^2 dm_{ij}^2 dm_{jk}^2}$

$B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$

- Previously studied by LHCb [Phys. Rev. D90 (2014) 112004]
 - Inclusive $A_{CP} = -0.123 \pm 0.017 \pm 0.012 \pm 0.007$
 - Phase-space regions with even larger A_{CP}
 - Model independent no information on contributing intermediate states
- First amplitude analysis of this channel
 - Using 2011+2012 data corresponding to 3.0 fb⁻¹
 - Follow up to binned *A_{CP}* measurement
 - $2052 B^+$ and $1566 B^-$ signal candidates in the fit region
- Signal PDF includes:
 - Resonant contributions from $K^*(892)^0$, $K_0^{*0}(1430)$ in $K\pi$ and $\rho(1450)$, $f_2(1270)$, $\phi(1020)$ in KK
 - A single-pole form factor to describe non-resonant $K\pi$ contribution
 - Dedicated amplitude for $\pi\pi \leftrightarrow KK$ rescattering

$B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$

- Single-pole form factor provides better description than resonant contributions tested such as κ
 - Form factor of the form $(1 + m_{\pi K}^2 / \Lambda^2)^{-1}$, $\Lambda = 1$ GeV
 - Proposed in [Phys. Rev. D 92 (2015) 054010]
- Destructive interference pattern at high $m_{\pi K}^2$ is described by combination of $\rho(1450)$ and $f_2(1270)$
- $\pi\pi \leftrightarrow KK$ rescattering amplitude based on Pelaez and Yndurain [Phys. Rev. D 71 (2005) 074016]
 - Rescattering in the region $1.0 < m_{KK}^2 < 1.5 \text{ GeV}/c^2$ (see next slide)
 - $\mathcal{A}_{rescatt} = \mathcal{A}_{source} \cdot f_{scattering}$, with $\mathcal{A}_{source} = (1 + m_{KK}^2 / \Lambda^2)^{-1}$
 - $f_{scattering} = \sqrt{1 \eta^2} e^{2i\delta}$ is the off-diagonal term in the $\pi\pi KK$ coupled channel S-matrix

$B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$

• Fit results:

LHCb preliminary							
		Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Ampl	itude (B^+/B^-)	Phase[o] (B^{+}/B^{-})
	$K^{*}(892)^{0} K^{*0}_{0}(1430)$		$7.5\pm0.6\pm0.5$	$12.3 \pm 8.7 \pm 4$	$4.5 0.94 \pm 0.04 \pm 0$	$0.02 / 1.06 \pm 0.04 \pm 0.02$	0 (fixed)
Κπ			$4.5\pm0.7\pm1.2$	$10.4 \pm 14.9 \pm$	$8.8 0.74 \pm 0.09 \pm 0.09 \pm 0.010 \pm 0.000 \pm 0.010 \pm 0.000 \pm 0.0000 \pm 0.00000000$	$0.09 / 0.82 \pm 0.09 \pm 0.10$	$-176 \pm 10 \pm 16 \ / \ 136 \pm 11 \pm 21$
	Singl	e-Pole Form Factor	$32.3 \pm 1.5 \pm 4.1$	$-10.7\pm5.3\pm$	$3.5 2.19 \pm 0.13 \pm 0$	$0.17 / 1.97 \pm 0.12 \pm 0.20$	$-138 \pm 7 \pm 5 / 166 \pm 6 \pm 5$
		$ \rho(1450) $	$30.7 \pm 1.2 \pm 0.9$	$-10.9\pm4.4\pm$	$2.4 2.14 \pm 0.11 \pm 0$	$0.07 \ / \ 1.92 \pm 0.10 \pm 0.07$	$-175 \pm 10 \pm 15 \ / \ 140 \pm 13 \pm 20$
	KK	$f_2(1270)$	$7.5\pm0.8\pm0.7$	$26.7\pm10.2\pm10.2\pm10.2\pm10.2$	$4.8 0.86 \pm 0.09 \pm 0.09 \pm 0.000 \pm 0.000 \pm 0.0000 \pm 0.0000000000$	$0.07 / 1.13 \pm 0.08 \pm 0.05$	$-106 \pm 11 \pm 10 \ / \ -128 \pm 11 \pm 14$
		rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4\pm3.8\pm$	$1.9 1.91 \pm 0.09 \pm 0$	$0.06 / 0.86 \pm 0.07 \pm 0.04$	$-56 \pm 12 \pm 18 \ / \ -81 \pm 14 \pm 15$
		$\phi(1020)$	$0.3 \pm 0.1 \pm 0.09$	$9.8\pm43.6\pm2$	$6.6 - 0.20 \pm 0.07 \pm 0.07$	$0.02 / 0.22 \pm 0.06 \pm 0.04$	$-52 \pm 23 \pm 32 / 107 \pm 33 \pm 41$

- First amplitude analysis of these decays
 - Untagged, decay-time-integrated
 - Novel approach simultaneous amplitude fit of two final states
 - Using 3.0fb⁻¹ of data (2011+2012)
- The two final states $K_S^0 K^+ \pi^-$ and $K_S^0 K^- \pi^+$ are both accessible by B_S^0 and \overline{B}_S^0
- Previously observed by LHCb
 - [JHEP 10 (2013) 143, JHEP 11 (2017) 027]
- Measurements of resonant contributions also performed
 - $B_s^0 \to K^{*\pm} K^{\mp}$ [New J. Phys. 16 (2014) 123001]
 - $B_S^0 \to K^{*0} K_S^0$ [JHEP 01 (2016) 012]
 - Potential for time-dependent CP violation measurements with larger samples

- Event selection follows closely from updated BF measurement [JHEP 11 (2017) 027]
 - Criteria have been reoptimized for an AA
- Data sample divided into 24 sub-samples
 - Four final states: $K_S^0 K^{\pm} \pi^{\mp}$, $K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$
 - Two K_S^0 reconstruction categories
 - Three data-taking periods
- Simultaneous, unbinned, extended maximum-likelihood fit to all sub-samples to extract signal yields
 - Signal yields of 431.1(489.4) in $K_S^0 K^+ \pi^- (K_S^0 K^- \pi^+)$ in the region used for the AA

- Both B_s^0 and \overline{B}_s^0 contribute to each final state f but the two amplitudes need not be the same: $\mathcal{A}_f \neq \overline{\mathcal{A}}_f$
- Untagged analysis means that the B_s^0 and \overline{B}_s^0 contributions cannot be untangled
- Amplitude fit is performed using an effective amplitude that is some combination of \mathcal{A}_f and $\overline{\mathcal{A}}_f$
 - Akin to CP-averaged amplitude fits
- Method validated by generating pseudoexperiments with full decay-time-dependent model
 - Amplitude parameters based on expected BFs + range of CP violation hypotheses
 - Effective model results for **fit fractions** are found to be robust

K	$K^{0}_{s}K^{+}\pi^{-}$	$K^0_{ m s}K^-\pi^+$			
Resonance	Fit fraction $(\%)$	Resonance	Fit fraction $(\%)$		
$K^{*}(892)^{-}$	15.6 ± 1.5	$K^{*}(892)^{+}$	13.4 ± 2.0		
$K_0^*(1430)^-$	30.2 ± 2.6	$K_0^*(1430)^+$	28.5 ± 3.6		
$K_2^*(1430)^-$	2.9 ± 1.3	$K_2^*(1430)^+$	5.8 ± 1.9		
$K^{*}(892)^{0}$	13.2 ± 2.4	$\overline{K}^{*}(892)^{0}$	19.2 ± 2.3		
$K_0^*(1430)^0$	33.9 ± 2.9	$\overline{K}_{0}^{*}(1430)^{0}$	27.0 ± 4.1		
$K_2^*(1430)^0$	5.9 ± 4.0	$\overline{K}_{2}^{*}(1430)^{0}$	7.7 ± 2.8		

- Contributions in $m_{K^+K_S}^2$ such as $a_2(1320)^{\pm}$ were considered but found to be negligible
- Vector and tensor states modelled with Breit— Wigner functions
- $K\pi$ S-wave modelled with LASS lineshape, combines $K_0^*(1430)$ + non-resonant shape
- $K_0^*(1430)$ contributions observed at $> 10\sigma$ level for the first time
- No significant CP violation seen

 \mathcal{B}

• Branching fractions can be obtained from the flavour-averaged fit fractions:

Largest systematic uncertainty comes from alternative $K\pi$ S-wave parameterisation

$$\mathcal{B}\left(B_{*}^{0} \to K^{*}(892)^{\pm}K^{\mp}; K^{*}(892)^{\pm} \to \widetilde{K^{0}}\pi^{\pm}\right) = (12.4 \pm 0.8 \pm 0.5 \pm 2.7 \pm 1.3) \times 10^{-6}$$

$$\mathcal{B}\left(B_{*}^{0} \to (\widetilde{K}^{0}\pi^{\pm})_{0}^{0}K^{\mp}\right) = (24.9 \pm 1.8 \pm 0.5 \pm 20.0 \pm 2.6) \times 10^{-6}$$

$$\mathcal{B}\left(B_{*}^{0} \to K_{*}^{2}(1430)^{\pm}K^{\mp}; K_{2}^{*}(1430)^{\pm} \to \widetilde{K^{0}}\pi^{\pm}\right) = (3.4 \pm 0.8 \pm 0.4 \pm 5.4 \pm 0.4) \times 10^{-6}$$

$$\mathcal{B}\left(B_{*}^{0} \to \widetilde{K^{1}}(892)^{0}\widetilde{K^{10}}; \widetilde{K^{1}}(892)^{0} \to K^{\mp}\pi^{\pm}\right) = (13.2 \pm 1.9 \pm 0.8 \pm 2.9 \pm 1.4) \times 10^{-6}$$

$$\mathcal{B}\left(B_{*}^{0} \to (\overline{K^{\mp}}\pi^{\pm})_{0}^{*}\widetilde{K^{1}}(1430)^{0} \ \widetilde{K^{10}}; \ \widetilde{K^{1}}_{2}(1430)^{0} \to K^{\mp}\pi^{\pm}\right) = (5.6 \pm 1.5 \pm 0.6 \pm 7.0 \pm 0.6) \times 10^{-6}$$

$$\mathcal{B}\left(B_{*}^{0} \to (\overline{K^{\mp}}\pi^{\pm})_{\mathrm{NR}}\widetilde{K^{0}}\right) = (12.1 \pm 0.9 \pm 0.3 \pm 3.3 \pm 1.3 \pm 0.5) \times 10^{-6}$$

$$\mathcal{B}\left(B_{*}^{0} \to \widetilde{K^{1}}_{0}(1430)^{0} \ \widetilde{K^{10}}; \ \widetilde{K^{1}}_{0}(1430)^{0} \to K^{\mp}\pi^{\pm}\right) = (20.5 \pm 1.6 \pm 0.6 \pm 5.7 \pm 2.2 \pm 0.3) \times 10^{-6}$$

$$\mathcal{B}\left(B_{*}^{0} \to \widetilde{K^{1}}_{0}(1430)^{0} \ \widetilde{K^{10}}; \ \widetilde{K^{1}}_{0}(1430)^{0} \to K^{\mp}\pi^{\pm}\right) = (20.5 \pm 1.6 \pm 0.6 \pm 5.7 \pm 2.2 \pm 0.3) \times 10^{-6}$$

Summary

- Charmless multi-body decays are a crucial area for studying CP violation
- LHCb continues to provide many interesting results
 - Motivation for Run 2 analyses + LHCb upgrade
 - Some areas exclusive to LHCb in the near future: B_s^0 , b-baryons
- $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$ reports largest A_{CP} for a single amplitude
 - Inclusion of rescattering amplitude highlights constructive dialogue between theory and experiment in developing new models
 - Potentially important for channels with larger datasets
 - Size of rescattering hints towards need of coupled-channel analyses
- $B_s^0 \to K_s^0 K^{\pm} \pi^{\mp}$ analysis:
 - Observation of $K_0^*(1430)$ states, with $> 10\sigma$ significance
 - Full flavour-tagged, decay-time-dependent analysis only possible following LHCb upgrade

Phys. Rev. D90 (2014) 112004

Backup

• Previous $B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$ measurements:

	\mathcal{BF}	A _{CP}
BaBar	$(5.0 \pm 0.5 \pm 0.5) \times 10^{-6}$	—
LHCb	_	$-0.123 \pm 0.017 \pm 0.012 \pm 0.007$
Belle	$(5.38 \pm 0.40 \pm 0.35) \times 10^{-6}$	$-0.170 \pm 0.073 \pm 0.017$

BaBar [Phys. Rev. Lett. 99 (2007) 221801]

- LHCb [Phys. Rev. D90 (2014) 112004]
- Belle [Phys. Rev. D96 (2017) 031101]

arxiv:1902.07955

Backup

	Fit fraction (%) uncertainties								
Resonance	Yields	Bkg.	Eff.	Fit bias	Add. res.	Fixed par.	Alt. model	Method	Total
$K^{*}(892)^{-}$	0.2	0.2	0.5	0.2	_	0.7	5.4	3.1	6.3
$K_0^*(1430)^-$	0.1	0.2	0.6	0.3	0.1	2.1	22.0	2.9	22.3
$K_2^*(1430)^-$	0.1	0.1	0.3	0.6	0.1	1.8	2.2	0.2	2.9
$K^{*}(892)^{0}$	0.2	0.2	0.4	0.9	—	0.3	7.0	2.0	7.4
$K_0^*(1430)^0$	0.2	0.3	0.9	0.4	0.1	4.4	3.3	1.3	5.7
$K_2^*(1430)^0$	0.1	0.3	0.7	1.3	0.2	4.4	3.6	1.0	6.0
$K^{*}(892)^{+}$	0.4	0.1	0.6	0.5	0.1	0.7	1.1	0.7	1.8
$K_0^*(1430)^+$	0.5	0.4	0.7	0.8	0.2	6.4	13.0	4.5	15.2
$K_2^*(1430)^+$	0.1	0.2	0.4	0.2	0.1	4.1	4.5	3.2	6.9
$\overline{K}^{*}(892)^{0}$	0.4	0.3	0.4	0.2	0.2	0.5	3.0	7.9	8.5
$\overline{K}_{0}^{*}(1430)^{0}$	0.4	0.4	0.6	0.8	0.7	0.9	3.9	5.4	6.8
$\overline{K}_{2}^{*}(1430)^{0}$	0.1	0.2	0.4	0.8	0.1	1.0	5.5	2.7	6.3

$\textit{Backup}-\Lambda_b^0, \Xi_b^0 \rightarrow \text{4-body}$

- CP violation search in 6 modes
- Measure difference in A_{CP} between charmless decay and decay with intermediate charm baryon
 - Cancel out detector+production charge asymmetries
- 18 CP asymmetries considered:
 - Inclusive A_{CP} of the six modes
 - A_{CP} in low two-body mass regions in the large-yield channels
 - A_{CP} in regions containing specific intermediate baryonic/mesonic resonances
- No significant CP violation observed
 - Contrast with evidence (3.3σ) seen previously in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^$ using triple-product asymmetries
 - [Nature Physics 13 (2017) 391]

$$\begin{split} & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \pi^- \pi^+ \pi^-) = (1.1 \pm 2.5 \pm 0.6) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p K^- \pi^+ \pi^-) = (3.2 \pm 1.1 \pm 0.6) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p K^- K^+ \pi^-) = (-6.9 \pm 4.9 \pm 0.8) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p K^- K^+ K^-) = (0.2 \pm 1.8 \pm 0.6) \,\% \\ & \Delta \mathcal{A}^{CP}(\Xi_b^0 \to p K^- \pi^+ \pi^-) = (-16.8 \pm 10.4 \pm 0.6) \,\% \\ & \Delta \mathcal{A}^{CP}(\Xi_b^0 \to p K^- \pi^+ K^-) = (-6.8 \pm 8.0 \pm 0.8) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p \pi^- \pi^+ \pi^-) = (3.7 \pm 4.1 \pm 0.5) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p K^- \pi^+ \pi^-) = (3.5 \pm 1.5 \pm 0.5) \,\% \\ & \Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p K^- K^+ \pi^-) = (2.7 \pm 2.3 \pm 0.6) \,\% \end{split}$$

LHCb preliminary

$Backup - B^0 \to \rho(770)^0 K^*(892)^{0^1}$

- First AA of $B^0 \to (\pi^+\pi^-)(K^+\pi^-)$
 - $300 < m(\pi^+\pi^-) < 1100 \text{ MeV}/c^2$
 - $750 < m(K^+\pi^-) < 1200 \text{ MeV}/c^2$
- Fit model includes 10 decay channels = 14 amplitudes
 - Each Vector-Vector wave contributes 3 amplitudes
 - GPU-based fit framework to deal with high-dimensionality

 $\theta_{K\pi}$

 \mathcal{K}^+

 π

 B^0

arxiv:1812.07008

$Backup - B^0 \rightarrow \rho(770)^0 K^*(892)^{0}$

• Particularly small longitudinal polarisation fraction and significant direct CP asymmetry measured for $B^0 \rightarrow \rho(770)^0 K^*(892)^0$

$$\tilde{f}^{0}_{\rho K^{*}} = 0.164 \pm 0.015 \pm 0.022$$
 and $\mathcal{A}^{0}_{\rho K^{*}} = -0.62 \pm 0.09 \pm 0.09$
> $\mathbf{5\sigma}$

• Parameters for $B^0 \rightarrow \omega K^{*0}$ also determined

$$\tilde{f}^0_{\omega K^*} = 0.68 \pm 0.17 \pm 0.16$$
 and $\mathcal{A}^0_{\omega K^*} = -0.13 \pm 0.27 \pm 0.13$

arxiv:1812.07008