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1 Introduction

The field of nuclear physics saw the light of day when Rutherford discovered the atomic
nucleus in 1911[1]. He bombarded a gold foil with α-particles and saw that some of the atoms
were reflected in backward angles. To explain this he theorized a compact core containing most
of the mass and all the positive charge of the nucleus.

Today we know that the size of the atomic nucleus is at least four orders of magnitudes
smaller than the atom itself. We also know that the core consists of positively charged protons
and neutral neutrons, collectively called nucleons. They are held together by the strong nuclear
force, described by QCD.

We can compose many different isotopes by combinations of nucleons and protons to make
up the whole nuclear chart. Many of these isotopes have been studied extensively, but some are
easier than others. Nature favors a roughly equal amount of protons and neutrons, a region in
the nuclear chart called the ”valley of stability”. As we move away from this area, the nuclei
start to become unstable and decay. In the most extreme cases where the last proton or neutron
is just barely bound we say we have reached the drip lines. The lifetime of these extreme systems
are typically very small, making it an experimental challenge to study them.

It is, however, also at the drip lines where we see interesting systems such as halo nuclei.
That is nuclei, where the spatial distribution is much larger than the natural length scale or,
to put it in other words, a system where some subsystem spends most of it’s time outside the
classical allowed region [2]. An example is 11Li, which is almost a big as a lead nucleus, even
though lead have ∼200 nucleons and 11Li only have 11 [3].

We can in principle describe the structure of a nucleus with the full wavefunction, computed
from QCD, but it is typically far to complex to construct. Instead other models based on
different assumptions have been developed.

In one extreme we have the liquid drop model, which treat the nucleus as a uniform sphere of
nuclear matter. The structure and features described by this model are analogous to a droplet
of liquid. A great success of this model was the development of the Semi-Emperical Mass
Formula, which describes the trend in binding energies very well across the nuclear chart.

In the other end we have independent particle models, which treats each nucleon as moving
in an effective potential mediated by the rest of the nucleus. In this regime, the shell model has
been a great success. It is analogous to the description of the electronic wavefunctions in the
Coulomb field. Due to the complicated nature of the strong force and many-particle dynamics,
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however, a phenomenological potential must be used. One of the main achievements of this
model is the reproduction of the so called magic numbers, which is certain numbers of neutrons
or protons that are particularly strong bound.

The true nuclear structure, of course, lies somewhere in between the liquid drop model and
the independent particle model, but these model are nonetheless extremely useful.

In my PhD I will be looking a neutron rich Lithium isotopes, which are best described in the
shell model picture. The main objective is an experimental investigation of 11Li via neutron
transfer, but also 10Li and 9Li are important pieces to understand 11Li. The experiment to study
11Li has already been granted beam time at the ISOLDE facility at CERN, but has not been fully
carried out yet.

I started my PhD with data from an experiment carried out in 2005. I will refer to this
experiment as IS367. It was also performed at ISOLDE. In this experiment a 9Li beam was
incident on a deuterated target at 2.3 MeV/A. The goal was to study 10Li and subsequently
also 9Li and 8Li via neutron transfer. Both 9Li and 10Li are important pieces in the 11Li puzzle.
This reaction is very similar to the reaction we will use for the 11Li experiment, but with tritons
instead of deuterons. This will let us reach 11Li with two-neutron transfer.

During 2016 a new post-accelerating unit was installed at ISOLDE, making it possible
to reach beam energies up 7MeV/A. This is the energy region we wanted to perform the
experiment to study 11Li. However, for this experiment we have designed an entirely new setup.
In an combined effort to commission the new setup, and contribute with more experimental
data on 10Li in this energy region, we carried out another 9Li on deuterons experiment in the
fall of 2016. I will refer to this experiment as IS561.

Since the Summer of 2016 I have been preparing for this experiment and afterwards analyz-
ing the data. Understanding the strengths and weaknesses of the setup is important for the
success of the more difficult triton target, which will be carried out in the fall of 2017.



2 The physics cases of 10Li, 11Li and 8Li

The interpretation of 11Li as a halo nucleus goes back to 1985, when Tanihata et al. [3] discovered
a sudden increase in the mass radius of 11Li, see Figure 2.1a. The two-neutron separation energy
has since been measured to 369(15) keV[4]. The low binding energy and the large matter radius,
suggests that the two neutrons are mostly located outside the classically allowed regions. This
is exactly the behavior we classify as a halo nucleus [2]. In this case we think of 11Li as made
up by a 9Li core with two neutrons orbiting it. Such a structure seems fit for a single particle
description via the shell model, or even an interacting three-body model.

The exotic structure of 11Li, breaks the predicted N = 8 magic number. This has been known
for a long time [5]. The current consensus is that the ground state is a roughly equal mixture of
a 2s1/2 and a 1p1/2 state for the valence neutrons. In Figure 2.1b, we see a sketch of the shell
model. On the left is the simple shell model predictions. On the right is a the evolution as seen
in 11Li, 10Li and their neighbors. The 1p1/2 state is usually lower than the 2s1/2 state, but for the
N = 7, 8 isotones, these levels are inverted. That means the 2s1/2 state fills the gap between
the 1p1/2 and the 1d5/2, removing the N = 8 as a magic number, but introducing N = 16. The
behavior of the 2s1/2 state is therefore important to understand the formation of halo nuclei [6].

The spin and parity of the ground state is agreed to be 3/2− state, just like 9Li. Despite
the inversion of the neutron states, it is the last proton that dictates the spin and parity of the
ground state. However, going up in excitation energy, there are little consensus on spin and
parity of the excitated states of 11Li [4]. The decay model of 11Li, is also still debated. A recent
study claims that it can not be a sequential decay [8], however, earlier experiments suggest both
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Figure 2.1: (a) Measurement of the mass radius for different Li, Be, He, C isotopes. A sudden
increase in the masse of 11Li suggests a two-neutron halo interpretation of the nucleus. Tanihata
et al. [3] (b) Sketch of the inversion of the 2s1/2 and 1p1/2 states. The left side shows the simple
shell model [7] and the right side shows the inversion as seen in N=7 and N=8 isotones.
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sequential [9], phase-space [10] and dineutron[11] decays. To get a deeper understanding of
11Li, however, we need more experimental data on the excited states in particular.

The theoretical understanding of 11Li relies heavily on the unbound 10Li nucleus, one of the
N = 7 isotones. Since 10Li is unbound, we refer to 11Li as a Borremean system. The removal of
a single neutron makes it unstable against neutron emission, just like the Borremean rings fall
apart if you remove any single ring. The theoretical dependence on a good understanding of
the 10Li system have resulted in many experimental approaches[12]. Nonetheless, the ground
state of 10Li still under much debate.

The simplest shell model prediction is a 1p3/2 proton that couples to either a 1p1/2 or 1p3/2
and give either a 1+ or 2+. Due to the shell inversion of the 2s1/2 state we also consider a
s-wave coupling. The current consensus is either a s-resonance or p-resonance coupling to the
9Li ground state 3/2−. There are, however, theoretical predictions of both being the lowest
energy state[13, 14].

The neutron s-wave is, however, considered a virtual state. The existence of such a virtual
state was shown to be crucial to understanding the observed 10Li fragmentation from an 11Li
experiment [13].

A p-wave resonance have been observed at several different experiments, typically located
around 0.5 MeV above the 9Li + n threshold. In an experiment similar to mine[15], they for
instance observed a 0.38 MeV resonance. A recent experiment observed a p1/2 state at 0.45 MeV
but no evidence of an s-wave contribution [16].

It is important to note, that no matter what the ground state spin turns out to be in 10Li, this
may not be directly translatable to the coupling of the last neutron in 11Li. The coupling of the
last neutron can easily mix the states of the 10Li system.

To unravel these mysteries, more experimental data on both the 10Li and 11Li systems is
needed to guide the theoretical models, especially in the excited spectra. The understanding of
10Li must be reliable such that we can use it in theoretical descriptions of 11Li.

Due to the experimental method, described in the next section, we will also investigate
8Li. From a nucelar structure point of view, 8Li presents a puzzle, namely a missing 0+ state.
Both the proton and neutron in 8Li is situated in a p3/2 state, and can thus couple to both
0+, 1+, 2+ and 3+. This is also the predictions of both shell-model calculations[17, 18] and
ab initio calculations [19–21]. The last three states have been observed at 0.98 MeV, g.s. and
2.26 MeV respectively. However, the 0+ state has yet to be observed. It is expected to be around
2 MeV-4 MeV, but it may be hidden in the 3+ state which is fed strongly.



3 Experimental approach

We investigate 11Li and 10Li with a nuclear reaction probe. Starting with 9Li we reach the target
isotopes by neutron transfer reactions. By bombarding 9Li with either deuterons or tritons, we
can transfer one or two neutrons to 9Li and reach the isotopes of interest. Due to the short life
time of 9Li, 178.3(4)ms [12], however, it is not feasible to use 9Li as a target. Instead we take
advantage of the great advances in the technique of Radioactive Ion Beams (RIB) and use 9Li
as the beam. The ISOLDE facility at CERN provides, among other facilities around the world,
radioactive beams of 9Li. With the newest upgrade to the post-acceleration unit of ISOLDE,
HIE-ISOLDE, we can currently reach beam energies up to 7MeV/A.

With the beam being the heavier particle in the reaction we enter the regime of inverse
kinematics where the center of mass follows the beam particle, making the kinematics in center
of mass quite different from the laboratory frame. This changes not only the angle of the
particles but also the solid angles, and this is very important in the calculation of differential
cross sections.

To detect the charged reaction product we use segmented silicon strip detectors. These
detectors gives us information about both energy and position. We can thus measure both the
excitation spectrum and the angular distributions.

The nucleon transfer approach is excellent to probe single particle states. The structure of
such states is described by a core nucleus and the nucleon in question. Single nucleon transfer
reactions preferentially populate these states, suppressing the more complicated mixing of the
single particle states [22].

The energy range provided by ISOLDE is optimal in the sense, that we want the reactions to
be rather peripheral. If the beam energy is to low, we just see the Coulomb interaction. If the
energy is too high, we will induce deep reactions, and we can not map out the single particle
states.

Another reason for starting with 9Li is to populate the states in 11Li directly, and not via the
ground state in 11Li. A recent study [23] identified a structure at 1.03(3)MeV. Several other
experiments have seen a structure around 1.3 MeV[24, 25]. However, this has been questioned
from a theoretical point of view [26] and calculations suggest is a dipole resonance from the
reaction mechanism [27]. By populating from 9Li we can shed light on this possible resonance.
Situations such as this one, makes it very important to study these system from many different
starting points and with different reaction mechanisms.

3.1 ISOLDE

The radioactive beams of 9Li for the experiments was (and will be) produced at ISOLDE, CERN
[28]. It uses the Isotope Seperation On-Line-method[REF] to create and transport isotopes of
interest to an experiment site. An overview of the complex is shown in Figure 3.1. The CERN
accelerator complex delivers 1.4 GeV protons to ISOLDE which hits a heavy target, such as
UCx. This induces spallation, fragmentation and fission which in turn produce a wide array of
different light nuclei. The light fragments diffuse into an ion source, where they are laser ionized
and transported to a mass seperator which isolates the isotope of interest. ISOLDE provides
two seperators, the High Resolution Seperator (HRS) and the General Purpose Seperator(GPS).
The resulting beam at 60 keV is delivered at the experiment.
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1.4 GeV
protonsGPS

HRS

60keV

HIE-ISOLDE energy upgrade

Figure 3.1: Overview of the ISOLDE facility. Images taken from [28].

HIE-ISOLDE

For reaction experiments, however, 60 keV are not sufficient. Therefore a post-accelerator,
REX-ISOLDE, was installed between 2001 and 2005, reaching beam energies of up to 3 MeV/A.
The idea is to ionize them even to higher charge states and accelerate them through a linear
accelerator. The acceleration step was further upgraded as a part of the HIE-ISOLDE upgrade
and reached beam energies of 7 MeV/A.

The post acceleration principle is shown in the inset in Figure 3.1. The ions from the ISOLDE
beam are trapped, cooled and bunched in a Penning trap. They are then sent into an Electron
Beam Ion Source (EBIS), which creates highly charged ions. Before these highly charged ions
are sent into a linear accelerator, they need to be mass separated once again. This is due to the
buffer gasses used to cool the ISOLDE beam in the Penning trap.

Before the HIE-ISOLDE upgrade, the linear accelerator could reach 3 MeV/A. During the
last decade a number of superconducting modules were designed and installed in order to
reach even higher energies. In 2016 three of the 5 planned modules were installed. This enabled
us to reach 6.72 MeV/A for the experiment during the fall.

3.2 Detection system

The two experiments have different setups, but some of the principles are common and will be
explained in this section. The details on the specific setups will be discussed in later sections.

Detectors

We use silicon detectors to detect the charged particles. We mainly use two types, double-sided
stip detectors (DSSD) and single-sided unsegmented detectors (pad). The pad detectors are a
single piece of silicon. They are typically approximately 5cm by 5cm, and does therefore not
provide positional information.
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For the DSSDs, each side is subdivided into a number of strips, arranged in a grid. The
strips of each side are orthogonal, effectively creating a number of pixels, analogous to a camera
chip. When a charged particle enters the detector, it gradually loses energy by creation of
electron-hole pairs. Due to an applied bias voltage the pairs will drift to the surface, where
they are collected on metal contacts, and we read out this signal. Matching the two strips, we
get the position where the particle hit the detector. We can calculate the position in space of
the measured particle, if we know the where the detector is located. If we also know the beam
properties, we can calculate the direction and thus the momentum of the measured particle.

In the experiments we use three types of DSSD’s:

• W1: Square detector with 16x16 strips.

• BB7: Square detector with 32x32 strips.

• S3: Round detector with 32 spokes and 24 rings.

which can schematically be seen in Figure 3.2.
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Figure 3.2: Schematic overview of the detector types. Both the W1 and BB7 are of the rectangular shape,
and the S3 is the round. With courtesy of Michael Munch.

3.3 Particle identification

To distinguish between different particles, we place a thin DSSD in front of a thicker pad.
Typically the DSSD is around 60 µm whereas the pad is 1 mm-1.5 mm. We call this configuration
a telescope. We will refer to the DSSD as the front detector and the pad as the back detector.

Different particles will deposit a fraction of their energy in the front detector and will be
stopped in the back detector. The correlation between the deposited energy in the front detector
and back detector is unique for different particle types. If we plot the deposited energy in
the front detector, ∆E versus the deposited energy in the back detector, E, we can distinguish
different particle types. See Figure 3.4 (a).

The deposited energy in the front detector depends on the effective thickness the particle
have penetrated, which in turns depend on the incident angle
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θ

teff
tDSSD

Particle

Figure 3.3: The angle, θ, between the normal of the detector and the particle determines the
actual length te f f the particles travel in the detector.

te f f =
t

cos(θ)
, (3.1)

where t is the nominal thickness of the detector and θ is the angle between the normal of the
detector and the incoming particle, see Figure 3.3.

With many particles coming from many different angles, the deposited energy varies quite
a lot, widening the bands we see in the dE− E plot. It is hard to distinguish between the three
particles in the lower region in Figure 3.4. If we correct for this effect, however, we can increase
the resolution in the dE− E plot quite significantly.

If we assume the energy loss is approximately constant through the front detector, the
energy lost in the front detector will be proportional to the thickness,

dE =
dE
dx
· t. (3.2)

For a particle incident at some angle, θ, this translate to a larger energy loss

dE =
dE
dx
· te f f =

dE
dx
· t

cos(θ)
=

dE′

cos(θ)
, (3.3)

where dE′ is the corresponding energy loss if the particle had entered the front detector orthog-
onally, and is thus independent of the direction. With this correction, we get a much tighter
dE− E spectrum.

The remaining energy is deposited in the back detector, and the total correction is

dE′ = dE · cos(θ)
E′ = E + dE · (1− cos(θ)), (3.4)

where E is the measured energy in the back detector and dE is the energy measured in the front
detector and θ is the angle between the particle and the normal of the detector. In Figure 3.4(b)
we see an example of an with this correction. Notice how the three particles in the lower regions
are much better resolved.

3.4 Energy Calibration

To calibrate the detectors, we use an α-source with a well known spectrum. The α-source is
placed at a known position, usually at the target position, and for each strip in the DSSD we get a
spectrum given in raw channels. We fit Gaussians to the peaks to get the channel corresponding
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Figure 3.4: ∆E− E plots without (a) the correction and with the correction (b). It is clear that
we can make a much better distinction between the particles after the correction.

to the peak position. A linear function is then fitted to get the conversion between channel and
energy

E = a · ch + b

The α-sources contains subcomponents, which are not always directly visible due to the
resolution of the detector. Nonetheless, we need to take these into account too, using a sum of
Gaussians for each peak.

The α-particles goes through the dead layer of the detector, before depositing it’s energy in
the active part of the detector. Therefore the actual measured energy is shifted down, depending
on the incident angle of the particle.

For the DSSD we correct this by subtracting an average of the energy loss in each pixel from
the reference α energy before performing the linear fit. This is weighted by the solid angle of
the detector

E′ = Eα − ∑
pixel

Eloss
Ωpixel

Ωstrip
(3.5)

For the pads we have unfortunately no spatial information, since we only have one segment.
We therefore use the energy loss corresponding to α particles hitting the center of the pad.



4 Data analysis

A typical nuclear reaction experiment easily generate a large amount of data. An efficient
data analysis pipeline is required to efficiently process the amounts of data and extract the
interesting features. A very versatile software package has been developed at CERN to exactly
this type of experiments; the ROOT package [29].

In Aarhus there has been an ongoing development of framework that builds on top of
ROOT. It is designed to handle the type setups we use, which usually consists of a large number
of DSSDs. Especially the geometrical representation of such detectors has been have been
streamlined. This makes it very easy to calculate geometrical properties such as pixel positions
in absolute coordinates, solid angles etc.

4.1 Kinematics

In the experiments we consider two particle reactions

A + a→ B + b,

where a is the target particle and is thus at rest and A is the beam particle. We will let B
be the heavy recoil, which is usually the particle of interest and b be the light ejectile. We
will furthermore assume that neither of the beam, target or ejectile will be in an excited state,
the excitation energy E∗ will always belong to B. From conservation of energy and linear
momentum, we have

TA = Tb + TB + E∗ −Q (4.1)
p̄A = p̄B + p̄b.

We can now calculate the momentum of B

p̄B = p̄A − p̄b

=
√

2TAmAn̂A −
√

2Tbmbn̂b, (4.2)

where mi is the mass, Ti is the kinetic energy and n̂i is the unit vector in the direction of the
particles movement, given as

ni =
(xi − xA, yi − yA, zi − zA)√

(xi − xA)2 + (yi − yA)2 + (zi − zA)2
, (4.3)

where (xi, yi, zi) is the position in space where we detected the particle and (xA, yA, zA) is the
beam position.

The excitation energy can now be calculated using (4.2) and (4.1)

E∗ = TA − Tb −
p̄2

B
2mB

+ Q. (4.4)
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4.2 Differential cross sections

Together with the excitation energy, we are interested in the differential angular cross section.
From this, we can extract the transfered angular momentum of the ejectiles, and thus deduce
the states that were populated in a given reaction. A differential angular cross section can
be interpreted as the probability for a particle to be emitted in a given solid angle. From an
experimental point of view the differential angular cross section is given as

dσ

dΩ
(θ, φ) =

Ṅb(θ, φ)

IA · nt

1
dΩ

, (4.5)

where Ṅb is the rate of the reactions, IA is the beam intensity, nt is the number of target particles
per area and dΩ is the solid angle. We can write it in terms of the total number of particles
instead of rates

dσ

dΩ
(θ, φ) =

1
nt

1
NA

Nb(θ, φ)

dΩ
, (4.6)

where the last fraction describes the number of particles in a given solid angle and NA is the
total number of beam particles.

Not all particles will, however, hit the detectors. There will be some angle dependent
efficiency that we must account for(

Nb(θ, φ)

Ω

)
measured

=
Nb(θ, φ)

Ω
· ε, (4.7)

where ε is 1 if we register all particles in a given solid angle and 0 if we register none.
To account for the efficiency of the detectors we can simulate Nsim

A reactions uniformly
distributed in 4π and count the number we register in the detectors, Nsim

det . The efficiency is

ε =
Nsim

det (θ, φ)

Nsim
A (θ, φ)

1
dΩ

(4.8)

Combining 4.6, 4.7 and 4.8 we can write the differential cross sections as

dσ

dΩ
(θ, φ) =

1
nt

Nexp
det (θ, φ)

Nsim
det (θ, φ)

Nsim
A

Nexp
A

. (4.9)

The numbers Nexp
det (θ, φ) and Nsim

det (θ, φ) are found through particle identification, as de-
scribed in section 3.3. Nsim

A is known from the simulation. The particle density in the target, nt
can be calculated based on known parameters. The hardest number to determine is the total
number of beam particles, Nepx

A .

4.3 Geometry, energy and beam properties

The reconstruction of the excitation energies and angular distributions relies heavily on precise
knowledge of good energy calibrations, precise detector and beam spot position, beam angle
and beam energy. We therefore need to invest some effort in determining these properties as
the first step in an analysis.

The usual method to energy calibrate the detectors is with an α-source with a well-known
energy spectrum. This works very well, but the energy range of the α spectra usually extends
up to 6 MeV - 8 MeV. This means we have to extrapolate this calibration when doing reaction
experiments where the particles have much higher energies. In IS561 we had a beam energy of
6.72 MeV/A, meaning the elastic deuterons had up to approximately 30 MeV.



12

The energy deposited in the DSSDs is within the range of the calibration, gravitating to
the lower energies, due to their thicknesses of 60 µm. This means the majority of the energy
is deposited in the pad, which was calibrated in the same way. It is thus necessary to at least
check that the calibration of the pads in the high energy range is viable.

One method that comes to mind is to look at the kinematic curves of an elastic channel.
They are, after all, well understood by simple kinematics theory. The trouble now, is that to get
a reliable kinematic curve from a detector, we must be sure about the geometry of the detector
and the beam properties.

On the contrary, to determine the beam properties, as described in a later section, we can use
the kinematics of detected coincidence events. To do that, of course, we need a well understood
geometry and energy calibration of the detectors.

Using kinematics to solve this, we need to find the right value of some very correlated
variables, and it is not feasible to optimize all of them simultaneously. We must therefore use
different methods and a lot of consistency checks to make sure we the correct values out.

Hardware measurements: For the geometry part one could simply grab the closest ruler and
measure the setup. However, with very flexible setups this has shown difficult to do with the
precision needed to match the 2 mm precision of the DSSDs. Using 3D printed structures we
can get the relative geometry of the detector with sufficient precision. This was done for the
second experiment but not the first.

Uniform distributions: We can use the uniform distribution from the α source to fit the
position of the detectors. This is independent of both the beam and the energy calibration and
is thus very useful. As we will discuss in Section 6.2 we can get a relatively good understanding
using this method. This of course requires that we know the position of the source.

Particle identification: The ∆E− E spectra should in principle not depend on any geometry,
however, with the correction (3.4) we introduce an angular dependence. If we align the bands
of the different particles, this servers as a useful consistency check among the detectors. This is
dependent on the calibration and position of the detectors and beam position, but not the beam
energy. These spectra typically contains multiple particles, which gives a few more constraints.

Coincidences Coincident fragments are very useful to check consistency between particles.
The simplest check is the φ-angle between two particles, which should be 180◦.

Including the energy of the particles we can try to reconstruct the beam based on energy
and momentum conservation as described in Section 5. This will serve as a very useful cross
check since it uses coincidences in all detectors. However, if the energy calibrations of the pads
are not good enough, we will use the wrong energies in the calculations of energy conservation
and momentum conservation. This will in turn give a wrong behavior of the coincidences.

Pad calibrations

We can now use two alternative methods to calibrate a pad at higher energies. They are both
based on that we know the energy in the DSSDs and that we can calculate the expected energy
loss with SRIM[30].

Calculate energy loss with SRIM This method does not depend on the beam energy. It does,
however, depend on that we know the beam spot. For each particle penetrating the DSSD, we
can take the energy in the DSSD and calculate what initial energy it corresponds to using SRIM.
The rest of this energy should then match what was deposited in the pad.



13

Fit to kinematic curves Once we have isolated a clean reactions channel (the elastic scattered
deuterons are typically clean), we can vary the slope and offset of the pad calibration to fit the
theoretical kinematic curve. This, however, requires that we know both beam energy, beam
spot and the geometry of the detectors.

4.4 Software

4.4.1 ROOT

The back bone of the data analysis is the very feature rich framework ROOT[29]. It is written
in the C++ programming language. It excels in quite a number of areas, but in particular its
support for histograms, which is a requirement for any nuclear data analysis, is very good.

The main data structure in ROOT is the TTree-class. It organizes the data in events, struc-
tured via so called Branches. A branch is the abstraction of some value recorded for each event,
such as detector energy, strip hit, time stamp, etc. It can be thought of as a very flexible table. A
branch then corresponds to a column and an event corresponds to a row.

One major advantage of the TTree is the very sophisticated Draw-command. You can open
a TTree in an interactive ROOT session and make cuts directly in your data. This means you do
not have to rewrite and recompile your program whenever you want to explore a new area
of your data. It is thus very handy for quick analysis. At some point we need to do a more
sophisticated analysis, but we keep results as TTree instead of histograms. Then the needed
histograms can be generated quickly and we do not need to consider binning, ranges, etc,
during the actual analysis.

4.4.2 AUSAlib

To do the more sophisticated analysis, another framework was developed on top of ROOT,
here in Aarhus. Much of the core was done by Michael Munch with contributions from Oliver
Kirsebom when I started. I have contributed extensively to the further development during my
analysis work.

It is also written in the C++ programming language. The philosophy of AUSAlib is twofold.
Firstly, it generalizes the detector properties, in particular the geometrical properties. This
means we only have to implement solid angle calculations and pixel position calculations one
time for a particular type of DSSD (Square, Round, etc). Secondly, it makes the analysis very
modular, and it is therefore easy to perform analysis on different levels of sophistication.

To ease use, all geometry specific and energy calibrations can be loaded into the analysis
code through JSON file. It consists of an array of detector entries. Each entry specifies

• A detector file This describes the type. Examples are SquareDSSD, RoundDSSD, Pad and
more. Each type requires additional information such as physical dimensions, number of
segments, deadlayers etc.

• Position and orientation Each detector type are uniquely positioned and rotated in space
via three vectors. They are indicated for the square and round type in Figure 3.2.

• Calibration A file with the calibration of the particular detector.

• Mapping Details on the data layout in the data files corresponding to this setup.

The pipeline of a typical analysis is shown in Figure 4.1. The idea is to transform the data
at each stage to a higher level of abstraction. We start with raw channel numbers and end at
actual physics events. At every stage, is it possible to write a custom analysis.
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Figure 4.1: The AUSAlib pipline.

Besides the advantage that we can share code and be more productive, it is much easier to
catch bugs when more people use the same piece of code. This makes the core of the analysis
code very robust.

Most of my analysis takes place after the Sorting stage or after the EventBuilder stage.

Unpacking and calibration First we get the raw data from the detection read out system. It
is then unpacked using ucesb [31], producing ROOT-files. At this stage one can write a custom
made analysis, handling raw channel numbers.

An important analysis is calibration of all segments. AUSAlib provides a built in Calibration
tool to ease this process, using the principles discussed in 3.4. It is, however, not limited to
α-sources.

Sorting With the calibrations of each detector, we run the data through a sorting algorithm,
using a built in Sorter tool. This applies the calibrations of each segment to the data. After the
calibration of all the segments we perform a matching of the data to make sure our data makes
sense in DSSD’s. When a particle hits the detectors, it will deposit rougly the same energy in
both the front and back side. This means, if we observe a single hit in the front, but nothing in
the back we discard it as non-physical. Likewise, if the energy in the front side and back side
are very different, we also consider it non-physical. That means we require the data from the
DSSD’s to be within some matching gate, ∆

|Efront − Eback| < ∆. (4.10)

The size of ∆ depends on the resolution of the data and is therefore experiment and setup
specific.

The Sorter-tool generates ROOT files and we can now write an analysis where we handle
energies instead.

Identifier With the sorted data it is possible to start doing particle identification, for instance
with ∆E− E cuts. Once we have identified the particles we can start doing energy loss correc-
tions in the target and dead layers of the detectors. At the identifier stage, we move from a
detector based structure to a particle based structure.

EventBuilder At the last step in the pipe line we construct the entire kinematics of each
physics event. From the identified file we get the particle type, energy and hit position. The
user supplied the beam properties, and using momentum and energy conservation we can
reconstruct the entire event.



5 Beam diagnostics

The simplest model of the beam in reaction experiments is a point like beam hitting the target
in the center. This is, however, never the case. The beam is typically broad, displaced and even
angled. Some of these effect can be minimized through careful alignment and collimation of
the setup.

In particular the displacement and the angle of the beam is important when reconstructing
the particle energies and momenta in the analysis. If the geometrical assumptions of the beam
are wrong we introduce an unnecessary bias in the analysis, leading to worse resolution and
wrong angular distributions.

To deduce the beam properties of the beam, we can use coincidences since they in principle
contain the full energy and momentum information. Using energy and momentum conservation
we can calculate backwards to deduce the beam properties. A great advantage of this method
is that we can use it directly on the reactions of scientific interest. The method is based on [32].

5.1 Theory

We can do the same calculations as we did in Section 4.1, but isolate the beam instead. If we
combine energy conservation and momentum conservation requirements we get

Tb + TB + E∗ −Q =
TBmB + Tbmb + 2

√
TBmBTbmbn̂B · n̂b

mA
. (5.1)

Finding the solutions to (5.1) is a matter of doing a numerical minimization of the difference
between the LHS and the RHS. This is done for every pair of coincident particles.

From the beam position we can calculate the angle of the beam in spherical angles

tan(θA) =

√
p2

A,x + p2
A,y

pA,z
and tan(φA) =

p2
A,y

pA,x

5.2 Simulations

We can test this method against simulations, and we will use the setup shown in Figure 5.1a.
This setup inspired the design of the setup used in IS561. Doing a simulation of a 9Li (d,d)9Li
reaction, the result is shown in Figure 5.1b. We can clearly see the structure of the setup featured
in the data. The four ”arms” corresponds to each of the surrounding detectors.

During development of this method, we realized that we have to think in terms of reaction
planes. Each particle pair will move in a plane, spanned by the two particle momenta. All of the
particle pairs would origin from the same beam spot, and the intersection of all these planes
is then the reaction site. If the we had exact measurements of the particles we would see a
point in Figure 5.1b, but due to the limited position and energy resolution we see an extended
distribution.

Looking at single reaction planes are not possible. Instead we can make a crude approxima-
tion, and treat coincidences between one of the peripheral detectors and the center detectors
as one plane. If we do that we get the distributions shown in Figure 5.1c. As we can see,
the resolution on the axis that is expected to be the reactions plane is much better than the
orthogonal axis.
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We can now fit a line, to this distribution. This line is an estimate of one reactions plane. In
Figure 5.1d we have simulated a beam incident at (1 mm,1 mm), and we have made an estimate
of the reaction plane for each of the pheriferical detectors. The lines cross nicely very close to
(1 mm,1 mm). Notice that it seems like there is only two lines, but due to the symmetry, there
are actually four, but they overlap pairwise. This also means that there is a small bias in the
methods, since we are not exactly in (1 mm,1 mm).

The division of the data into these regions is done rather arbitrarily. The smaller regions,
the better resolution we expect to get. Therefore, it is very much up to the specific experiment
and setup to decide on the sections used. If there are plenty of statistics, one might even take
only the few center strips.

The important thing is to cover several regions uniformly in φ. We need to get contributions
from all directions to get a proper determination of the crossing point. Therefore a large
φ-coverage is required for this method.



6 IS367

I started with analysis of an experiment carried out in May 2006. It was the continuation of an
experiment carried out in 2002, but with improved detectors, targets and more statistics.

The goal was to study the unbound nucleus 10Li via a one nucleon transfer reaction. It was
performed at REX-ISOLDE at 2.77 MeV/A. At this energy it is possible to study the excitation
spectrum of 10Li up to around 1 MeV. In this range it should be possible to locate both the 1s1/2
and the 0p1/2 states and thus provide more experimental data to understand the system.

6.1 Setup

The experimental setup consisted of two silicon telescopes. A sketch of the setup is shown in
Figure 6.1a. Each telescope had a 60 µm front detector of the BB7 type, i.e. 32x32 strips. The
back detectors were roughly 1.5 mm.

In the center was a target ladder placed with different targets as described in Table 6.1.

Table 6.1: The different target used in IS361.

Target Thickness Usage

CD2 15 µm The main target. Used in majority of the experiment for 9Li→ d.
CD2 7.5 µm A thinner main target. It was only used for approximately one hour.
CH2 15 µm Background estimate of 9Li→ p reaction.
12C 2 mg/cm2 Background estimate of 9Li→ C reaction.
9Be 1.95 mg/cm2 Not considered in this analysis.
107Ag 1.1 mg/cm2 Yield estimate based on Coulomb scattering.

6.2 Data analysis

Energy calibration

The first step of the analysis is an energy calibration of the detectors. During the experiment
several data files were recorded with two different α-sources in the target position. One source
consisted of 244Cm, 241Am and 239Pu. The other was only 148Gd. Using the procedure in Section
3.4, we can calibrate each strip in the two DSSDs.

The pads were likewise calibrated using the same two α-sources. For the pad calibrations,
however, the sources were placed behind the telescopes and thus hitting the pads from the
back.

Particle identification

With an energy calibration and a rough geometry estimate we can use the ∆E− E method to
identify the different particles. In Figure 6.1b we see all the particles that penetrated the DSSDs
and entered the pad.

The three lower components are the three expected hydrogen isotopes: protons, deuterons
and tritons. The upper one is the triton. It loses relatively more energy in the DSSD due to the
greater mass.
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Figure 6.1: (a): The setup consists of two DSSDs, each backed by a pad. In the middle is the
target sketched. (b): The ∆E− E plot clearly shows protons, deuterons, tritons, α-particles and
6He

In the top of the spectrum we see a large band, corresponding to α-particles. Many α-channel
are open from 9Li reactions with both deuterons, protons or 12C, contributing to the rather
intense band. Just above we see a weak band, that corresponds to 6He. These two particles
have not been analyzed yet.

Geometry calibration

The telescopes were placed in the chamber and approximate measurements were made with
a ruler. As discussed we need to know the precise position of the detectors, and we used the
isotropic distribution of the α source to fit the positions of the detectors.

We assume the α-particles are emitted isotropic from the source. The expected number of α
particles in a single pixel is proportional to the solid angle with some proportionality constant
A, which depends on the total number of emitted α particles

Ne(i, j) = AΩ(i, j), (6.1)

where A is common for all detectors. This is to be compared with the measured number of
particles, ni,j. We can estimate the position of the detector relative to the source position, by
fitting this to the actual number of measured particles.

This method is, however, not very sensitive to the the normal direction of the detector. The
∆E− E plot are, however, due to correction (4.7). The trouble is now, that both the position, the
normal direction and the beam position determine the incident angle of the particle. Therefore I
employed an iterative approach to get consistency between the two detectors:

• Use the geometry calibration method described above to get a position estimate for each
detector.

• Pick a region of the α branch where the curve is flat. Calculate the mean value of the
counts in this region for each DSSD and minimize

min
(
∆Eavg

DSSD1(θ1)− ∆Eavg
DSSD2(θ2)

)
. (6.2)



19

The second step only determines the the angles locally among the two detectors, but in
conjunction with the global position fit it worked nicely. The results are shown in Table 6.2.

Detector x[mm] y[mm] z[mm] θ[deg]

DSSD1 -32.68 -3.24 45.97 43.5
DSSD2 -27.44 1.1 26.92 61.9

Table 6.2: The determined positions and angles of the two DSSD’s with respect to the target
position.

Beam properties

With a good understanding of both the geometry and the energy calibration, we can use the
method, described in 5. The algorithm depends on the kinematics of the reaction. This means
two thing. Firstly we have to know the beam energy. The beam energy reported from the
experiment is 2.77 MeV/A. Secondly we need a rather clean spectrum, in order to be sure that
we are using the right reaction in our calculations. This makes the elastic scattered deuterons a
good choice. The elastic peak is nicely isolated from the first excited state.

If we use the reported beam energy from the experiment, we plug all the elastic scattered
into the algorithm. Notice, with only two detectors we can not calculate a crossing point
between different lines. In stead we simply used the projections of the x- and y-axis respectively,
and we get an estimate of the beam position.

x = 0.0 mm
y = 1.3 mm
z = 1 mm,

where the z-values was chosen to make the kinematic curves consistent as shown in Figure
6.2. Notice the component from the 9Li (p,p)9Li reaction, corresponding to background from
non-deuterated plastic.

Excitation spectra

We reconstruct the excitation energies using 4.4. Before we proceed, we need to subtract the
background. The background comes primarily from reactions with carbon and protons. During
the experiment multiple background runs were performed, with the targets outlined in Table
6.1. The data from the background runs were analysed just like the deuterated target.

In Figure 6.3d we see the excitation spectra of the protons from the physics runs, superim-
posed with the background from the carbon run and the non-deuterated plastic run. We use
the protons as model, due to the large elastic proton peak. The composition of the background
will be the same in all channels.

The tail from−200 keV and downwards is fitted to the a sum of the two background spectra
and we get the following composition

BG = 0.13(4) · CHx + 0.35(1) · C. (6.3)

After this subtraction, we get the excitation spectra from all the three channels, as shown in
Figures 6.3a, 6.3b and 6.3c.
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Figure 6.2: Kinematic curves for the three identified particles. We clearly see components from
different excitations states. Notice the the elastic scattered protons from 9Li (p,p)9Li.

Differential cross sections

Following the method described in the Section 4.2, we can evaluate the different regions of
interest in the excitation spectra, i.e. the different peaks.

Since I have not yet had the time to evaluate Nsim
A from (4.5), I will omit the constant

1
nt

Nsim
A

Nexp
A

, (6.4)

however, this can be estimated by Rutherford scattering on the Ag targets that was taken during
the experiment.

The simulations were done using simX, a simulation program written in Aarhus [33]. For
each region of interest, I simulated a uniform distribution (in CM) and recorded the detected
particles. The simulated reactions were chosen to match the region, such that the recoil would
have the correct excitation energy and width. The widths are based on Gaussian estimates of
the excitation spectra, shown in Figure 6.3.

6.3 Results and discussion

I have not yet had the time to do calculations to compare the angular distributions. We will
thus discuss some qualitative features, and compare to an earlier similar experiment where the
beam energy was 2.36 MeV/A. Notice that we go to lower θ in IS367.

To compare the features of the spectra of the two experiments, we need to account for the
difference in beam energy, and we can make a rough estimate. The cross section depends
only on the transferred momentum, p̄t through the combination ksin(θ/2)[34], where k is the
momentum of the incomming particle, giving us

k1sin
(

θ1

2

)
= k2sin

(
θ2

2

)
⇒ θ1 = 2sin−1

(
k1

k2
sin

θ2

2

)
. (6.5)
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Figure 6.3: Excitation spectra for the three recoils 8Li (a), 9Li (b) and 10Li (c). Background for
10Li is shown in (d). The green is CDx, the red is CHx and the blue is C.

Since k ≈
√

E we get k1
k2

=
√

2.77 MeV/A
2.36 MeV/A ≈ 1.10. This is the angle with respect to the beam,

and since we report everything i CM, we will make the correction

θOLD = 180− 2sin−1
(

1.1 · sin
(

180− θNEW

2

))
.

We subtract 180 because we are in reverse kinematics, and therefore report angles with
respect to the beam. We must also remember, that this is only valid for elastic reactions, so it
only serves as an estimate.

8Li Starting from the smallest nucleus, the 8Li excitation spectrum is feature rich, see Figure
6.3a. We see the ground state and two peaks, corresponding to the two first excited states
0.98 MeV and 2.26 MeV.

One feature that we do not see is the discussed 0+ state. From this preliminary analysis we
can not pinpoint such a state in the excitation spectrum. The ground state and the first excited
state seems consistent with the cross sections described in [19].
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Figure 6.4: Angular distributions for 8Li and the reported cross sections from [19].

In Figure 6.4 we see the angular distributions on the left and the cross sections reported in
[19] on the right.

The ground state have a large increase starting around θ = 100. If we make the correction,
this corresponds to approximately 90◦, which is consistent with [19]. We do, however, see more
structure at the small CM angles, and we can make a better constrain on the optical model
parameters.

If we continue to the first excited state, we see the same qualitative features, and in particular
in the second excited state we have much more structure at the smaller angles.

9Li In the 9Li channel we see two peaks corresponding to the elastic channel and the first
excited at 2.7 MeV, see Figure 6.3b. Besides that, the spectrum is clean. From the clean elastic
peak, we can get an idea of the resolution of the setup. Fitting a Gaussian we get FWHM value
of 551(4) keV. This can be compared with a simulated point beam which gives 440.2(6) keV.
The beam must therefore have had a significant energy and spatial distribution, as expected.

If we do the same correction as before and compare with [35], see Figure 6.5, it the structure
looks very similar. Keep in mind that [35] have normalized the cross sections to the Rutherford
cross section. The bump at 95◦ in the lower panel should move to 83◦ which we see in the
upper panel. This also means, that the optical potential parameters is more or less identical to
the experiment at lower energy. Beside the kinematic difference due to another beam energy,
the structure are more or less identical.

We do, however, have better information at the smaller angles, making the second optical fit
in the upper panel seem more plausible. The first excited state does not show much structure.

10Li In the 10Li spectrum we see a single peak around the 0.5 MeV, see Figure 6.3c. Both the
s-wave and p-wave is expected to be in this region. Especially the s-state is expected to be so
broad that we must expect them to overlap significantly. We can, however, see that the peak
is asymmetric. This may indicate of some structure in the peak. The angular distributions
does, however not show much structure, see Figure 6.6. This is similar to data from [15]. Note,
that the cross sections in [15] are in normal kinematics, and the angular axis is thus reversed
compared to our data.
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Figure 6.5: Angular distributions for 9Li and the reported cross sections from [35]. The lower left
is the ground state and the lower right is the first excited state. Notice that [35] have normalized
to Rutherford cross sections.
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Figure 6.6: Left: Differential angular cross section for 10Li from [15]. Right: The angular
distributions for 10Li from this experiment.



7 IS561

The first part of the experimental program was performed during the fall of 2016. The second
part will be performed during the fall of 2017. During the beam time we had some problems
which will propagate to the data analysis. I will briefly discuss these and present some
preliminary results.

7.1 Setup

The setup is shown in Figure 7.1a. It consists of five telescopes placed in a pentagon structure
with a S3 in the end of the ”barrel” (1). The front detectors in the telescopes are all 60 µm W1’s
backed by 1000 µm pads. This setup will stop light fragments in the telescopes for particle
identification. The S3 was also 1000 µm.

The idea behind the S3 was not necessarily to stop the light particles, but to stop the heavy
fragments. This enables to use the technique discussed in Section 5 to do coincidence analysis.
Likewise, can we use the hit pattern of all the particles on the very symmetric S3 to get a good
understanding of the beam, even if the light particles punches through. The light particles can,
however, be reconstructed with SRIM.

In the middle we have placed a target wheel (2). It consists of the different targets used for
the experiment, as outlined in Table 7.1. The wheel can be remote controlled from the outside,
such that we do not need to repump the chamber when we want to change target.

Table 7.1: The different targets used in IS561.

Target Thickness Usage

CD2 8 µm The main target. Used in majority of the experiment for 9Li→ d.
CH2 6 µm Background estimate of 9Li→ p reaction.
12C 2 mg/cm2 Background estimate of 9Li→ C reaction.
197Ag 0.1 µm Yield estimate based on Coulomb scattering. Backed by 3.5 µm Mylar.

In the backward directions we have another telescope (3), with a BB7 as a front detector. In
Figure 7.1b we see the kinematic curves of the two reactions in question for the IS561 campaign.
We can see that only the protons reach the backward laboratory angles. Hence, a detector in the
backward directions will catch a very clean spectrum, corresponding to the ”primary” channel
of each experiment, that is either 10Li or 11Li.

7.2 Data analysis

Detector mapping

The connectors for the chamber were newly designed for this experiment. The mapping
between the input and output, was therefore not entirely settled when we started and ended
the experiment. I have therefore spend some time, figuring out these mappings. I have used α-
distributions from the calibrations and coincidences from the reactions to get a reliable mapping
between detector segment and ADC channel.
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Detector geometry

The detectors were mounted on a 3D printed structure, so the relative position and spatial
orientation is known to good precision. We thus only need to find out where the target was
placed relative to the pentagon structure, which in the analysis coincides with the position of
the beam.

Beam properties

During the run we experienced difficulties with the beam alignment. The beam was steered
during the run, in order to optimize the position. This means, however, that we have two
periods with slightly different beam positions. In Figure 7.2a we we see that we have implanted
the beam directly in the S3 detector. In Figure 7.2b we see the hit pattern after adjusting the
beam, and in Figure 7.2c we see the hit pattern after the final optimization.

-30 -20 -10 0 10 20 30
x [mm]

-30

-20

-10

0

10

20

30

y
[m

m
]

(a)

-30 -20 -10 0 10 20 30
x [mm]

-30

-20

-10

0

10

20

30

y
[m

m
]

(b)

-30 -20 -10 0 10 20 30
x [mm]

-30

-20

-10

0

10

20

30

y
[m

m
]

(c)

Figure 7.2: Hit patterns in the S3 from three different time periods during the experiment. Left:
In the beginning we implanted the beam directly into the S3. Middle and Right: In the first
part of the run our aim was better, but still shifted downwards. In the second part we shifted it
slightly more to positive x-values.

It is evident that we need to determine two different beam properties. Unfortunately, the
statistics is simply not good enough too perform the analysis described in Section 5. Instead we
need to use the heuristics outlined in Section 4.3. This work is not done yet.

A preliminary analysis of the beam position in the first configuration gives
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x = −2.1(5)mm
x = −6.1(4)mm,

by fitting the angle between coincidences to π. However, this requires more consistency checks
and comparisons with simulations.

During the run, the operators told us that the settings for the beam seemed to be pointing
significantly downwards. This angle must also be included in the further analysis.

Pad calibrations

Due to the much higher energies the α-calibrations of the pads seems to deviate at high energies.
This is expected, but must be accounted for. It was clear from the kinematic curves that the
discrepancy between the measured particles and the expected kinematic curves could not only
be due to geometry. I have made a preliminary calibration of the pads, by fitting the kinematic
curves, but since the beam properties has not been established yet they should be revised. As a
consistency check the pad energies should be compared to SRIM calculations, as described in
Section 4.3, to be sure that the beam position is correct.

Preliminary physics

In Figure 7.3 we see ∆E− E plots for two telescopes in the forward direction ((a) and (b)), and
the telescope in the backward angles ((c)). We see both protons, deuterons, tritons and αs.

Notice that we see punch through of the protons in (a). Two of the telescopes were backed
with a 1 mm pad whereas the three others were backed with a 1.5 mm, which means we do
not stop all the protons. This is important for the next experiment, since we will go to higher
energies, and thus need thicker pads.

A kinematic plot for the deuterons are shown in Figure 7.3d. We see that the amount of
statistics is not impressive. However, the elastic component is clearly there. This right beam
position, and pad calibrations are not determined yet, so it is a bit messy. Neither the protons
or the tritons show any recognizable structures, possibly for the same reasons, and are thus not
included here.

The next step is to determine these and then repeat the excitation spectra and angular
distributions analysis as done for IS367. The telescope in the backwards directions not been
properly analysed yet, and this is also another important task for the near furture.
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Figure 7.3: ∆E− E plots for two of the telescopes in the forward direction, (a) and (b), and
the telescope in the backward direction (c). We clearly see the three hydrogen isotopes in the
forward direction as well as α. Notice we see punch through in (a). In the backward telescope
we have one or two components. In (d) we see the kinematic curves for the deuterons.



8 Outlook

The analysis of the data from IS367 is almost finished. The final step is an absolute normalization
of the angular distributions to turn them into proper differential cross sections. To do this we
need to know the beam intensity. During the experiment, however, several runs with a silver
taget was taken. The elastic reactions are below the Coulomb barrier, and we can use these runs
to determine the beam intensity from the Rutherford distribution.

The analysis of the data from IS561 is still in an early stage, but progressing nicely. I am
currently working on understanding the beam properties and pad calibrations and the rest of
the analysis will be very analogous to that of IS367. Alongside the physics results it has also
provided useful feedback on the detection system and setup, which are currently being used to
optimize the setup for the second part of IS561.

The second part is scheduled for this fall, so alongside the continued analysis of the two
older data sets, I plan to stay at CERN for about two months to take part in the setup and
execution of the experiment. I also spent time preparing for the first time, as well as taking
part of the actual experiment, so I am already familiar with both the electronics, software
and detectors. However, by staying for two full months I can be much more involved in the
preparations of the DAQ and setup as well as the actual experiment. Furthermore, I will be
able to learn from other experiments that will be carried out at ISOLDE in those two months.

The analysis of these three data sets will be the primary goal of my remaining Ph.D. I do,
however, hope to visit an expert in theoretical calculations of these types of reactions during
the fall of 2018. A possible candidate is Prof. Antonio M. Moro, from the University Of Sevilla.
This would be great way to learn different theoretical techniques and frameworks to apply the
results I obtain form the three experiments.
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