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1 Introduction

’t Hooft loops are one of the most basic and fundamental line operators of gauge theories.

They are defined in the path integral formulation of a theory by imposing specific boundary

conditions on the fields along a line. In particular, there is a quantized magnetic flux

emanating from every point along the line. They are the magnetic cousins of Wilson loops

and one can think of them as the worldline of a heavy magnetically charged particle. The

vacuum expectation value (vev) of ’t Hooft loops and Wilson loops together are parameters

which control the low energy non-perturbative behaviour of gauge theories [1]. ’t Hooft

loops play a prominent role in many deep aspects of supersymmetric gauge theories, such

as S-duality [2], wall-crossing phenomenon [3] or the AGT duality [4, 5].
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In 4d N = 2 Lagrangian theories, the vev of half-BPS ’t Hooft loops wrapped on

S1 in S1 × R3 in the Coulomb phase was computed exactly in [6] using the technique of

supersymmetric localization. This followed earlier localization computation in [7] for ’t

Hooft loops placed at the equator of S4. More precisely the background considered in [6]

is S1 × R2
ε+ × R, where ε+ is the parameter of an Omega background deformation of the

R2 plane [8]. Supersymmetric loops are then wrapping S1, sitting at the origin in R2
ε+ and

placed at any point on R. This setup preserves 1d N = (0, 2) supersymmetry at non-zero

ε+ (and 1d N = (0, 4) at ε+ = 0). By a standard argument the vev of a BPS loop is

independent of its position along R. It takes the form of an index which counts framed

BPS states [9], which are the BPS states of the theory in the presence of the line defect.

Additional results for the N = 2∗ theory were presented in [10].

The result of the localization computation has an interesting non-trivial structure

related to the monopole bubbling phenomenon [11]. This is a subtle phenomenon of non-

abelian gauge theories, where the magnetic charge B (an element from the cocharacter

lattice) emanating from the loop is screened by a smooth ’t Hooft-Polyakov monopole of

“smaller” magnetic charge B − v, collapsing on the defect. The resulting configuration is

that of a ’t Hooft defect of smaller magnetic charge v. The exact vev of a ’t Hooft loop LB is

organized as a sum of terms associated to the bubbling magnetic sectors v. Schematically,

〈LB〉 =
∑
v←B

ev.b Z1-loop(a; v)Zmono(a;B, v) , (1.1)

where a and b refer to the Coulomb vevs of Cartan vector multiplet fields on S1 ×R3 (see

section 2.1), and play the role of chemical potentials for electric and magnetic charges re-

spectively. For each monopole bubbling sector the term Z1-loop(a; v) arises from a one-loop

determinant in the localization computation, whereas the term Zmono(a;B, v) is a weight

that is computed as the index of an ADHM supersymmetric quantum mechanics (SQM),

similarly to the instanton weight Zinst of the Nekrasov instanton partition function [12].

All the pieces entering in the above formula are well-understood and easy to express,

except for the bubbling factors Zmono. Each term Zmono(B, v) is equal to the supersymmet-

ric index of an SQM which localizes to a matrix integral. In many instances, the contour of

integration for this matrix integral is given by the Jeffrey-Kirwan (JK) prescription [13, 14],

which sums over the Higgs vacua of the SQM. It was pointed out in [15] that in some cases,

and in particular in conformal SQCD theories, this recipe does not yield the correct result,

because it misses contributions from Coulomb SQM vacua that belong to a continuum of

states. The observation of [15] is that the extra contributions are necessary to match the

AGT dual observables in Liouville/Toda 2d CFT that were computed in [5]. To compute

the SQM index correctly one then has to study the supersymmetric ground states of the

SQM theory and this was carried out in [15] for the simplest cases, for instance for the

bubbling factor of the minimal ’t Hooft loop in the SU(2), Nf = 4 theory. Unfortunately

such an analysis is discouragingly tedious and one would like to use a simpler method for

practical purposes. The main point of this paper is to provide such a method.

We make progress on this situation by proposing an algorithmic method which com-

putes the correct bubbling factors using only the standard JK prescription. The main idea
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is to embed the ADHM SQM of a given bubbling term into a larger SQM theory, which has

some extra matter fields and for which the supersymmetric index can be computed reliably

using JK residues. The bubbling term is then obtained by taking specific residues in the

flavor fugacities of the extra matter fields. One can think of the larger, or “improved”,

SQM as a UV theory with massive matter fields, whose low-energy effective theory is the

original SQM. The flavor residues of the UV SQM index then isolate the BPS vacua con-

tributing to the low energy SQM index, capturing the Higgs and Coulomb contributions.

The reason why the JK prescription can be used reliably in the improved SQM is related

to the fact that the potential of this theory is unbounded, due to the presence of the extra

matter fields, and there is no Coulomb vacua there. We study conformal SQCD theories,

namely SU(N) (or U(N)) theories with Nf = 2N fundamental hypermultiplets and we

focus on the minimal ’t Hooft loop, dyonic loop and next-to-minimal ’t Hooft loop. Our

method can be applied to any higher charge loops as well.

The original SQM is defined by the type IIB brane realization of the ’t Hooft loop

bubbling sector. Indeed ’t Hooft loops in 4d N = 2 SQCD theories can be realized in type

IIB branes systems by adding NS5 branes to the D3-D7 system and the bubbling sectors

arise from D1 strings stretched between D3 branes (orientations are given in table 1).1

This was studied in [16] and in [10]. The ADHM SQM computing the bubbling factor is

read from such a brane setup as the low-energy theory on the D1 strings worldvolume. The

simplest example is in the SU(2), Nf = 4 theory for the minimal ’t Hooft loop, with the

brane setup realizing the bubbling factor and the associated SQM given in figure 3.

We argue that the brane setup considered so far are incomplete because they do not

take into account the bending effect and charge-changing effect on the 5 branes due to

the presence of the D7 branes. Taking into account these effects leads to setups with

intersecting (1, q) 5-branes which needs to be resolved by adding 5-brane junctions with

D5 segments [17]. In the completed brane setup the D3 and D7 branes sit inside a 5-brane

web. The improved SQM is then read from the completed brane setup as the worldvolume

theory on the D1-strings corresponding to a given bubbling sector. The additional matter

fields come from D1-D5 and D3-D5 strings, and the residues to be taken are residues in

the D5 flavor fugacities. Therefore our method arises naturally from the complete brane

realization of the bubbling terms in IIB string theory. For the minimal ’t Hooft loop

bubbling in the SU(2), Nf = 4 theory, the complete brane setup is shown in figure 6,

with the improved SQM. Computing the index of this improved SQM by JK residues and

taking the residues over the two flavor fugacities, we reproduce the full bubbling factor

found in [15] through tedious computations. We compute bubbling factors in SU(N) (and

U(N)) SQCD theories for the minimal and next-to-minimal ’t Hooft loops and we apply

it also to the computation of a minimal dyonic loop. We emphasize that the new method

is easy and rapid to perform (with sufficient computer assistance). The only restriction

arises from the complexity of the (improved) SQM, and the number of residues one has to

1To be more precise, the IIB brane setup realizes the loop insertion in the N = 2∗ theory, which has an

extra massive adjoint hypermultiplet (the mass arises from a geometric deformation in the space transverse

to the D3 branes). We always think of the limit of infinite mass, when we integrate out the massive adjoint

hypermultiplet.

– 3 –



J
H
E
P
0
5
(
2
0
1
9
)
1
8
0

compute by the JK prescription, which is rapidly growing with the magnetic charge of the

’t Hooft loop. This is a standard limitation in such computations.

As a check, we compare our results with the OPE between line operators, which is

computed by a non-commutative Moyal product between the vevs of the individual loops.

In the presence of the Omega deformation with parameter ε+, the loops are inserted along

a line R with a certain ordering. The vev of this operator with multiple insertions depends

on the positions of the loops only through their ordering. The OPE between two loops then

defines a non-commutative product on the algebra of BPS loop operators. It turns out that

this non-commutative product is realized by a Moyal product based on the Fenchel-Nielsen

coordinates a and b. We verify that the Moyal product of minimally charged loops expands

as linear combinations of other loops, using our results. In particular we check that the

product of the vevs (or the OPE) of two minimally charged ’t Hooft loops yields the vev

of the next-to-minimal ’t Hooft loop.

Along the way we clarify some points about the OPE between line operators and the

vev of loops computed by supersymmetric localization. The results of [6] and the results

that we present in this paper for the bubbling factors are the vev of loop operators defined

by singular boundary conditions in the path integral along a single line where the defect is

inserted. This is by definition invariant under a Z2 symmetry that sends ε+ → −ε+. Indeed

this operation can be regarded as a reflection along the R line (where the operator sits at

a point) and a reflection in the R-symmetry group, and it turns out that the BPS loop

operators are invariant under this Z2 symmetry. This implies that all ’t Hooft loop vevs, and

even all bubbling factors, must have this symmetry. As pointed out in [15], this symmetry

is respected for the full bubbling term (including SQM Coulomb vacua). The symmetry

is far from obvious in the actual expressions one obtains and it constitutes a powerful

check of the results. On the other hand the OPE between two colliding loops depends

on the ordering between the loops along R (which is why it defines a non-commutative

product) and thus is, in general, not invariant under ε+ → −ε+. It can be expanded in a

linear combination of loop vevs, which are themselves Z2 invariant, but with coefficients

depending on ε+ (responsible for the global Z2 non-invariance).2

Finally we relate our construction to the study of 5d loop operators that was carried

out in [18] (building on [19–22]), by regarding the complete brane setups as a coupled

5d-4d-1d systems. The 5-brane web that arises in the complete brane setup supports at

low energies a 5d N = 1 theory which is the Coulomb phase of a deformed 5d SCFT (the

undeformed CFT is at infinite YM coupling). The 5d theory is read from the rules found

in [17]. In addition there is still the 4d theory living on the D3 branes. The 5d and 4d

theories do not live on the same spacetime, rather they share only one space direction,

where 1d fermions sourced by D3-D5 branes live. From the point of view of the 5d theory

or of the 4d theory, this interaction corresponds to a half-BPS line operator. The presence

of D1 strings, which are associated to bubbling sectors of the 4d theory, corresponds to

instanton sectors in the 5d theory. Such brane systems and the 5d loop operators LSQM

2Trying to define higher charge loop operators through the OPE of smaller charge loops is unnatural in

this context since this has ordering ambiguities.
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(or 5d-4d line defect) that they define were studied in [18] (SQM here refers to the 1d

theory of fermion matter fields living at the intersection of the 5d and 4d theories). In

particular their vev was computed in specific cases as an expansion in the instanton sectors

of the 5d theory. One of the main result was that BPS Wilson loops of the 5d theory

could be obtained by taking residues of 〈LSQM〉 in the D3 flavor fugacities, circumventing

the unsolved problem of computing the Wilson loop vevs directly. Now we find that ’t

Hooft loop bubbling terms are obtained from the same object 〈LSQM〉, by first selecting

the instanton sector corresponding to the bubbling sector (specified by an array of D1

strings) and then taking residues in the flavor fugacities associated to the D5 branes. The

ADHM quiver of the specific 5d instanton sector corresponds to the improved SQM. We

find that every bubbling factor can be thought of as the D5 flavor residue in an instanton

sector of a LSQM operator, which is the underling deeper object associated to the 5-brane

web/D3 configuration.

The paper is organized as follows. In section 2 we review some basics about ’t Hooft

loops, their brane realization and the computation of bubbling terms as presently known.

In section 3 we present our brane-based algorithm to compute simply and reliably bubbling

terms in ’t Hooft loop vevs and apply it in the cases mentioned above. In section 4 we

show that our results are compatible with the OPE, or Moyal product, between loops, and

in section 5 we discuss the relation to 5d-4d-1d coupled systems and 5d line operators.

We conclude in section 6 with some comments and future directions to continue this work.

In appendix A we provide the details about the matrix models computing the index of

N = (0, 4) (or N = (0, 4)∗) SQM theories.

2 ’t Hooft loops and brane picture

2.1 Generalities

We study supersymmetric ’t Hooft loop operators in 4d N = 2 SU(N) theories with

Nf = 2N flavors of hypermultiplets. The vector multiplet contains the gauge field Aµ
with field strength F , a complex adjoint scalar field Φ and fermionic fields. Considering

Euclidean space with cylindrical coordinates (τ, r, θ, ϕ), the ’t Hooft loop inserted at radial

coordinate r = 0 and spanning the τ direction is defined by prescribing a supersymmetric

Dirac monopole singularity as an asymptotic behavior for the bosonic fields in the vector

multiplet at every point of the straight line [7],3

F =
B

2
sin θ dθ ∧ dϕ− ig2ϑB

16π2

dτ ∧ dr

r2

Φ = −B
2r

(
1− ig

2ϑ

8π2

)
,

(2.1)

where g2 is the Yang-Mills coupling and ϑ the theta angle of the SU(N) gauge theory.

B is an element of a Cartan subalgebra t of the gauge algebra su(N) and takes values in

3Note that under a shift of ϑ→ ϑ+ 2π the ’t Hooft loop singularity is also shifted by a singular piece.

This extra singular piece corresponds to the singularity of a (supersymmetric) Wilson loop as described

in [2]. This encodes the fact that under this shift of the theta angle, the ’t Hooft loop acquires electric

charge and becomes a dyonic loop. This is the Witten effect [23] for loop operators in 4d.
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the lattice of magnetic weights Λmw = Λcochar = {H ∈ t | exp(2πiH) = 1}, which is the

cocharacter lattice of the gauge group [2]. Magnetic charges B and B′ related by the action

of the Weyl group W define identical loops. We represent B as a traceless diagonal matrix

with quantized diagonal coefficients ~B = (B1, B2, · · · , BN ) giving the magnetic charges of

the loop. For SU(N), the allowed magnetic charges satisfy Bi ∈ Z, B1 ≥ B2 ≥ · · · ≥ BN
and

∑
iBi = 0. This defines a ’t Hooft loop LB. Such a ’t Hooft loop satisfies, for say

ϑ = 0, the BPS equation Fij = εij
kDkΦ, with i, j indices in R3 transverse to the line. It

preserves half of the supercharges.

In [6] (following [7]), the VEV of ’t Hooft loops LB in Coulomb vacua of 4d N = 2

theories were computed using supersymmetric localization. In order to do so, the loops

were placed in S1
β × R2

ε+ × R, with β the radius of S1 and ε+ an Omega background

deformation parameter. In this geometry the loop wraps S1 and is placed at the center in

R2
ε+ × R, although the position along R does not matter. The VEV of the loops can be

thought of as the Witten index of the theory in the presence of the loop insertion, refined

with fugacities,

〈L〉 = TrH(L)(−1)F e−βHeε+(J12+R)ea.Geb.Ǧem.GF , (2.2)

where H is the Hamiltonian, J12 the generator of rotations in a plane R2 ⊂ R3, R a Cartan

generator in the SU(2)R R-symmetry, G denotes the Cartan generators of global SU(N)

gauge transformations, Ǧ the Cartan generators of the magnetic dual group, and F the

Cartan generators of flavor symmetries of the theory. This index receives only contributions

from ground states with H = 0 and is therefore independent of β. The parameters a = (ai)

correspond to the asymptotic holonomy of Cartan gauge field around S1, complexified with

the asymptotic value of a chosen scalar in the vector multiplet. The parameters b = (bi)

correspond to the asymptotic values of compact scalar fields defined as the dual of Cartan

gauge fields on R3. They are complexified with the asymptotic value of another scalar in

the vector multiplet. a and b are chemical potentials for electric and magnetic charges of

the states, respectively. Finally the fugacities m = (mk) correspond to background (flavor)

gauge field holonomies around S1, complexified with real hypermultiplet mass parameters.

The exact result of the localization computation takes the form

〈LB〉 =
∑

v∈B+Λcr
v←B

ev.b Z1-loop(ε+, ai,m; v)Zmono(ε+, a,m;B, v) . (2.3)

This is a sum over monopole bubbling sectors v of the magnetic charge B. The magnetic

charges v ∈ Λmw are the weights that appear in the representation of highest weight B

(symbolically v ← B), in particular v is such that B− v is an element of the coroot lattice

Λcr. For SU(N), the relevant lattices are Λcr = Λcochar(= Λroot). This lattice is generated

by simple roots of su(N) which we take as N -vectors of the form ±(0, · · · , 0, 1,−1, 0, · · · , 0).

The physical interpretation of this sum is that the VEV of the ’t Hooft loop with

magnetic charge B receives contributions from sectors where the Dirac magnetic singularity

is screened by smooth ’t Hooft-Polyakov monopoles, whose charges are elements of Λcr,

which decrease the total magnetic charge of the configuration. Each sector is then labelled

with the asymptotic magnetic charge v. The contributions from sectors with ||v|| < ||B||
are called “monopole bubbling contributions”.

– 6 –
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The contribution of the v-sector is weighted with the coefficient ev.b = e
∑
i vibi and is

the product of a 1-loop contribution Z1-loop(ε+, a,m; v), which is known,4 and a monopole

bubbling contribution Zmono(ε+, a,m;B, v). The computation of Zmono proved to be subtle

and it was the central topic of [15].

Zmono is evaluated as the Witten index of a certain ADHM quiver quantum mechanical

theory. One way to find the ADHM quiver is to realize the ’t Hooft loop insertion and the

monopole screening in a brane system and then recognize the ADHM theory as the theory

living on D1 branes.

Let us comment more about the ε+ deformation. This arises from an Omega back-

ground deformation in a plane R2 ⊂ R3. To preserve supersymmetry the line operators

must sit at the origin in this plane, and at any point along the third direction R. This

introduces an ordering between the loop insertions along R. The vev of a collection of ’t

Hooft loop insertions does not depend on the positions of the insertions along R, except

for the ordering between these insertions. This promotes the OPE between loops to a non-

commutative product, that we discuss further in section 4. Going back to the insertion of

a single ’t Hooft loop, we emphasize that the vev of the line operator must be invariant

under the Z2 symmetry ε+ → −ε+. This Z2 symmetry can be expressed as a reflection, or

orientation reversal, along R, plus an R-symmetry reflection. The line operator is invariant

under these reflection5 and thus its vev should be invariant under ε+ → −ε+. This will

turn out to be an important consistency requirement.

2.2 Brane realization and ADHM quivers

We review now the brane construction presented in [15, 16]. We focus on ’t Hooft loops and

monopole bubbling in the 4d N = 2 SU(N) (or U(N)) theories with Nf = 2N fundamental

hypermultiplets.

We consider a stack of N D3 branes filling the directions x0123. The low energy

worldvolume theory is the N = 4 U(N) SYM theory. To obtain the N = 2 SYM theory we

place the D3 branes at the center of an Omega background along x6789. More precisely the

background is R2
m × R2

−m with ±m the Omega background parameter in the two planes.

This gives a mass m to the adjoint hypermultiplet in the SYM theory. The limit of large

mass m corresponds to the N = 2 SYM theory (by integrating out the massive adjoint

hypermultiplet). The Nf flavor hypermultiplets are realized by adding Nf D7 branes

filling x01236789. Their positions in x45 correspond to complex mass parameters for the

hypermultiplets. The brane arrangement is described in table 1. The positions of the D3

branes in x45 correspond to the VEVs of the Cartan complex scalars in the N = 2 vector

multiplet and are associated with motion on the Coulomb branch of vacua.

Half-BPS ’t Hooft loops along x0 are realized by adding NS5 branes along x056789

placed in-between the D3 branes in the x4 direction. In the U(N) theory ’t Hooft loops

have magnetic charges B = (bi), with bi ≥ bi+1 and bi ∈ Z. Placing an NS5 brane between

the ith and (i+ 1)th D3 brane realizes a ’t Hooft loop with improperly quantized magnetic

4We refer the reader to [6] for explicit expressions.
5The ’t Hooft loop is a Lorentz scalar from the point of view of the R3 space and the Z2 R-symmetry

involved acts on Higgs branch operators and not on ’t Hooft operators.
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0 1 2 3 4 5 6 7 8 9

D3 X X X X

D7 X X X X X X X X

NS5 X X X X X X

D1 X X

D5 X X X X X X

F1 X X

Table 1. Brane array for 4d N = 2 theories (D3,D7), BPS ’t Hooft loops (NS5,D1) and BPS

Wilson loops (D5,F1).

charge hi = (1
2 , · · · ,

1
2 ,−

1
2 , · · · ,−

1
2), where 1

2 appears i times and −1
2 appears N − i times.

This is because the NS5 brane induces a magnetic flux on the D3 brane worldvolumes and

the sign depends on whether the D3 is placed to the left or to the right of the NS5. The

value ±1
2 of the flux will be explained below. In general a ’t Hooft loop with properly

quantized magnetic charge B =
∑

i nihi is realized by placing ni NS5 branes between

the ith and (i + 1)th D3 brane. In this construction we should allow for n0 NS5 branes

placed to the left of all D3 branes and nN NS5 branes placed to the right of all D3 branes,

inducing positive or negative magnetic charge in the U(1) center of U(N). For instance

the loop with charge (1, 0, · · · , 0) is realized with two NS5 branes, one placed between the

first and second D3s and one placed to the right of all D3s, according to the decomposition

(1, 0, · · · , 0) = (1
2 ,−

1
2 , · · · ,−

1
2) + (1

2 ,
1
2 . . . ,

1
2). We do not have an explanation for why the

brane picture allows for improperly quantized magnetic fluxes.

To select the loops of the SU(N) theory, one just considers brane arrangements which

realize magnetic charges of the SU(N) magnetic lattice. We provide two examples in

figure 1 for the ’t Hooft loop of charge (1,−1) = 2 × (1
2 ,−

1
2) in the SU(2) theory and

the ’t Hooft loop of charge (2,−1,−1) = 3 × (1
2 ,−

1
2 ,−

1
2) + (1

2 ,
1
2 ,

1
2) in the SU(3) theory.

Actually the external NS5 branes — those that are on the left or on the right of all D3

branes — do not play a role for the SU(N) theory, since they are inducing a magnetic flux

in the diagonal U(1) ⊂ U(N). We can simply remove them from the construction. For

instance in the case of figure 1-b, we can realize the ’t Hooft loop of charge (2,−1,−1) of

the SU(3) theory simply with three NS5 branes placed between the leftmost and middle D3

branes. In this convention, the magnetic charges of the SU(N) ’t Hooft loop is computed

by projecting out the U(1) component of the U(N) magnetic charges.

For an SU(2) theory the ’t Hooft loops have charges B = (b,−b), b ∈ Z>0, and are

realized with 2b NS5 branes placed in-between the two D3 branes.

The system of NS5 and D3 branes is of Hanany-Witten type [24] with respect to D1

strings stretched along x04, namely as an NS5 brane is pushed through a D3 brane, a D1

string is created stretched between them, as illustrated in figure 2. A D1 string is the

source of a unit magnetic charge for the worldvolume gauge field of the D3 brane. In the

process of an NS5 crossing a D3, the magnetic charge on the D3 brane does not change

– 8 –
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x5

x4

a) b)

D3

NS5

Figure 1. Brane setups realizing: a) a ’t Hooft loop with magnetic charge (1,−1) in the [S]U(2)

theory. b) a ’t Hooft loop with charge (2,−1,−1) in the [S]U(3) theory. We can ignore the external

NS5 in the SU(3) theory.

x5

x4

D3

NS5

D3

NS5

D1

Figure 2. Hanany-Witten transition: as the NS5 passes through the D3, a D1 string is created.

(since it can be measured “at infinity” on the D3 worldvolume and does not depend on the

local NS5 crossing. If we denote by Q, respectively −Q, the magnetic charge that the NS5

induces on the D3 brane when it is on its right, respectively on its left, we find that the

magnetic charge conservation in the Hanany-Witten transition satisfies Q = 1−Q, namely

Q = 1
2 . This justifies the claim above that the NS5 induces a ’t Hooft loop with magnetic

charge ±1
2 for each D3 brane.

In addition there are smooth monopoles, which are realized with D1 segments stretched

between D3 branes. A D1 string stretched between the ith and (i+1)th D3 branes realizes

a BPS smooth monopole with magnetic charge Hi = (0, · · · , 0,−1, 1, 0, · · · , 0), where the

1 is in ith position.

Monopole bubbling arises when one or more D1 segments are brought on top of (at

least two) NS5 branes. The resulting configuration supports an N = (0, 4) SQM theory

which is the ADHM quantum mechanics associated to Zmono. In order to read the (0,4)

ADHM quiver theory it is useful to implement some Hanany-Witten moves, shuffling the

NS5 branes around, so that in the resulting configuration the D1 strings are stretched

between NS5 branes. In addition, D3 branes should be reordered so that their linking

numbers are non-increasing from left to right. We will explain this point below.

The simplest example arises in the SU(2) theory for the ’t Hooft loop of minimal

magnetic charge (1,−1), which can be completely screened by a smooth monopole with

magnetic charge (−1, 1). In the brane description this happens when there is a D1 segment

stretched between the D3s that comes on top of the two NS5 branes. This is illustrated

– 9 –
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Figure 3. Bubbling configuration for the minimal ’t Hooft loop in SU(2) with Nf = 4 flavors. The

ADHM quiver is read after moving the NS5 branes to the sides.

in figure 3. In this situation, one can read the ADHM quiver by pushing the NS5 branes

on the sides. In the resulting configuration there is a single D1 stretched between the two

NS5s, supporting an N = (4, 4) U(1) vector multiplet. This is a vector multiplet, plus

a twisted hypermultiplet in N = (0, 4) language. In addition, the D1-D3 modes make

a (4,4) hypermultiplet for each D3 brane, which in N = (0, 4) language corresponds to

a hypermultiplet plus a Fermi multiplet. Finally, the D1-D7 strings make a (0,4) Fermi

multiplet (which has only a single fermion) for each D7 brane. This leads to the ADHM

quiver of figure 3.6

The mass deformation of the setup that gives the mass m to the 4d adjoint scalar, giving

the N = 2? SYM theory on the D3 branes, also affects these (4,4) multiplets, which we will

call N = (0, 4)? multiplets. The (4,4) vector multiplet becomes a (0, 4)? vector multiplet,

in which the (0,4) adjoint twisted hypermultiplet has mass m. The (4,4) hypermultiplets

become (0, 4)? hypermultiplets, in which the (0,4) Fermi multiplet has mass m. In the

limit m→∞, we obtain only pure (0,4) multiplets.

Quiver notation. Our N = (0, 4) SQM quiver notation is as follows. A circle with

number n denotes a U(n) gauge node for a (0, 4)? vector multiplet, which contains a (0,4)

vector multiplet and a massive (0,4) adjoint twisted hypermultiplet. A box with number

m connected by a doubled solid/dashed line to a U(n) node denotes m fundamental (0, 4)?

hypermultiplets of the U(n) node, which contains a (0,4) hypermultiplet and a massive

(0,4) Fermi multiplet with two fermions (two (0,2) Fermi multiplets) [21]. A box with

number m connected by a dashed line to a U(n) node denotes m fundamental (0,4) Fermi

multiplets with a single fermion of the U(n) node.

We should now explain the point about the linking numbers. For each D3 brane we

define a linking number ` by

` =
1

2
(nR(NS5)− nL(NS5)) + (nL(D1)− nR(D1)) , (2.4)

6The decomposition of 1d N = (4, 4) multiplets into N = (0, 4) multiplets can be derived from dimen-

sional reduction of the 2d case discussed in [21].
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where nL(NS5)/nR(NS5) is the number of NS5 branes standing on the left/right of the

D3, and nL(D1)/nR(D1) is the number of D1 strings ending on the left/right of the D3.

The linking number corresponds to the total quantized flux induced on the D3 worldvolume

by the NS5s and the D1s. It is invariant under Hanany-Witten moves.

Before bubbling, the linking numbers of the D3 branes are ordered non-increasingly

from left to right by construction. However once we add the D1 string responsible for the

bubbling, this might not be the case and we need to reorder the D3 branes in non-increasing

order. This is in a sense a way to avoid a redundancy in the brane description.7 We may

equivalently say that we consider monopole bubbling configurations which do not alter the

linking number ordering of the D3 branes.

In this discussion we have been elusive as to what happens to D7 branes in the pic-

ture. In the configurations there are also 2N D7 branes sourcing the 2N fundamental

hypermultiplets of the 4d theory. D7 branes appear as points in the x45 plane of the brane

picture. As we will see later, the positions of the D7 branes with respect to NS5 branes

is important, since the 7 branes have a bending effect on NS5 branes. So in principle we

should give a prescription as to where to put the D7 branes with respect to NS5 branes.

In figure 3 we have placed D7 branes in-between the NS5 branes, so that we do not need

to move NS5s across D7s when we move the branes to read the ADHM quiver. In general

we expect that placing the D7s/NS5s branes in different arrangements leads to bubbling

contributions for different loop operators.

The (properly quantized) ’t Hooft loops of the [S]U(N) theories are always realized

with an even number of NS5 branes. A natural prescription is to always put the D7 branes

in the middle of the NS5s, namely with as many NS5s on their left as on their right along

x4. We will adopt this prescription in our construction and comment further on this issue

in the discussion section 6. The placement of the D7 branes along the vertical direction,

with respect to the D1 strings, is also important and we will give a prescription for this as

we proceed.

2.3 Z0
1 in conformal SQCD

We illustrate the discussion with the simplest example: the bubbling contribution to the

monopole of minimal magnetic charge in the N = 2 SU(N) SQCD theory with 2N flavor

hypermultiplets, still following [10, 15]. The minimally charged ’t Hooft loop has B =

(1, 0, · · · , 0,−1) := B1, we will denote it L1. It has one bubbling sector with zero total

magnetic charge v = (0, · · · , 0). The VEV of L1 takes the form

〈L1〉 =
∑
i 6=j

ebi−bjZ1-loop(B
(i,j)
1 ) + Z0

1 , (2.5)

with B
(i,j)
1 the N -vector with entries (B

(i,j)
1 )n = δni − δnj , and Z0

1 := Zmono(B1,~0). Here

we have used that Z1-loop(~0) = 1.

The bubbling contribution Z0
1 is computed as the Witten index of an ADHM (0,4)

SQM that is read from the brane construction, as explained in the previous section and in

7See [25] for a related discussion on the ordering of branes in increasing/decreasing linking number order.
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Figure 4. a) Brane realization of L1 loop in SU(N) with 2N flavors. There are N D3s and 2N

D7s. b) Bubbling configuration. c) Same configuration after moving NS5s and ADHM SQM.

more details in appendix A. The brane realization for the L1 loop has two NS5 branes and

is shown in figure 4-a. The bubbling sector corresponds to the (full) screening of L1 by a

D1 string as shown in figure 4-b. The ADHM SQM is the D1 theory as read from figure 4-c.

It is a U(1) theory with a (0, 4)? vector multiplet, N (0, 4)∗ fundamental hypermultiplets

and 2N (0,4) fundamental Fermi multiplets. Z0
1 is the Witten index of this SQM.

One usually expects that the Witten index, which is a sum over the BPS vacua, reduces

to the contributions counted by the Jeffrey-Kirwan contour in the matrix model associated

to the SQM. The main observation of [15] is that the Jeffrey-Kirwan contour of integration

counts BPS Higgs vacua, but sometimes misses contributions from BPS Coulomb vacua

that belong to a continuum of vacuum states, in some theories when this continuum exists.

This phenomenon arises when the effective potential for the SQM scalar field is bounded at

infinity (instead of divergent), which happens in the computation of Z0
1 in conformal SQCD

theories. Here we can rephrase this as follows. The JK prescription captures the full result

when the FI parameter of the SQM is non-zero and is taken as the JK parameter. In that

case the Coulomb vacua are lifted. In the brane picture the FI parameter is the separation

of the two NS5 branes along the flat R direction. The bubbling configuration arises when

the NS5s are exactly aligned, therefore the bubbling term is captured by the SQM index

at zero FI parameter. In that case the JK prescription (with any choice of non-zero JK

parameter) does not capture the full answer. One must add contributions from “poles at

infinity”.8

Therefore we have

Z0
1 = ZJK + Zextra , (2.6)

8The situation with non-zero FI parameter corresponds to a two-point function of ’t Hooft loops. We

discuss this further in section 4.
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with the JK contribution given by (see appendix A)9

ZJK(ε−) =

∫
JK(ζ)

dφ

2πi

(−1)sh(2ε+)

sh(ε1)sh(ε2)

N∏
i=1

sh[±(φ− ai) + ε−]

sh[±(φ− ai) + ε+]

2N∏
k=1

sh(φ−mk) . (2.7)

Here ai are the masses of the fundamental hypermultiplets and are identified with the

Coulomb branch coordinates (in the Cartan subalgebra of U(N)) of the 4d theory. In the

4d SU(N) theory they obey
∑N

i=1 ai = 0. The Fermi multiplet masses mk are identified

with the masses of the 2N flavor hypermultiplets of the 4d theory.

The parameter ε− is identified with the adjoint mass m of the 4d N = 2∗ SYM theory

and appears here as the mass parameter of the N = (0, 4)? deformation as explained in the

appendix. It is to be sent to infinity to reach the final result for the N = 2 SQCD theory.

The integrals are evaluated with the JK selection of poles, with the JK parameter ζ.

Importantly the evaluation depends on the sign of ζ. Taking ζ > 0, we find10

ZJK(ε−) =
N∑
i=1

∏
j 6=i

sh[±(ai − aj − ε+) + ε−]

sh[±(ai − aj − ε+) + ε+]

2N∏
k=1

sh(ai −mk − ε+) . (ζ > 0) (2.8)

We now send ε− → ∞. To reach a finite result we should normalize by a contribution

(sh(sε−))±1 for each (0,4) multiplets whose mass scales as sε−, with ± being − for a

hypermultiplet and + for a Fermi multiplet. This amounts to removing the massive (0,4)

multiplets in the matrix model (in this case we could simply have done that from the

beginning). In the end we normalize by Znorm(ε−) = (−1)N sh(ε−)2N−2. We have no good

explanation for the factor (−1)N in the normalization of the result. We do not know how

to fix the overall sign and our prescription follows from consistency requirement, when

relating the result to OPEs between loops, as we discuss in section 4. We obtain

ZJK = lim
ε−→∞

ZJK(ε−)

Znorm(ε−)
= −

N∑
i=1

∏2N
k=1 sh(ai −mk − ε+)∏

j 6=i sh(ai − aj)sh(ai − aj − 2ε+)
. (ζ > 0) (2.9)

Finally there is the extra contribution Zextra, missed by the JK prescription. To our

knowledge, there is no computation of this term in general. For the simplest case N = 2 it

was computed in [15]. The minimal ’t Hooft loop has a non-zero Zextra in the SU(2) theory

with Nf = 4 flavors, which is, for ζ > 0,11

SU(2), Nf = 4 : Zextra = ch

(
4∑

k=1

mk + 2ε+

)
. (ζ > 0) (2.10)

If we had chosen a negative ζ instead, we would have found the same results but with a

flip of sign ε+ → −ε+ in ZJK and in Zextra. As discussed at the end of section 2.1, the

result should be invariant under ε+ → −ε+. Although it is not obvious, it happens that

the total bubbling factor Z0
1 is indeed invariant under the Z2 symmetry.

9We have ε± := 1
2
(ε1 ± ε2), sh(x) := 2 sinh(x

2
) and f(x± y) := f(x+ y)f(x− y).

10The JK prescription selects the residues at φ = ai − ε+.
11We define ch(x) := 2 cosh(x

2
).
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Unfortunately, the method proposed in [15] for computing Zextra is not straightforward

and difficult to apply to more complicated theories. What we propose in this paper is a

method to compute directly the full answer for monopole bubbling contributions like Z0
1 ,

including the extra piece Zextra, from a modified ADHM quiver.

3 Complete brane systems and improved SQM

3.1 The minimal ’t Hooft loop

To begin with we will focus on the computation of the bubbling contribution Z0
1 for the ’t

Hooft loop L1 of minimal magnetic charge B = (1, 0, · · · ,−1) in 4d N = 2 SU(N) theories

with Nf = 2N fundamental hypermultiplets.

3.1.1 Brane system for N = 2

The computation that we want to propose is based on a completion of the brane system

realizing the ’t Hooft loop. We have already presented the brane setup for L1 in figure 4-a.

We observe that this brane picture is not accurate enough because the D7 branes induce

a bending and a change of type on the NS5-branes. We should remember that 7-branes

have a branch cut in their transverse plane, across which type IIB string theory enjoys

a certain SL(2,Z) duality transformation. The SL(2,Z) element depends on the type of

7-brane. The branch cuts are not physical and can be moved wherever we like. A common

way to represent such a brane configuration is to let the branch cuts run horizontally to

the left or to the right. As a (p, q) 5-brane crosses a D7 cut, its type changes to a (p, q± 1)

5-brane, with the sign ± depending on which side of the cut the (p, q) 5-brane stands. In

addition the brane “bends” in the sense that the (p, q± 1) 5-brane segment has a different

orientation in the x45 plane. Precisely, a (p, q) 5-brane spans a line in the x45 plane with

slope p
q . Here we take the convention that an NS5 brane is a (1, 0) 5-brane, and a D5

brane is a (0, 1) 5-brane. We illustrate this for the case N = 2 with 4 D7 branes in the left

of figure 5-a. From this type of setup, it is common to push the 7 branes to the sides as

shown in the right of figure 5-a. When the 7-brane crosses the 5-brane segments a third

type of 5-branes is created, here a D5 brane, resulting in a 5-brane junction. In this paper

however, we will not move the D7-branes to the sides because we find it more convenient.

The brane configuration that we have reached is not yet complete, since the (1, 1)

and (1,−1) 5-brane lines intersect, if we follow them far enough upstairs, or downstairs.

5-brane intersections can support degrees of freedom and to understand fully the brane

configuration we must resolve these intersections. Concretely we need to find a completion

of the brane setup upstairs and downstairs such that there is no intersection any more. For

the case with four D7 branes, a minimal way to do so is shown on the left of figure 5-b. Here

we were required to add extra D5 and NS5 segments to complete the 5-brane web. The

final configuration is rather similar to the initial one, but there are two extra D5 segments.

There exists other more complicated ways to complete the brane setup, but we do not need

to look at them.

We are now satisfied with our brane realization of the minimal ’t Hooft loop L1. As

it is it may be regarded as a fancy construction that has no effect on the loop insertion
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Figure 5. a) Brane setup for L1 taking into account the effect of the D7-branes on the NS5 branes,

here with four D7 branes, for the Nf = 4 SU(2) theory. b) Completion of the 5-brane web to resolve

intersections.

at low energies, since it is possible to send the 5-brane web away from the D3-D7 system

and still realize the ’t Hooft loop. In this process D1-strings are created and realize the ’t

Hooft loop on the D3 worlvolume. This is shown on the right of figure 5-b.

3.1.2 Improved ADHM for N = 2

The effect of the refined brane construction is better appreciated when we consider the

bubbling sector and the computation of Z0
1 . The bubbling sector arises when an extra

D1 segment is stretched between the two external D3s and recombine with the NS5-D3

segments into a single D1 string stretched between the two NS5s, as in figure 6. The ADHM

associated with Z0
1 is read as the (0,4) SQM living on the D1 string. In the complete 5-

brane web of the L1 insertion we have two extra D5 segments and the D1-D5 strings modes

give two extra (0,4) hypermultiplets. In addition the D3-D5 modes gives four extra Fermi

multiplets which are not charged under the U(1) SQM gauge group. There are also 1d

superpotential terms (J-term and E-term) but we do not need to know them to compute

the index. The resulting quiver SQM is given in figure 6. We will call it the improved

(ADHM) SQM. One virtue of the improved SQM is that the potential of the matrix model

on the integrand variable z is divergent at z → ±∞, which means that the Witten index

does not have extra contributions from continuum of states and can be computed reliably

using the Jeffrey-Kirwan prescription alone, with any choice of JK parameter (it should be

independent of the choice).
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Figure 6. Complete brane setup for the L1 bubbling and improved SQM quiver.

On the other hand, the Witten index I0
1 of this improved SQM is not directly equal to

the bubbling contribution Z0
1 . For instance it depends on two more fugacities w1 = e−v1 ,

w2 = e−v2 , where v1, v2 are the masses of the two extra (0,4) hypermultiplets. There is no

such fugacity in Z0
1 . Explicitly we have

I0
1 (ε−) =

∫
JKζ>0

dφ

2πi

(−1)sh(2ε+)

sh(ε1)sh(ε2)

∏
i=1,2

sh[±(φ−ai)+ε−]

sh[±(φ−ai)+ε+]

∏4
k=1 sh(φ−mk)

∏
i,n sh(ai−vn)∏

n=1,2 sh[±(φ−vn)−ε+]
.

(3.1)

Now we have extra JK residues at φ = vn + ε+, for n = 1, 2. Evaluating the residues and

normalizing as in (2.9), we obtain

I0
1 = lim

ε−→∞

I0
1 (ε−)

Znorm(ε−)

= −
∏4
k=1 sh(a1 −mk − ε+)

∏
n=1,2 sh(a2 − vn)

sh(a12)sh(a12 − 2ε+)
∏
n=1,2 sh(vn − a1 + 2ε+)

+ [a1 ↔ a2]

+

∏
i=1,2 sh(ai − v2)

∏4
k=1 sh(v1 −mk + ε+)∏

i=1,2 sh(v1 − ai + 2ε+)sh(v12)sh(v12 + 2ε+)
+ [v1 ↔ v2]

(3.2)

Taking the residues in w1 and then in w2 around zero, we find∫
dw2

2πiw2

∫
dw1

2πiw1
I0

1 = −
∏4
k=1 sh(a1 −mk − ε+)

sh(a12)sh(a12 − 2ε+)
+ [a1 ↔ a2]

+ ch

(
4∑

k=1

mk − 2(a1 + a2) + 2ε+

)
.

(3.3)

Taking into account the SU(2) constraint a1 + a2 = 0, this is precisely Z0
1 for the SU(2)

theory with Nf = 4, including the extra piece Zextra! We thus find the relation

Z0
1 =

∮
C

dw1

2πiw1

dw2

2πiw2
I0

1 (w1, w2) , (3.4)

with C = C1 × C2 the integration contours for w1 and w2 around the origin, defined with

|w1| < |w2e
−2ε+ |

(
< |w2e

2ε+ |
)

on the contours. This choice of contour effectively imposes

that we take the residues in w1 first and w2 after.12

12This implies that we do not take residues from the poles at w1 = w2e
±2ε+ .
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Figure 7. Complete brane systems for the L1 bubbling in: a) the SU(3) Nf = 6 theory; b) the

SU(4), Nf = 8 theory.

The logic being this result is the following. Among the various terms contributing to

the index I0
1 , one should isolate the one contributing to Z0

1 . The contributions to I0
1 can

be organised into sectors of fixed U(1)2 flavor charges, where the U(1)2 refers to flavor

symmetries associated to the D5 branes, with fugacities w1 and w2. The terms with weight

wn1w
m
2 belong to the charge (n,m) sector. The states contributing to Z0

1 are in principle

not charged under the U(1)2 D5 symmetries, therefore they should belong to the (0, 0)

sector. The residue computation that we perform extracts this (0, 0) charge sector. What

we find experimentally is that Z0
1 is the full (0, 0) charge sector of I0

1 .

We should comment that there is an alternative, and arguably simpler, computation

that gives the same result. Since the original setup does not have the extra D5 segments,

we can think of recovering Z0
1 by sending the upper D5 segment to +∞ and the lower D5

segment to −∞. This means taking the limit w1 → 0 and w2 →∞ in I0
1 . Indeed we find,

without even the need for extra normalization,

lim
w1→0
w2→+∞

I0
1 = Z0

1 , (3.5)

including the extra piece Zextra. This simple limit works in this case, but may not work in

general due to the possible presence of diverging contributions.

3.1.3 Bubbling in SU(N) Nf = 2N theory

For N > 2 we have Nf = 2N > 4 D7 branes in the brane system and the completion of

the brane setup for the minimal ’t Hooft loop requires more than two extra D5 segments.

The cases for the SU(3) Nf = 6 and SU(4) Nf = 8 theories are shown in figure 7. Here

the brane completions require four extra D5 segments. Consequently the improved ADHM

has four extra (0,4) hypermultiplets and 4N extra Fermi multiplets.

In general, one can complete the brane setup for arbitrary N with a brane web involving

h extra D5 segments, where h = N for N even and h = N + 1 for N odd, so we have
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h = 2dN2 e. h is always an even integer with this choice of completion. As a rule we always

take the distribution of D7 branes, and thus D5 segments, as even as possible between the

upper and lower part of the brane configuration. This means that we take N D7 branes

(and h
2 D5 segments) above the D3s, and N D7 branes (and h

2 D5 segments) below the D3s.

This leads to an improved ADHM with h extra fundamental (0,4) hypermultipets and hN

extra Fermi multiplets. Let us denote again I0
1 the supersymmetric index of this improved

ADHM SQM. Explicitly the mass deformed N = (0, 4)? SQM index I0
1 (ε) is given by

I0
1 (ε−) =

∫
JKζ>0

dφ

2πi

(−1)sh(2ε+)

sh(ε1)sh(ε2)

N∏
i=1

sh[±(φ−ai)+ε−]

sh[±(φ−ai)+ε+]

∏2N
k=1 sh(φ−mk)

∏N
i=1

∏h
n=1 sh(ai−vn)∏h

n=1 sh[±(φ−vn)−ε+]
.

(3.6)

Evaluating the residues at φ = ai − ε+ and φ = vn + ε+, and taking the normalized limit

ε− →∞, we find

I0
1 = lim

ε−→∞

I0
1 (ε−)

(−1)N sh(ε−)2N−2

= −
N∑
i=1

∏2N
k=1 sh(ai −mk − ε+)

∏
j 6=i,n sh(aj − vn)∏

j 6=i sh(aij)sh(aij − 2ε+)
∏h
n=1 sh(vn − ai + 2ε+)

+

h∑
n=1

∏
i,m 6=n sh(ai − vm)

∏2N
k=1 sh(vn −mk + ε+)∏N

i=1 sh(ai − vn − 2ε+)
∏
m 6=n sh(vnm)sh(vnm + 2ε+)

.

(3.7)

Generalizing the result of the previous sections we propose that the following relation holds:

Z0
1 =

∮
C

h∏
n=1

dwn
2πiwn

F (w) I0
1 (w) ,

with F (w) =

( ∏h/2
n=1wn∏h

n′=h/2+1wn′

)N−2
2

,

(3.8)

with C =
∏
n Cn the integration contours for w1, w2, · · · , wh around the origin, defined with

|wn| < |wn+1e
−2ε+ |

(
< |wn+1e

2ε+ |
)

on the contours. Effectively it means that we take the

residues at zero in w1 first, then in w2, . . . etc.

The relation (3.8) is a direct generalization of the results of the previous sections except

for the factor F in the integrand, that we need to explain. The presence of this factors

means that, instead of selecting the sector of zero U(1)h charge in I0
1 , where U(1)h is the

(Cartan) flavor symmetry associated with the h extra D5 segments, we are selecting the

sector of U(1)h charge (−N−2
2 , · · · ,−N−2

2 , N−2
2 , · · · , N−2

2 ), with h/2 negative charges and

h/2 positive charges. So we are saying that Z0
1 corresponds to this charge sector in I0

1 .

Integrating out a Fermi multiplet of mass m induces a shift of the SQM Chern-Simons

level κ = sign(m)
2 for the U(1) flavor symmetry, and results in a factor eκm = e

|m|
2 in the

matrix model. Similarly integrating out a (0,4) hypermultiplet of mass m will induce a 1d

background Chern-Simons level κ′ = −sign(m) in the matrix model, resulting in a factor
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e−|m|.13 The presence of these 1d Chern-Simons term can be understood as turning on a

background charge for the U(1) flavor symmetry.

When we completed the ADHM quiver we added hN Fermi multiplets, which give

a background charge for the U(1)h flavor symmetry and SU(N) gauge symmetry, corre-

sponding to a factor
∏h
n=1

∏N
i=1 e

1
2
|vn−ai|. The sign of vn−ai is set by the relative position

of the nth D5 segment and ith D3 brane. The distribution of the D5s in the upper and

lower regions (above or below the D3s) is such that the resulting factor measuring the

background U(1)h charge is
∏h/2
n=1(wn)−N/2

∏h
n′=h/2+1(wn′)

N/2 (while the SU(N) charge is

zero). Saying it differently, we take the first h/2 vn to be large and positive and the last

h/2 vn to be large and negative. Similarly the presence of the h (0,4) extra hypermultiplets

induces a background charge for the U(1)h flavor symmetry and the gauge U(1) symmetry

which is measured by a factor
∏h
n=1 e

−|vn−φ|. In particular the contribution to the U(1)h

charge is
∏h/2
n=1wn

∏h
n′=h/2+1(wn′)

−1.

Combining the two factors we obtain that the presence of the additional matter fields in

the improved SQM induces a U(1)h charge (−N−2
2 , · · · ,−N−2

2 , N−2
2 , · · · , N−2

2 ), measured

by a factor
∏h/2
n=1(wn)1−N/2∏h

n′=h/2+1(wn′)
N/2−1 in the matrix model. Therefore, in order

to recover Z0
1 , we need to pick the sector with this charge. This explains the factor F in

the integrand of (3.8).14

By explicit computations for low values of N (N = 2, 3, 4, 5) we find that the rela-

tion (3.8) yields

Z0
1 = −

N∑
i=1

∏2N
k=1 sh(ai −mk − ε+)∏

j 6=i sh(aij)sh(aij − 2ε+)

+ ch

(
2N∑
k=1

mk + 2ε+ − 2

N∑
i=1

ai

)
.

(3.9)

The terms on the first line match the JK contribution ZJK of the original/standard index

computation (2.9) with ζ > 0. We propose that the term on the second line is the missing

Zextra contribution, for arbitrary N . One can check that this expression is (non-trivially)

invariant under the Z2 symmetry ε+ → −ε+.

Here we have given the result for the U(N) theory.15 For the SU(N) result, one simply

sets
∑N

i=1 ai = 0.

3.1.4 A simplification

It turns out that the residue computation can be simplified. Indeed we observe that the

same result is reached if, instead of completing the brane system to a full 5-brane web, we

only partially complete it with the addition of two D5 segments as in figure 8. The semi-

improved SQM now has only 2 new (0,4) hypermultiplets and 2N new Fermi multiplets.

13These properties can be deduced from looking at the large mass limit m → ±∞ of the matrix model

factors for these multiplets.
14There is also a related explanation of such factors from the brane setup, with the D5 branes inducing

a flux on the D3 brane worldvolume. We refer the reader to [18].
15Note that in the U(N) theory L1 is not the minimally charged ’t Hooft loop. The minimal loops have

magnetic charges B = (±1, 0, · · · , 0) and have no bubbling sector.
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Figure 8. Partial completion of the brane systems for the L1 bubbling in the SU(3) and SU(4)

theories and semi-improved SQM.

The index is computed by

Ĩ0
1 (ε−) =

∫
JKζ>0

dφ

2πi

(−1)sh(2ε+)

sh(ε1)sh(ε2)

N∏
i=1

sh[±(φ−ai)+ε−]

sh[±(φ−ai)+ε+]

∏2N
k=1 sh(φ−mk)

∏N
i=1

∏
n=1,2 sh(ai−vn)∏

n=1,2 sh[±(φ−vn)−ε+]
,

(3.10)

and the bubbling contribution is

Z0
1 =

∮
C

dw1dw2

(2πi)2w1w2

(
w1

w2

)N−2
2

Ĩ0
1 (w1, w2) , (3.11)

with the residue in w1 taken first, and then the residue in w2, and with Ĩ0
1 (w1, w2) =

limε−→∞
(−1)N

sh(ε−)2N−2 Ĩ0
1 (ε−, w1, w2).

This computation reproduces the result (3.9). This means that additional completion

of the brane setup giving the full improved ADHM does not change the evaluation of Z0
1

beyond the effect brought by the semi-improved ADHM. In general we expect such a

simplification to occur, in the sense that it may not be necessary to fully complete the

brane setup, however we do not have a criterion for determining when to stop the brane

completion.

3.2 Minimal dyonic loop

We expect that the technique of brane completion can be used to compute the vev of other

loops of the N = 2 SQCD theories (possibly all loops). In this section we study a dyonic

loop L1,1 which has minimal non-zero magnetic and electric charges.

3.2.1 Brane setups

The first thing to ask is: what is the brane setup realizing the minimal dyonic loop (without

bubbling)? To our knowledge this has not been studied in the literature. We know that
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Figure 9. Initial brane setup for the dyonic loop L1,q, with an NS5 brane and a (1, q) 5-brane.

the presence of a magnetic loop (’t Hooft loop) is related to adding NS5 branes and that

the presence of an electric loop (Wilson loop) is related to adding D5 branes. Here we

propose that dyonic loops are related to the presence of (p, q) 5-branes.

The idea is that a (p, q) 5-brane induces a magnetic charge ±p and electric charge

±q on the D3 worldvolume gauge theory, with ± depending on whether the D3 brane is

placed to the left/top or to the right/bottom of the 5-brane. Based on this principle we

can realize a dyonic loop of arbitrary electric and magnetic charge in the U(N) theory.

For the SU(N) theory one restricts to the allowed subset of magnetic and electric charges.

For instance, adding an NS5 brane (= (1, 0) 5-brane) and a (1, q) 5-brane as described in

figure 9 realizes a dyonic loop operators L1,q of magnetic charge B = (1, 0N−2,−1) and

electric charge E = q
2 × (1N−1,−1). Here the electric charge E should be thought of as

defining a representation of the stabilizer of B in U(N). In this case the stabilizer of B

is U(1)2 × U(N − 2) ∼ U(1)3 × SU(N − 2). The electric charge E decomposes as E =
q
2×(1, 0N−1)+ q

2×(0N−1,−1)+ q
2×(0, 1N−2, 0). It corresponds to a representation of charge

( q2 ,−
q
2 ,

N−2
2 q) under the U(1)3 factors and the trivial representation under SU(N −2). For

the theory with SU(N) gauge group the overall U(1) electric charge is unphysical and we

have E ' q × (0N−1,−1).

We now focus on the minimal loop L1,1, whose charges are B = (1, 0N−2,−1) and

E = 1
2 × (1, 1N−2,−1).16 In figure 10 we show how to complete the brane setups for L1,1 in

the conformal SQCD theories, for N = 2 and N = 3. We have arranged the D7 branes so

that half of them is above the D3 branes and half of them is below the D3 branes (as they

stand in the initial setup of figure 9). Under this constraint, they are otherwise placed at

convenience. The setups for higher values of N can be worked out in a similar fashion.

The bubbling contribution arises from D1 segments stretched between two D3s and

combining with other D1 segments to form a D1 string stretched between two NS5 branes.

It is less direct to see how this is realized in the dyonic context. We show in figure 11 how

this happens for the SU(2) theory. First we move the D3s around and push them inside

16For N > 2, this is not the only dyonic loop that one would like to call “minimal”. For instance the loop

with B = (1, 0N−2,−1) and E = 1
2
× (1, 1N−3,−1, 1) = 1

2
× (1N ) + (0, 0N−3,−1, 0) is also a minimal dyonic

loop. In this case the magnetic loop is dressed with a Wilson loop in the anti-fundamental representation

of SU(N − 2). Here a minimal dyonic loop has minimal electric and magnetic charges in the SU(N) theory.

It is realized with a minimal number of branes in the brane picture (two 5-branes).
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Figure 10. Complete brane system for the dyonic loop L1,1 in the (a) SU(2) and (b) SU(3) theories.

D1
bubbling

1 4

3

2

Figure 11. Moving the D3s inside the web, through NS5 branes, we reach a configuration that

can bubble. On the right: bubbling configuration for L1,1 in the SU(2) Nf = 4 theory.

the 5-brane web by crossing NS5 branes. This creates D1 segments between the D3s and

the NS5s in such a way that they can combine with the bubbling D1 segment to reach the

desired configuration. In the process one of the D3 branes had to cross a D7 cut. This

creates an excitation of an F1 string stretched between the D3 and the D7. However this

excitation has no effect on the bubbling term since in the resulting ADHM quiver one has

to sum over D3-D7 excitations. Therefore, for the computation of the bubbling term, we

can simply ignore this effect.

The same manipulation leads to the bubbling configuration of figure 12 for the L1,1

loop in the SU(3) theory. Here we have arranged the D7 branes so as to make the web

relatively good-looking. In this form we realize that the same bubbling configuration could

have been reached starting from the minimal ’t Hooft loop incomplete setup and completing

it in a non-symmetrical way, by putting four D7 below the D3s (and D1) and two D7 above
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Figure 12. Bubbling configuration for the dyonic loop L1,1 in the SU(3) Nf = 6 theory.

1 2N

h'

N

Figure 13. ADHM SQM associated with the L1,1 bubbling. h′ = N + 1 for N even and h′ = N

for N odd.

the D3s (and D1). Similarly the configuration on the right in figure 11 could be reached

by completing the SU(2) minimal ’t Hooft loop setup with three D7s below and one D7

above. Therefore we see that the repartition of D7 branes in the process of completing

the brane web is important. Our claim here is that the configurations of figures 11 and 12

correspond to the dyonic loop bubbling (and not the minimal ’t Hooft loop bubbling).

3.2.2 Z0,1
1,1 bubbling

The bubbling sector screens the magnetic charge, but leaves the electric charge unscreened.

Let us denote Z0,1
1,1 the bubbling factor in the L1,1 loop vev. From the complete brane setups

of the bubbling contribution we read the improved ADHM SQM for Z0,1
1,1 . For the SU(2)

and SU(3) theories the improved SQM quivers are indicated in figures 11 and 12. For the

general SU(N) Nf = 2N theory the improved ADHM is given in figure 13. It has a U(1)

gauge node (with (0, 4)? vector multiplet), 2N fundamental Fermi multiplets, N (0, 4)?

fundamental hypermultiplets, h′ (0,4) fundamental hypermultiplets and h′N uncharged

Fermi multiplets, with h′ = N + 1 for N even and h′ = N for N odd. Here h′ is always

odd. This is the same as the improved SQM for the minimal ’t Hooft loop L1, except for

the replacement of h by h′.

Note that we are calling the SQM an “improved” SQM, but we did not have an initial

ADHM theory to start with. Such an initial ADHM SQM does exist though. It can be

read from an incomplete brane setup where the effect of the extra D5 segments on the

SQM matter is dismissed. In such a case the SQM has a non-zero Chern-Simons level (we

will discuss this in the next subsection).
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From the improved SQM we can compute the Witten index I0,1
1,1 with say ζ > 0 (the

result does not depend on the choice of sign). The mass deformed index is given by

I0,1
1,1 (ε−) =

∫
JKζ>0

dφ

2πi

(−1)sh(2ε+)

sh(ε1)sh(ε2)

N∏
i=1

sh[±(φ−ai)+ε−]

sh[±(φ−ai)+ε+]

∏2N
k=1 sh(φ−mk)

∏N
i=1

∏h′

n=1 sh(ai−vn)∏h′

n=1 sh[±(φ−vn)−ε+]
.

(3.12)

We now extract the bubbling contribution by the same manipulation as in the ’t Hooft

loop case,

Z0,1
1,1 =

∮
C

h′∏
n=1

dwn
2πiwn

F ′(w) lim
ε−→∞

(−1)N+1

sh(ε−)2N−2
I0,1

1,1 (ε−, w) ,

with F ′(w) =

( ∏(h′−1)/2
n=1 wn∏h′

n′=(h′+1)/2wn′

)N−2
2

,

(3.13)

with the residue at the origin in w1 taken first, and then the residue at the origin in

w2, . . . etc.

Once again the factor F ′ select a sector of a definite charge under the U(1)h
′

flavor

symmetry associated with the D5 segments in the brane web. This charge sector can

be worked out by computing the U(1)h
′

background charge due to the extra multiplets

associated with the D5s in the improved SQM, taking into account that the repartition of

the D5 segments is such that (h′ − 1)/2 of them are above the D3 branes and D1 string

and the rest is below (see section 3.1.3).

We have no good justification for the presence of the factor (−1)N+1 in the normaliza-

tion of the result. We do not know how to fix the overall sign and our prescription follows

from consistency requirement, when relating the full dyonic loop vev to OPEs between

loops, as we discuss in section 4. Still there are several consistent choices of signs and we

do not know how to fix it completely.17

The evaluation of I0,1
1,1 (ε−) and Z0,1

1,1 is not very different from that of the minimal ’t

Hooft loop discussed in previous sections. From computations at low values of N we infer

the result

Z0,1
1,1 = −e

1
2

∑
i ai+ε+

N∑
i=1

e−ai
∏2N
k=1 sh(ai −mk − ε+)∏

j 6=i sh(aij)sh(aij − 2ε+)

− e
1
2

∑2N
k=1 mk+ε+− 1

2

∑N
i=1 ai

(
2N∑
k=1

e−mk −
N∑
i=1

e−ai+ε+

)
.

(3.14)

The terms in the first line correspond to what could be obtained from the SQM of an

incomplete brane setup (without D5 segments) by taking JK residues, while the term on

the second line would be the missing Zextra piece. On the first line we recognized a sum

of terms weighted by factors e
1
2

(−ai+
∑
j 6=i aj), which should be interpreted as the classical

contributions due to the unscreened electric charge E = (1
2 , · · · ,

1
2 ,−

1
2). Each electric

17For instance one could change the normalization of the bubbling factors in both L1 := L1,0 and L1,1

by a −1 sign, preserving the relation (4.9).
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Figure 14. Partial completion of the brane setup for the L1,1 bubbling in the (a) SU(2) and (b)

SU(3) theory. The resulting SQMs have Chern-Simons level κ = 1.

charge sector in the Weyl average is weighted with its own monopole bubbling factor. The

reason why this electric charge is not visible in the terms on the second line is unclear.

One can check that this expression is invariant under the Z2 symmetry ε+ → −ε+.

Equation (3.14) gives the bubbling contribution in the U(N) theory. For the SU(N) theory

one imposes
∑

i ai = 0.

3.2.3 Simplification

As in the L1 ’t Hooft loop case, we observe that the relation (3.13) can be simplified,

namely Z0,1
1,1 can be obtained by residues from a simpler SQM. This simpler SQM is

obtained from a brane setup which is a partial completion of the initial brane setup. This

partial completion is such that we add only two D5 segments, one above and one below

the D1 string, as shown in figure 14 for N = 2 and N = 3. The resulting SQM is simpler

in the sense that it has less matter fields.

One subtlety here is that the SQM that one reads from these brane setup has a Chern-

Simons level κ = 1. The Chern-Simons level is associated with branes sourcing matter

fields and is computed by the formula

κ = Nup
D5 −N

down
D5 − 1

2

(
Nup
D7 −N

down
D7

)
, (3.15)

with Nup
D5, respectively Ndown

D5 , the number of D5 segments placed above, respectively below,

the D1 string, and similarly for Nup
D7 and Ndown

D7 . In all the brane systems that we have

studied in previous sections, the Chern-Simons level was always vanishing. This is not the

case any more for the SQM of figure 14. It is the same SQM as for the L1 ’t Hooft loop

bubbling in (3.10), except for the extra CS term.
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Figure 15. Initial brane setup and completion for the L2 loop in SU(2) Nf = 4 theory. Moving

the branes we obtain a nicer configuration (on the right).

The index of this SQM is computed by

Ĩ0,1
1,1 (ε−) =

∫
JKζ>0

dφ

2πi
e−φ

(−1)sh(2ε+)

sh(ε1)sh(ε2)

N∏
i=1

sh[±(φ−ai)+ε−]

sh[±(φ−ai)+ε+]

∏2N
k=1 sh(φ−mk)

∏N
i=1

∏
n=1,2 sh(ai−vn)∏

n=1,2 sh[±(φ−vn)−ε+]
.

(3.16)

We now observe that the result (3.14) for Z0,1
1,1 can be reproduced by the simpler residue

computation

Z0,1
1,1 =

∮
C

dw1dw2

(2πi)2w1w2

(
w1

w2

)N−2
2

lim
ε−→∞

(−1)Ne
1
2

∑
i ai

sh(ε−)2N−2
Ĩ0,1

1,1 (ε−, w1, w2) , (3.17)

with the residue in w1 taken first, and then the residue in w2. Here the factor e
1
2

∑
i ai takes

into account the electric charge induced on the D3s by the missing D5 segments.18

3.3 Non-minimal ’t Hooft loops

Our method applies to ’t Hooft loops of higher magnetic charge. In this section we provide

the example of the bubbling contribution for a non-minimal ’t Hooft loop in conformal

SQCD, which we denote L2, with magnetic charge B = (2, 0, · · · , 0,−2) := B2.

The vev of L2 decomposes into three sectors: the unscreened sector of charge B2, the

partially screened bubbling sector of charge v1 = (1, 0, · · · , 0,−1) and the fully screened

sector of charge v2 = ~0:

〈L2〉=

∑
i 6=j

e2(bi−bj)

Z1-loop(B2)+

∑
i 6=j

ebi−bj

Z1-loop(v1)Zmono(B2,v1)+Zmono(B2,v2) ,

(3.18)

where we used Z1-loop(v2 = ~0) = 1. Our goal is to compute Z1
2 := Zmono(B2, v1) and

Z0
2 := Zmono(B2, v2).

The brane setup realizing L2 has now four NS5 branes. In figure 15 we show the

completed brane configuration for L2 in the SU(2) Nf = 4 theory. Because there are more

NS5 branes to begin with, the completion leads to a more involved 5-brane web.

18Since for general N we remove (h′ − 1)/2 D5 segments downstairs and (h′ − 1)/2 − 1 D5 segments

upstairs, we compensate by multiplying by a single factor e
1
2

∑
i ai .
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Figure 16. Brane setup and improved SQM for the bubbling sectors (a) v1 for Z1
2 , and (b) v2

for Z0
2 .

We will focus on the SU(2) Nf = 4 theory for simplicity. The bubbling sector v1 arises

when a D1 string is stretched between the two NS5s. The D3s can be moved inside the

brane web and the D1 can break into three segments as shown in figure 16-a. The resulting

improved SQM has three U(1) nodes. It is given by the quiver of the figure 16-a. We

denote I1
2 its Witten index.

The improved SQM now depends on 8 extra flavor fugacities for the U(2)×U(4)×U(2)

flavor symmetry associated with the D5 segments. We denote these fugacities w
(1)
n=1,2,

w
(2)
m=1,2,3,4, w

(3)
n=1,2. The bubbling contribution Z1

2 is obtained from I1
2 by taking a residue

in these fugacities. Precisely we have the formula

Z1
2 =

∮
C

d2w(1)d4w(2)d2w(3)

(2πi)8
∏
nw

(1)
n w

(3)
n
∏
mw

(2)
m

lim
ε−→∞

1

sh(ε−)2
I1

2 (ε−, w
(1), w(2), w(3)) , (3.19)

where the contour C picks up the poles at the origin for each fugacity. Without further

details let us give the final result of the computation:

Z1
2 =−

∑
i=1,2

∏4
k=1 sh(ai−mk−2ε+)∏

j 6=i sh(ai−aj)sh(ai−aj−2ε+)
−
∑
i=1,2

∏4
k=1 sh(ai−mk−2ε+)∏

j 6=i sh(ai−aj−2ε+)sh(ai−aj−4ε+)

+ch

(
4∑

k=1

mk−2(a1+a2)+2ε+

)
+ch

(
4∑

k=1

mk−2(a1+a2)+6ε+

)
. (3.20)

This result is in agreement with the computation of [15] (Zmono(2, 1) in section 3.6.2),

after imposing a1 + a2 = 0. Once again the terms on the second line correspond to the

contribution Zextra in the computation that uses the non-improved SQM.

The second bubbling sector arises when we stretch one more D1 segment between the

two D3 branes, screening completely the magnetic charge. In this case the D3 branes can

be moved to the central region of the web and the resulting configuration has one more D1
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segment in the middle. The gauge group of the improved SQM is then U(1)×U(2)×U(1).

The explicit brane configuration and improved SQM are given in figure 16-b.

We denote I0
2 the index of this SQM. For the sake of clarity let us write down the

matrix model explicitly in this more complicated case:

I0
2 (ε−) =

∫
JK>0

dφ̂d2φdφ̃

2(2πi)4

[
sh(2ε+)

sh(ε1)sh(ε2)

]4 sh(φ12)2sh(±φ12−2ε+)

sh(±φ12−ε1)sh(±φ12−ε2)

4∏
m=1

∏
p=1,2

sh(v(2)
m −ap)

×
∏
i=1,2

sh(±(φi−φ̂)+ε−)sh(±(φi−φ̃)+ε−)
∏
p=1,2 sh(±(φi−ap)+ε−)

sh(±(φi−φ̂)+ε+)sh(±(φi−φ̃)+ε+)
∏
p=1,2 sh(±(φi−ap)+ε+)

4∏
k=1

sh(φi−mk)

×
∏
i=1,2[

∏
n=1,2 sh(φi−v(1)

n )sh(φi−v(3)
n )]

∏4
m=1 sh(φ̂−v(2)

m )sh(φ̃−v(2)
m )∏

i=1,2

∏4
m=1 sh(±(φi−v(2)

m )−ε+)
∏
n=1,2 sh(±(φ̂−v(1)

n )−ε+)sh(±(φ̃−v(3)
n )−ε+)

.

(3.21)

We have now the relation

Z0
2 =

∮
C

d2w(1)d4w(2)d2w(3)

(2πi)8
∏
nw

(1)
n w

(3)
n
∏
mw

(2)
m

lim
ε−→∞

1

sh(ε−)4
I0

2 (ε−, w
(1), w(2), w(3)) , (3.22)

which evaluates to

Z0
2 =

ch(2ε+)2
∏
i=1,2

∏4
k=1 sh(ai−mk−ε+)

sh(a12±2ε+)2
+
∑
i=1,2

∏4
k=1 sh(ai−mk−ε+)sh(ai−mk−3ε+)∏
j 6=i sh(aij)sh(aij−2ε+)2sh(aij−4ε+)

−ch

(∑
k

mk−2a1−2a2+4ε+

)∑
i=1,2

ch(2ε+)
∏4
k=1 sh(ai−mk−ε+)∏

j 6=i sh(aij)sh(aij−2ε+)

+ch

(∑
k

mk−2a1−2a2+2ε+

)2

. (3.23)

The terms on the first line corresponds to the JK-evaluation of the ADHM quiver con-

structed from the incomplete brane configuration without D5s. The terms on the second

and third line arise from our complete brane system.

It can be checked that the expressions for Z1
2 and Z0

2 are invariant under ε+ → −ε+
as they should. This happens only after one sums over the terms on the three lines.

4 Non-commutative product and tests of the results

The line operators studied in this paper are placed at a point on R3 and are wrapping an S1

circle. In the localization computation one turns on an Omega deformation with parameter

ε+ on R2 ⊂ R3 which forces the line to sit at the origin of R2 (in order to preserve some

supersymmetries). In this context there is a notion of ordering of the operators along the

transverse R line. We can insert loops Li at different positions zi along this line. By a

standard argument the vev of a product of BPS loops depends on the positions zi only

through their ordering. So we can have

〈L1(z1)L2(z2)〉z1>z2 := 〈L1.L2〉 6= 〈L2.L1〉 , (4.1)
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for ε+ 6= 0 and L1 6= L2 two line operators. The OPE of two line operators defines a

non-commutative product acting on the line operator algebra. This product turns out to

have the form of a Moyal product

〈L1.L2〉 = 〈L1〉 ? 〈L2〉 , (4.2)

given by

(f ? g)(a, b) := e
ε+

∑
i(∂bi∂a′i

−∂ai∂b′i
)
f(a, b)g(a′, b′)

∣∣∣
a′=a
b′=b

. (4.3)

The Moyal product endows the line operator algebra with a Poisson structure, which can

be used to quantize this algebra.

The star product of two line operators can be computed via a simple formula. With

the vev of a loop L given by the expansion

〈L〉 =
∑
v

ev.bZL(a; v) :=
∑
v

ZL,tot(a, b; v) , (4.4)

we then have

〈L1〉 ? 〈L2〉 =
∑
v1

∑
v2

ZL1,tot

(
a− ε+v2, b; v1

)
ZL2,tot

(
a+ ε+v1, b; v2

)
. (4.5)

This structure naturally emerges from the localization computation of [6]. We refer to that

paper for more details.

We would like to check that our findings are compatible with this structure. For this,

we will compute the two products 〈L0,1〉 ? 〈L1,0〉 and 〈L1,0〉 ? 〈L1,0〉, and see if they are

expressed as linear combinations of others loops, in particular 〈L1,±1〉 and 〈L2,0〉, that we

have computed. For simplicity we will focus first on the U(2) Nf = 4 theory. In this

theory, 〈L1,q〉 refers to the dyonic loop with minimal magnetic charge B = (1,−1) and

electric charge E = q(1
2 ,−

1
2). The minimal ’t Hooft loop is L1 := L1,0 and the minimal

Wilson loop is L0,1.

The expressions for the vev of L0,1 and L1,0 are

〈L0,1〉= e
1
2
a12 +e−

1
2
a12 ,

〈L1,0〉=
(
eb12 +e−b12

)(∏4
k=1 sh(a1−mk)sh(a2−mk)

sh(±a12)sh(±a12+2ε+)

)1/2

−
∏4
k=1 sh(a1−mk−ε+)

sh(a12)sh(a12−2ε+)
−
∏4
k=1 sh(a2−mk−ε+)

sh(a12)sh(a12+2ε+)
+ch

(
4∑

k=1

mk−2a1−2a2+2ε+

)
,

(4.6)

with a12 := a1 − a2, b12 := b1 − b2 and f(x± y) := f(x+ y)f(x− y).
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Using formula (4.5), we compute the star product between these two line operators

〈L0,1〉?〈L1,0〉=

(
eb12+

a12
2
−ε+ +e−b12+

a12
2

+ε+ +eb12−a12
2

+ε+ +e−b12−a12
2
−ε+
)

∏
i=1,2

4∏
k=1

sh(ai−mk)

sh(±a12)sh(±a12+2ε+)


1/2

+
(
e
a12
2 +e−

a12
2

)−∑
i=1,2

∏4
k=1 sh(ai−mk−ε+)∏

j 6=i sh(aij)sh(aij−2ε+)
+ch

(
4∑

k=1

mk−2a1−2a2+2ε+

) .
(4.7)

We expect this to be a combination of the loops 〈L1,±1〉. We have computed the

bubbling contribution to L1,1 in section 3.2. The computation for the bubbling of L1,−1

is easily done following the same reasoning. The (partially complete) brane configuration

for L1,−1 is simply the upside-down reverse of figure 14 and the SQM Chern-Simons level

is κ = −1. The final result for the vevs of these dyonic loops, including non-bubbling and

bubbling, is19

〈L1,±1〉 =
(
eb12±a12

2 + e−b12∓a12
2

)
∏
i=1,2

4∏
k=1

sh(ai −mk)

sh(a12)2sh(a12 + 2ε+)sh(a12 − 2ε+)


1/2

− e±
a1+a2

2
±ε+

∑
i=1,2

e∓ai
∏4
k=1 sh(ai −mk − ε+)∏

j 6=i sh(aij)sh(aij − 2ε+)

− e±
1
2

∑4
k=1 mk±ε+∓

a1+a2
2

(
4∑

k=1

e∓mk − e±ε+(e∓a1 + e∓a2)

)
.

(4.8)

From here we find the non-trivial relation

〈L0,1〉 ? 〈L1,0〉 = e−ε+〈L1,1〉+ eε+〈L1,−1〉+ 〈W 〉 , (4.9)

with 〈W 〉 = e
1
2

(
∑
kmk−a1−a2)∑

k e
−mk + e−

1
2

(
∑
kmk−a1−a2)∑

k e
mk , a sum of Wilson loop

vevs for the flavor group and the central part of gauge group. The existence of this relation

is a non-trivial check of our computation of bubbling terms for the loops involved. Similarly

we have

〈L1,0〉 ? 〈L0,1〉 = eε+〈L1,1〉+ e−ε+〈L1,−1〉+ 〈W 〉 , (4.10)

which corresponds to sending ε+ → −ε+.

19In this relation ± is either plus or minus (not a product over two factors).
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We now look at the product (or OPE) between two L1,0 loops. Using (4.5) we find

〈L1,0〉 ? 〈L1,0〉 =
(
e2b12 + e−2b12

) [ ∏
i=1,2

∏4
k=1 sh(ai −mk ± ε+)

sh(±a12 + 2ε+)2sh(±a12)sh(±a12 + 4ε+)

]1/2

+

∏4
k=1 sh(a1 −mk + ε+)sh(a2 −mk − ε+)

sh(a12 + 2ε+)2sh(a12)sh(a12 + 4ε+)
+ “a1 ↔ a2” + (Z0

1 )2

−
(
eb12 + e−b12

) [∏4
k=1 sh(a1 −mk)sh(a2 −mk)

sh(±a12)sh(±a12 + 2ε+)

]1/2 [ ∑
i=1,2

∏4
k=1 sh(ai −mk)∏

j 6=i sh(aij)sh(aij + 2ε+)

+

∏4
k=1 sh(ai −mk − 2ε+)∏

j 6=i sh(aij − 2ε+)sh(aij − 4ε+)
− 2ch

(
4∑

k=1

mk − 2a1 − 2a2 + 2ε+

)]
,

(4.11)

with Z0
1 the bubbling contribution to 〈L1,0〉 in (4.6) (also given in (3.9), with N = 2).

We want check that this is equal to the vev 〈L2,0〉 of the next-to-minimal ’t Hooft loop.

This vev has an expansion

〈L2〉 =
(
e2b12 + e−2b12

)
Z1-loop[B = (2,−2)] +

(
eb12 + e−b12

)
Z1-loop[B = (1,−1)]Z1

2 + Z0
2 ,

(4.12)

and we have computed the monopole bubbling contributions Z1
2 and Z0

2 in section 3.3.

We find that the relation

〈L1,0〉 ? 〈L1,0〉 = 〈L2,0〉 (4.13)

is correct if and only if

Z1
2 =

∑
i=1,2

∏4
k=1 sh(ai−mk)∏

j 6=i sh(aij)sh(aij+2ε+)
−

∏4
k=1 sh(ai−mk−2ε+)∏

j 6=i sh(aij−2ε+)sh(aij−4ε+)

+2ch

(
4∑

k=1

mk−2a1−2a2+2ε+

)
,

Z0
2 =

∏4
k=1 sh(a1−mk+ε+)sh(a2−mk−ε+)

sh(a12+2ε+)2sh(a12)sh(a12+4ε+)
+

∏4
k=1 sh(a1−mk−ε+)sh(a2−mk+ε+)

sh(a12−2ε+)2sh(a12)sh(a12−4ε+)

+(Z0
1 )2 . (4.14)

Although this is not obvious, one can check (with Mathematica for instance) that indeed

our expressions (3.20) for Z1
2 and (3.23) for Z0

2 agree with (4.14). This provides a strong

check of the validity of our construction.

Product of minimal loops in U(N) theories. Finally, if we think about ’t Hooft

loops in the U(N) theory with 2N flavors, the minimally charged loop is not L1,0, but

rather there are two minimally charged loops `+, `− of magnetic charges B+ = (1, 0N−1),

B− = (0N−1,−1) respectively. These loops do not have bubbling sectors and their vev is

simply given by

〈`+〉 =
N∑
i=1

ebi

( ∏4
k=1 sh(ai −mk)∏
j 6=i sh(± aij + ε+)

)1/2

, 〈`−〉 =
N∑
i=1

e−bi

( ∏4
k=1 sh(ai −mk)∏
j 6=i sh(± aij + ε+)

)1/2

.

(4.15)
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We expect that the OPE of `+ and `− is related to L1,0, which has magnetic charge

B = (1, 0N−2,−1). We compute

〈`−〉?〈`+〉=
∑
i 6=j

ebij

( ∏2N
k=1 sh(ai−mk)sh(aj−mk)

sh(±aij)sh(±aij+2ε+)
∏
k 6=i,j sh(±aik+ε+)sh(±ajk+ε+)

) 1
2

−
N∑
i=1

∏2N
k=1 sh(ai−mk−ε+)∏

j 6=i sh(aij)sh(aij−2ε+)
,

〈`+〉?〈`−〉=
∑
i 6=j

ebij

( ∏2N
k=1 sh(ai−mk)sh(aj−mk)

sh(±aij)sh(±aij+2ε+)
∏
k 6=i,j sh(±aik+ε+)sh(±ajk+ε+)

) 1
2

−
N∑
i=1

∏2N
k=1 sh(ai−mk+ε+)∏

j 6=i sh(aij)sh(aij+2ε+)
. (4.16)

This is to be compared with

〈L1,0〉=
∑
i 6=j

ebij

( ∏2N
k=1 sh(ai−mk)sh(aj−mk)

sh(±aij)sh(±aij+2ε+)
∏
k 6=i,j sh(±aik+ε+)sh(±ajk+ε+)

) 1
2

−
N∑
i=1

∏2N
k=1 sh(ai−mk−ε+)∏

j 6=i sh(aij)sh(aij−2ε+)
+ch

(
2N∑
k=1

mk−2

N∑
i=1

ai+2ε+

)
,

(4.17)

which is invariant under ε+ → −ε+. Then we observe the relations

〈`−〉 ? 〈`+〉 = 〈L1,0〉 − 〈W ′〉(ε+) ,

〈`+〉 ? 〈`−〉 = 〈L1,0〉 − 〈W ′〉(−ε+) ,
(4.18)

with 〈W ′〉(ε+) = eε+e
1
2

∑2N
k=1 mk−

∑N
i=1 ai + e−ε+e−

1
2

∑2N
k=1 mk+

∑N
i=1 ai a linear combination of

Wilson loop vevs. The OPE of the two loop operators closes on the loop operator algebra

as it should.

Here the OPE between `+ and `− can be realized with same brane configuration as L1,0

with two NS5 branes, except that the two NS5 branes sit at different positions along the z

direction, which is the direction where operator insertions are ordered. Each NS5 sources

one of the two `± line operators. This has a bubbling configuration which is as in figure 3,

but with the NS5s separated along z. This separation of the NS5s is interpreted in the

corresponding (non-improved) SQM as an FI parameter. Thus the bubbling term in the

OPE 〈`−〉 ? 〈`+〉 in (4.16) should correspond to the JK residues of the non-improved SQM

at positive FI parameter and the bubbling term in the OPE 〈`+〉 ? 〈`−〉 in (4.16) should

correspond to the JK residues at negative FI parameter. This is indeed the case. At non-

zero FI parameter the extra Coulomb vacua are lifted, so there is no extra contribution.

Moreover there is no ε+ → −ε+ invariance here, rather this operation exchanges the `−

and `+ insertions. On the other hand, when the two NS5 branes are at the same position

in z, realizing the insertion of L1,0, the FI parameter of the SQM vanishes and Coulomb

vacua contributes, requiring the more sophisticated method with the improved SQM. We

see that the OPE structure is perfectly compatible with the brane picture and the SQM

computations.
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5 Embedding in 5d-4d systems

We have presented a method to compute monopole bubbling contributions to ’t Hooft loops

in which the loop is realized by a brane configuration in IIB string theory. In particular

the 4d N = 2 theory is realized by D3 and D7 branes and the loop operator is realized

by embedding them in a 5-brane web. A 5-brane web by itself supports a 5d SCFT [17],

which we have ingored so far.20

From the point of view of the 5d theory, the presence of D3 branes introduces half-BPS

line operators. This setup was studied in [18], where the 4d theory living on the D3 brane

was considered non-dynamical. The line operators of the 5d theory realized by D3 branes

are SQM coupled to the 5d theory in a supersymmetric way. It was found in [18] that

the vev of half-BPS Wilson loops of the 5d theory can be obtained by taking residues of

〈LSQM〉 in the fugacities associated to the D3-brane flavor symmetries, with LSQM denoting

an SQM loop. This is in a sense the reversed operation to what we have been doing in this

paper, where we took residues in fugacites associated to the D5-brane flavor symmetries

to obtain the bubbling contribution to ’t Hooft loops of the 4d theory.

In fact such D3-D7-5-brane setups really describe at low energies the coupled system

of a 5d and a 4d SCFT. The two theories live on different spaces which intersect along

a line. With the orientations described in table 1, the 4d theory lives on x0123 and the

5d theory lives on x06789. The two theories are coupled together by the presence of an

N = (0, 4) SQM living on the x0 line, which consists of bifundamental fermions charged

under the 4d and 5d gauge fields, sourced by D3-D5 strings. The presence of this SQM

breaks half of the supersymmetries of the configuration. The partition function 〈LSQM〉
of such a system contains information about Wilson loops of the 5d theory and ’t Hooft

loop bubblings of the 4d theory, which can be obtained by residues in the D5 or in the D3

fugacities, therefore 〈LSQM〉 is the more fundamental object.

The recipe to obtain Wilson loops of the 5d theory from 〈LSQM〉 is rather straight-

forward: one simply takes some residues in the D3 fugacities (we refer to [18] for precise

relations) The recipe to obtain monopole bubbling terms in the 4d theory is slightly more

elaborate. The precise configurations for monopole bubbling in the 4d theory arise when

there are stretched D1 strings between NS5 pairs. The (improved) ADHM SQM that we

have discussed in previous sections is the theory living on a specific array of D1 strings.

From the point of view of the 5d theory the D1 strings correspond to instanton configura-

tions and the index I of the SQM on the D1s corresponds to a certain instanton sector of

the total partition function 〈LSQM〉. Therefore the recipe to obtain the monopole bubbling

contribution is to first select the relevant instanton sector in 〈LSQM〉 and then to take

residues in the D5 fugacities.

Let us give an illuminating example. We consider the brane setup of figure 17-a. It

represents a 5d-4d-1d coupled theory, where the 5d theory is an N = 1 U(2) SYM theory

with four fundamental hypermultiplets — this is the theory living on the D5 segments

and the hypermultiplets are D5-D7 string modes — and the 4d theory is N = 2 U(2)

20At sufficiently low energies, the 5d theory can be considered as frozen, compared to the 4d dynamics.
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a) b)

D1

1 4

2

2
4

2 21d

5d

1d

4d

Figure 17. a) Brane setup of 5d U(2) Nf = 4 coupled to 4d U(2) Nf = 4 through 1d Fermi mul-

tiplets. b) 1-instanton sector of the theory and corresponding ADHM N = (0, 4)∗ SQM (5d and 4d

fields do not figure in the 1d SQM). This is the same as the monopole bubbling configuration of L1.

SYM with four fundamental hypermultiplets.21 The worldvolumes of the two theories

intersect along a line which supports four 1d N = (0, 4) (single-fermion) Fermi multiplets

in transforming in the bifundamental representation of U(2)2 (this means that 1d vector

multiplets embedded in the 5d and 4d vector multiplets gauge the U(2)2 flavor symmetry

of the Fermi multiplets). These Fermi fields are D3-D5 string modes. In addition the 4d

and 5d hypermultiplets are coupled by 1d potential terms which break the flavor symmetry

to the diagonal SU(4) flavor symmetry. The corresponding 5d-4d-1d mixed quiver theory

is given in figure 17-a.

We denote 〈LSQM〉 the partition of this coupled theory, normalized by the 5d and 4d

partition functions. The configuration of figure 17-a is not one that we have seen so far.

From the point of view of the 4d theory living on the D3 branes, there is a line operator

defined by the 1d Fermi multiplets living on a line, but otherwise there is no non-trivial

magnetic or electric line operator.

In the combined 5d-4d-1d theory the partition function receives non-perturbative con-

tributions from D1 strings stretched between NS5 segments. These are seen as instanton

configurations in the 5d theory. For instance the setup of figure 17-b corresponds to the

one-instanton sector of the 5d theory. Accordingly, the observable 〈LSQM〉 admits an ex-

pansion in terms of instanton sectors weighted with a fugacity Q,

〈LSQM〉 =
∑
k≥0

QkL
(k)
SQM . (5.1)

From the point of view of the 4d theory these instanton sectors may correspond to bubbling

sectors of ’t Hooft (or dyonic) loops. For instance the brane setup for the one-instanton

sector of figure 17 is nothing but the complete brane setup for the bubbling sector of the

21Truly this is an N = 2∗ theory: there is massive adjoint hypermultiplet and we take the decoupling

limit of large mass, as explained in previous sections.
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minimal ’t Hooft loop in the U(2) Nf = 4 theory, that we found in section 3.1.2. This is the

same as figure 6. Therefore the ADHM for the one-instanton sector of LSQM is the same

as what we called the improved SQM for the bubbling contribution to L1 and we have

L
(1)
SQM = I0

1 (ε−) . (5.2)

This index depends (as before) on the D3 fugacites αi = e−ai , i = 1, 2, and the D5 fugacites

wn = e−vn , n = 1, 2.

We can thus reformulate the residue formula (3.4) as

Z0
1 =

∮
C

dw1

2πiw1

dw2

2πiw2
lim

ε−→∞

1

sh(ε−)2
L

(1)
SQM(w,α, ε−) . (5.3)

We emphasize that this is not an new method to compute Z0
1 . It is the same computation,

expressed in a larger context.

On the other hand, in [18] it was found that taking residues in αi computes the vev

of BPS Wilson loop operators in the tensor product representation 2⊗ 2 of the U(2) (or

SU(2)) 5d gauge group22

〈W2⊗2〉 =

∮
C

dα1

2πiα1

dα2

2πiα2
LSQM(w,α, ε−) , (5.4)

where now the integrand is the full LSQM vev and the residues are taken around the origin.

From the point of view of the 5d theory it makes sense to keep ε− finite (it plays the role

of another Ω background parameter).

Therefore we see that the partition function of the 5d-4d system contains the infor-

mation both about 5d and 4d BPS line operators and constitutes an interesting object to

study. It is all the more interesting that there is no simple way to isolate the 5d or 4d

observables from a simpler object directly. Indeed, this object was constructed in [18] in

order to compute the vev of Wilson loops in 5d, for which no direct evaluation method is

known. Simialrly, in this paper, we have constructed the improved ADHM SQM, which is

a sector of LSQM, in order to capture the full contribution of the monopole bubbling for ’t

Hooft loops in 5d.

Using the same reasoning we can associate to each monopole bubling factor Zmono(B, v)

a given 5d-4d-1d theory from which it is extracted as a residue in a certain instanton sector.

We will not work out this dictionary in general, but we will give the map for the bubbling

sectors that we have studied. The 5d-4d-1d system is read directly from the complete brane

setup that we have introduced and discussed at length.

The monopole bubbling contribution Z0
1 of the minimal ’t Hooft loop L1 in the 4d

U(N) theory with 2N flavors is related to the 5d-4d-1d system, where the 5d theory is

N = 1 U(h) theory with 2N flavors, with h defined as in section 3.1.3. The 1d theory is

composed of Nh Fermi multiplets transforming in the bifundamental representation (N, h)

of U(N) × U(h). Z0
1 is obtained by residues in the D5 fugacities w of the one-instanton

22The notation in that paper are such that the αi are called xi, while the wn are called αn.
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Bubbling 4d 4d 5d 1d Instanton reduced

term theory loop theory theory sector 5d theory

Z0
1 U(N)2N L1 U(h)2N (N,h) Fermi 1-inst U(2)2N , κ= 0

Z0,1
1,1 U(N)2N L1,1 U(h′)2N (N,h

′
) Fermi 1-inst U(2)2N , κ= 1

Z1
2 U(2)4 L2 U(2)2×U(4)4 2 bif. Fermi (1,1,1) ×

Z0
2 U(2)4 L2 U(2)2×U(4)4 (2,4) Fermi (1,2,1) ×

Table 2. Map between bubbling terms and 5d-4d-1d systems. U(n)nf
indicates a U(n) gauge

group with nf flavor hypermultiplets.

sector of the LSQM for this system,

Z0
1 =

∮
C

h∏
n=1

dwn
2πiwn

F (w) lim
ε−→∞

(−1)N

sh(ε−)4N−2
L

(1)
SQM(w,α, ε−) , (5.5)

with F (w) as in (3.8).

In addition, we have seen in section 3.1.4 that Z0
1 can be obtained from a simpler

5d-4d-1d system that is obtained from the partially complete brane setup with only two

D5 segments, like in figure 8. The 5d theory that is realized by this setup is N = 1 U(2)

SYM with 2N flavors (and 5d Chern-Simons level κ = 0). The 1d theory (in the absence

of D1 strings) is a set of 2N Fermi fields transforming in (N, 2) of U(N) × U(2). The 5d

theory is actually not always a genuine 5d SCFT, in the sense that the U(2) theory with

Nf > 8 flavors does not have an SCFT at ‘infinite coupling’. Rather it is not UV complete

by itself. It requires a UV completion. For instance we can think of it as a piece of the 5d

theory of the fully completed brane setup. For the computation of the observable LSQM

there does not seem to be a difficulty in the computation and this pseudo 5d theory can

used for practical purposes.

These relations are summarized in the first row of table 2.

Similarly we can associate a 5d-4d-1d system to the monopole bubbling contribution

Z0,1
1,1 of the dyonic loop L1,1 of 4d U(N) Nf = 2N SYM. The brane configuration (e.g.

figure 12) indicates that the 5d theory is U(h′) SYM with 2N flavors with h′ defined as

in section 3.2. The 1d theory is composed of Nh′ Fermi multiplets transforming in the

bifundamental representation (N, h
′
) of U(N)×U(h′). Z0,1

1,1 is obtained by residues in the

D5 fugacities w of the one-instanton sector of L′SQM for this system,

Z0,1
1,1 =

∮
C

h′∏
n=1

dwn
2πiwn

F ′(w) lim
ε−→∞

(−1)N

sh(ε−)4N−2
L′

(1)
SQM(w,α, ε−) , (5.6)

with F ′(w) as in (3.13). So L′
(1)
SQM is I0,1

1,1 (ε−). The simplified brane setup leads to a

simplified pseudo 5d theory with U(2) gauge group, 2N flavors and Chern-Simons level

κ = 1, with the 1d theory having a U(N) × U(2) bifundamental Fermi multiplet. This is

summarized in the second row of table 2.
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Figure 18. a) 5d-4d-1d system for Z1
2 . b) 5d-4d-1d system for Z0

2 .

Finally for the bubbling terms of the non-minimal ’t Hooft loop L2 in the 4d U(2) theory

with four flavors, the brane setups of figure 16, with the D1 strings taken out, indicate the

associated 5d-4d-1d systems. For Z0
2 the 5d-4d-1d system is given in figure 18-b. The 5d

theory is a quiver with gauge group U(2)×U(4)×U(2) and 4 flavors in the central node. 5d

and 4d U(4) flavor symmetries are broken to the diagonal U(4) by potential terms. The 1d

theory is a bifundamental Fermi multiplet between the 5d U(4) and 4d U(2) gauge nodes,

understood in the sense described before. The bubbling contribution Z0
2 is the w-residue

of the instanton sector of charge (1, 2, 1) (there are three instanton charges for three 5d

gauge nodes), corresponding to the addition of the D1 strings,

Z0
2 =

∮
C

d2w(1)d4w(2)d2w(3)

(2πi)8
∏
nw

(1)
n
∏
n′ w

(2)
n′
∏
n′′ w

(3)
n′′

lim
ε−→∞

1

sh(ε−)2
L

(1,2,1)
SQM (w,α, ε−) . (5.7)

So L
(1,2,1)
SQM is I0

2 (ε−).

For the Z1
2 bubbling the situation is slightly different because the configuration of

figure 16-a, with the D1 strings taken out, realize the L1 loop in the 4d theory that lives

on the two D3s. This is not surprizing since in this bubbling sector, there is a remaining

magnetic charge v1 = (1,−1). (In the previous cases the magnetic charge was completely

screened.) The presence of this remaining ’t Hooft loop breaks the 4d gauge symmetry to

U(1)2 and thus the 4d theory of the corresponding 5d-4d-1d setup is a U(1)2 gauge theory.

The 5d-4d-1d that is read from the brane setup and is given in figure 18-a. The 5d theory

is the same as for Z0
2 . The 1d theory is composed of two sets of Fermi bifundamentals,

between the 5d U(2) and 4d U(1) nodes.

The bubbling contribution Z1
2 is the w residue of the 5d instanton sector of charge

(1, 1, 1), corresponding to the addition of the D1 strings.

Z1
2 =

∮
C

d2w(1)d4w(2)d2w(3)

(2πi)8
∏
nw

(1)
n
∏
n′ w

(2)
n′
∏
n′′ w

(3)
n′′

lim
ε−→∞

1

sh(ε−)2
L̃(1,1,1)(w,α, ε−) . (5.8)

So L̃
(1,1,1)
SQM is I1

2 (ε−). The relations for Z0
2 and Z1

2 are summarized in the last two rows of

table 2.
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This completes the identification of the 5d-4d-1d systems and instanton sectors asso-

ciated with the bubbling terms that we have studied. It is clear that this relation can be

derived for any bubbling term of ’t Hooft loops, once the corresponding complete brane

setup is constructed. Of course, as the ranks of the 4d gauge group and the monopole

magnetic charge increase, the 5d-4d-1d systems get more and more complicated.

6 Comments and directions

Let us make some comments about the results that we found. We have proposed a method

to compute monopole bubbling contributions to half-BPS ’t Hooft loops (or dyonic loops)

which relies on a brane realization of the line operator and the construction of an auxiliary

ADHM SQM theory. In particular this method captures contributions to the monopole

bubbling terms that are difficult to extract from other methods.

The evidence for the validity of the results comes from several consistency checks. One

check is the compatibility with the non-commutative star product discussed in section 4.

Another check is the invariance of the bubbling term under the Z2 symmetry ε+ → −ε+.

Both of these tests are highly non-trivial.

Comparison with AGT. Another important piece of evidence comes from the compar-

ison with Verlinde loop operators of the 2d Toda CFT, which for theories of class S (such

as SU(N) conformal SQCD) relate to ’t Hooft and dyonic loop vevs through the AGT

correspondence [4, 26, 27]. As we already mentioned in the Introduction, the 2d Toda

CFT computation of such loop operators vevs performed in [5] does not agree with the 4d

gauge theory results of [6], due to the latter missing important contributions coming from

the Coulomb vacua of the underlying SQM. Because of AGT, agreement between the two

computations is however expected once these extra contributions are properly taken into

account; this was indeed verified for the minimal ’t Hooft loop of SU(2) conformal SQCD

in [15]. Given that our results contain also such SQM Coulomb branch contributions, we

therefore expect agreement with the 2d CFT computation.

Such comparison can at the moment be performed only for minimal ’t Hooft and dyonic

loops in SU(N) conformal SQCD, since all 2d CFT results in the literature we are aware

of only consider minimal loops. Quite non-trivially, we indeed find that the monopole

bubbling contribution to the minimal dyonic loop that we obtained in (3.14) perfectly

agrees with its CFT counterpart computed in [5]; nevertheless, our result for the monopole

bubbling contribution to the minimal ’t Hooft loop (3.9) still differs from the CFT one

presented in [5] by an extra term. We however believe the correct bubbling contribution

should be (3.9), for two simple reasons.23 First of all, while our final result for the vevs

of minimal ’t Hooft and dyonic loops (and, trivially, Wilson loops) are invariant under

the whole U(2N) flavor symmetry group of SU(N) conformal SQCD, in the computation

of [5] only dyonic and Wilson loops preserve the full SU(2N) flavor symmetry, while the

extra term in the ’t Hooft loop bubbling contribution breaks this flavor symmetry to an

SU(N) × SU(N) subgroup: this is a strong hint on the fact that the result of [5] must

23We thank Bruno Le Floch for a discussion on this point.
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be incorrect. The second reason instead comes from realizing that, modulo an irrelevant

overall prefactor, the SQM associated to the monopole bubbling contribution to the 4d

N = 2 SU(N) conformal SQCD minimal ’t Hooft loop is nothing else but the ADHM

quantum mechanics for the 1-instanton contribution to the instanton partition function of

the 5d N = 1 SU(N) Nf = 2N theory, whose Coulomb vacua contribution was already

derived in [14] and precisely coincides with the hyperbolic cosine in the second line of (3.9).

A careful check of the various steps taken in [5] should clarify where possible mistakes or

misprint appear, but this would go beyond the scope of our work.

Some remaining issues. Although the method presented is quite successful, there are

still some points that should be improved. One point has to do with the brane construction

and the placement of D7 branes relative to NS5 branes in the completion of the ’t Hooft

loop brane setup. We have given prescriptions that work for minimal and next-to-minimal

’t Hooft loops in SU(N) conformal SQCD theories. The prescription is to place the D7

branes in the middle of the NS5 branes and to distribute them evenly in the upper and

lower part of the picture. There are other possible choices though, in particular for ’t Hooft

loops realized with many NS5 branes. It would be desirable to understand precisely the

dictionary between the loop realized and the distribution of D7 branes, relatively to the

NS5 branes. This is a point that deserves further study. The same comment applies to the

realization of dyonic loops, which we have not studied in detail.

Another issue is that we do not have a precise way to fix the overall sign of a given

contribution Zmono(B, v). In particular the ADHM SQM involve fermion determinants,

which have sign ambiguities. The same is true of the one-loop determinants, which involve

square-roots and thus have sign ambiguities. The way we have fixed some of the signs is

by imposing compatibility with the non-commutative product (like in (4.13)).

Lower Nf . In this paper we have focused on the conformal SQCD theories, namely

SU(N) (or U(N)) theories with 2N flavor hypermultiplets. A natural extension is to study

line operators in non-conformal theories, namely SU(N) theories with Nf < 2N flavors.

Our construction naturally generalizes to these theories by looking at brane setups with N

D3 branes and Nf < 2N D7 branes, placed in 5-brane webs. The computations are just

the same and yield similar exact results for the bubbling terms. The issue of the placement

of D7 branes is also present in these situations, in particular for odd Nf , namely odd

number of D7s, one is forced to break the symmetry between the upper and lower parts

of the brane configuration, by putting more D7s ‘upstairs’, or ‘downstairs’. This yields

different choices brane setups, giving different answers for a given bubbling contribution.

There is a priori no choice of brane setup that is preferable to the others and we obtain (at

least) two answers for the bubbling term. Similarly it was observed in [15] that bubbling

contributions at Nf < 2N might be obtained by taking hypermultiplet masses to infinity

in the Nf = 2N result. However the outcome of this procedure depends on whether one

sends the mass(es) to +∞ or −∞. Actually the results obtained this way correspond to the

different choices of D7 brane placements in our construction. It is not clear to us how this

puzzle will be resolved, however one possibility is simply that the bubbling contribution

to the ’t Hooft loop has ambiguities. This would mean that the difference between the
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two bubbling answers is the vev of a line operator with no magnetic charge, which can be

included or not in a regulariztion of the bubbling term. It would be interesting to study

this issue further.24

Observables of 5d-4d systems. An important lesson from this discussion is that one

should study the 5d-4d(-1d) coupled system and the observables LSQM, which are the

‘parent observables’ of BPS loops in both 5d SCFTs and 4d SCFTs (see section 5). These

are more difficult to manipulate since they are given by infinite sums over instanton sectors,

but they are the more fundamental objects. It is unclear to us at the moment whether one

can define 5d-4d obervables LSQM which contain the full 4d ’t Hooft loops, instead of only

the monopole bubbling contributions. We believe that such objects can be defined and are

naturally associated to the systems of D3-branes and 5-branes. It would be interesting to

explore the mathematical properties of such objects, as for instance the invariance under

S-duality transformation of the IIB brane setup [18].

Quiver theories and type IIA setups. Finally, a natural extension of our work is to

carry out the computation of ’t Hooft loop bubbling factors is quiver theories. The brane

configurations for those are in type IIA string theory, with D4 branes suspended between

NS5 branes and crossing D6 branes. It would be interesting to see how the construction

works there.
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A SQM matrix models

In this appendix we provide the explicit form of the matrix model computing the partition

function of a N = (0, 4) SQM in terms of Jeffrey-Kirwan residues.

The global symmetry of the SQM is SU(2)+×SU(2)1×SU(2)2, with chemical potentials

−2ε+, ε1 and ε2 respectively, and the R-symmetry is the SU(2)+ × diag(SU(2)1 × SU(2)2)

subgroup. To preserve supersymmetry the deformation parameters obey ε+ = 1
2(ε1 + ε2),

so we have only two independent parameters. The parameter ε− = 1
2(ε1 − ε2) corresponds

to the adjoint mass m of the 4d adjoint hypermultiplet of the N = 2? theory on the D3

branes. It should be send to infinity to obtain the final results. We do not send it to infinity

immediately because it acts as a regulator in (some) computations, so it is convenient to

send it to infinity only after performing residue computations.

In the brane picture the global symmetries are identified as SO(3)123 ∼ SU(2)+,

SO(4)6789 ∼ SU(2)1 × SU(2)2.

24It was also suggested to us by D. Brennan, A. Dey and G. Moore that the limit of large mass from

the conformal case may involve redefinitions/limits of the Fenchel-Nielsen coordinates ai, bi, in a way that

would resolve the tension between the results.
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The D1-D1 modes provide a (0, 4)? vector multiplet, which comprises a (0,4) vector

multiplet and a massive (0,4) adjoint twisted hypermultiplet. The D1-D3 modes provide a

(0, 4)? fundamental hypermultiplet, which comprises a (0,4) hypermultiplet and a massive

(0,4) Fermi multiplet (with two fermions in conjugate representations). The D1-D7 modes

provide a (0,4) Fermi multiplet (with a single fermion). The D1-D1 modes across an NS5

brane provide a (0, 4)? bifundamental hypermultiplet. The massive multiplets in the (0, 4)?

SQM have mass parameter m = ε−. Some of these masses are shifted in the background

further deformed with ε+.

The partition function, or index, depends on the FI parameters of the SQM. When

these FI paramters are non-zero, the index can be evaluated by a matrix model integral with

the JK pole prescription by taking the JK parameters ζi to be the FI parameters.25 When

an FI parameter is zero, one can pick any sign for the JK parameter, but the evaluation

may miss some contributions from “poles at infinity” (Coulomb vacua). This happens

when the potential of the SQM (or of the matrix model) is not sufficiently divergent.

The matrix model conmputing the index takes the form

Z =

∫
drφ

(2πi)r|W|
Zvec Zf−hyp ZF Zbf−hyp ZCS , (A.1)

with r the rank of the gauge group and |W| the order fo the Weyl group W. The term

Zvec contains the contribution of a (0, 4)? vector multiplet. For a U(k) gauge group, using

the notation sh(x) := 2 sinh(x2 ), it is given by

Zvec =
∏
i 6=j

sh(φi − φj)
∏
i,j

sh(φi − φj − 2ε+)

sh(φi − φj − ε1)sh(φi − φj − ε2)
. (A.2)

The contribution of the (0, 4)? hypermultiplet with mass mh in the fundamental represen-

tation of U(k) is

Zf−hyp =
k∏
i=1

sh[±(φi +mh) + ε−]

sh[±(φi +mh) + ε+]
. (A.3)

The contribution of the (0,4) Fermi multiplet with mass mF in the fundamental represen-

tation of U(k) is

ZF =

k∏
i=1

sh(φi +mF) . (A.4)

The contribution of the (0, 4)? bifundamental hypermultiplet is

Zbf−hyp =

k1∏
i=1

k2∏
j=1

sh[±(φi − φ̂j) + ε−]

sh[±(φi − φ̂j) + ε+]
. (A.5)

The Chern-Simons term contribution at level κ, takes the form

ZCS = e−κ
∑k
i=1 φi . (A.6)

We used the notation f(a± b) = f(a+ b)f(a− b).
25We thank Stefano Cremonesi for discussions on this point.
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In addition, when there are D5 branes in the construction, we have D1-D5 modes

giving rise to (0,4) fundamental hypermultiplets, which contribute a factor

Z
(0,4)
f−hyp =

k∏
i=1

1

sh[±(φi +mh)− ε+]
. (A.7)

There are also D3-D5 modes — and possibly D1-D5 modes from string going across an

NS5 brane — giving a Fermi multiplet with contribution ZF.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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