AIDA-2020-SLIDE-2019-016

AIDA-2020

Advanced European Infrastructures for Detectors at Accelerators

Presentation

Effects of protons and neutrons irradia1on to the gain layer and bulk of 50-micron thick FBK LGAD sensors doped with Boron, Boron Low diffusion, Gallium, Carbonated Boron and Carbonated Gallium

Ferrero, M. (INFN, Torino, Italy) et al

06 June 2018

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package 7: Advanced hybrid pixel detectors.

The electronic version of this AIDA-2020 Publication is available via the AIDA-2020 web site http://aida2020.web.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch/search?p=AIDA-2020-SLIDE-2019-016

Copyright © CERN for the benefit of the AIDA-2020 Consortium

32nd RD50 Workshop, Hamburg, June 4-6 2018

Effects of protons and neutrons irradiation to the gain layer and bulk of 50-micron thick FBK LGAD sensors doped with Boron, Boron Low diffusion, Gallium, Carbonated Boron and Carbonated Gallium

<u>M. Ferrero¹</u>, R. Arcidiacono⁴, M. Boscardin⁵, N. Cartiglia¹, G.F. Dalla Betta³, F.Ficorella⁵, M. Mandurrino¹, L. Pancheri³, G. Paternoster⁵, I. Sanna², F. Siviero², V. Sola^{1,2}, A. Staiano¹, M.Tornago²

¹INFN, Torino, Italy ²Università di Torino, Torino, Italy ³University of Trento and INFN, Department of Industrial Engineering, Trento, Italy ⁴Università del Piemonte Orientale, Novara, Italy ⁵Fondazione Bruno Kessler (FBK), Trento, Italy

Outline

ACCEPTOR REMOVAL

- Acceptor Removal effect on different flavors of gain layer (Boron, Gallium, Boron Low Diffusion, Carbonated Boron and Gallium)
- Comparison between acceptor removal due to Neutrons and Protons (24Gev/c)

ACCEPTOR CREATION

➢ Measurements of Acceptor Creation on PiN diodes (50µm thick) due to Neutrons & Protons irradiation and comparison with empiric model $N_A = g_{eff} Φ$ ($g_{eff} = 0.02$ cm⁻¹);

50µm UFSD, FBK Production

Wafer #	Dopant	Gain dose	Carbon	Diffusion
1	Boron	0.98		Low
2	Boron	1.00		Low
3	Boron	1.00		HIGH
4	Boron	1.00	Low	HIGH
5	Boron	1.00	HIGH	HIGH
6	Boron	1.02	Low	HIGH
7	Boron	1.02	HIGH	HIGH
8	Boron	1.02		HIGH
9	Boron	1.02		HIGH
10	Boron	1.04		HIGH
11	Gallium	1.00		Low
14	Gallium	1.04		Low
15	Gallium	1.04	Low	Low
16	Gallium	1.04	HIGH	Low
18	Gallium	1.08		Low

- 18 Wafers Silicon on Silicon (FZ), 50µm active thickness;
 p-bulk acceptor density ~ 2/3•10¹² cm⁻³
- ➤ 5 different gain layer strategies:
 - Boron (Low and High Diffusion);
 - Gallium (Low Diffusion);
 - Carbonated Boron (B High Diffusion);
 - Carbonated Gallium (Ga Low Diffusion);
- 4 splits of dose (2% steps) for Boron Implant;
- 3 splits of dose (4% steps) for Gallium Implant;
- 2 carbon concentration (Low & High): High Carbon = X10 Low Carbon:

5 Gain layer flavors to investigate the radiation damage

- **B Low Diffusion:** thinner gain implant could be more radiation resistance;
- Gallium: Ga could has a lower probability than B to became interstitial;
- Carbon enrichment: C could be traped by defects faster than Ga and B;

٠

Irradiation campaign

Wafer #	Dopant	Gain dose	Carbon	Diffusion
1	Boron	0.98		Low
2	Boron	1.00		Low
3 🔵	Boron	1.00		HIGH
4	Boron	1.00	Low	HIGH
5	Boron	1.00	HIGH	HIGH
6 🔴	Boron	1.02	Low	HIGH
7	Boron	1.02	HIGH	HIGH
8	Boron	1.02		HIGH
9	Boron	1.02		HIGH
10	Boron	1.04		HIGH
11	Gallium	1.00		Low
14	Gallium	1.04		Low
15	Gallium	1.04	Low	Low
16	Gallium	1.04	HIGH	Low
18	Gallium	1.08		Low

Pairs of 1x1mm² PiN-LGAD

Neutron Irradiation in Ljubljana (AIDA2020) → thank you GK and friends! Fluence steps: 0,2/0,4/0,8/1,5/3/6/10*10¹⁵ n_{eq}/cm²

Proton Irradiation at CERN, 24Gev/c (IRRAD) \rightarrow Thank you Joern! Fluence steps: 0,1/0,6/1/3/6/9*10¹⁵ n_{eq}/cm^2 (NIEL Factor = 0,6)

Evolution of active acceptor density with fluence

$$N_A(\phi)=g_{eff}\phi+N_A(\phi=0)e^{-c\phi}$$

 $\boldsymbol{\Phi}$ = fluence

 N_A = active acceptor density at fluence Φ

 g_{eff} = empirical constant (~0,02 cm^{-1}) \rightarrow to compare with the measurements on irradiated PiN diode

C = coefficient of the acceptor removal \rightarrow Dependent upon the irradiation type, the acceptor type and the initial acceptor density

For More detail on the acceptor removal model see the N. Cartiglia talk on thin workshop

Extrapolation of active acceptor density into gain layer (Method)

V_{GL} is proportional to the amount of the active doping of the gain layer

$$V_{GL}=rac{qN_A}{2\epsilon}w^2$$

 N_A = Active doping concentration ω = thickness of the gain layer (~1 µm) q = electron electric charge ε = Dielectric constant of Silicon

Extrapolation of V_{GL}

C-V Measurement parameters:

- Measurement Model = C_p R_P
- Measurement Frequency = 1 kHz
- Measurement temperature = Room Temperature
- Sensors measured after annealing (80min @ 60°)

V_{GL} Extrapolation method Using the cusp on the R_p curve, in coincidence with the foot in the 1/C_p² curve

This method is precise even for fluences above 10¹⁵ n_{eq}/cm²

Neutrons Irradiation effects on Gain layer

Carbon implant **mitigate** the reduction of the active acceptor density into gain layer

Measurement of coefficient "c"

Fraction of active acceptor density $\frac{V_{GL}(\phi)}{V_{GL}(0)} = \frac{N_A(\phi)}{N_A(0)} = e^{-c(N_A(0))\phi}$

Results:

- Carbonated sensors are more radiation resistant than not carbonated of a factor ~2
- **Gallium** is less resistant than Boron
- Boron Low Diffusion is more resistant than Boron High Diffusion

Each point on the plot is the average about two sensors

Measurement of coefficient "c"

In this plot the NIEL factor of 0,6 was not used

Coefficient "c" comparison between Neutrons and Protons

Considering the **real value of proton fluence** (p/cm^2) the c_p coefficients (proton) and the c_n ones (neutron) are **compatible** with each other.

If the **NIEL factor** was applied the c_p coefficients are almost **twice** c_n

Relationship between c_n and the spatial extension of the gain layer

Wafer $\#$	Dopant	Gain Dose	Width [a.u.]
1	B LD	0.98	1
3	В	1.00	1.3
6	B + C	1.02	1.3
8	В	1.02	1.3
14	${ m Ga}$	1.04	2.0
15	Ga + C	1.04	1.7

Boron LD, Boron and Gallium has different spatial extension of gain layer

Gain layer width in arbitrary unit extracted at the FWHM of the doping profile of the implant

The radiation resistance is inversely proportional to the gain layer width.

The initial acceptor removal mechanism is faster for wider implant

Effect holds true for carbonate and not - carbonated sensors

Secondary Ion Mass Spectrometer (SIMS) on Irradiated LGAD 1•10¹⁶ (n_{eq}/cm²)

SIMS measurement shows the density of Boron atoms (active and not-active) forming the gain layer

Marco Ferrero, INFN/Università di Torino, 32nd RD50 Workshop, Hamburg 4-6 June 2018

Concentration [a.u.]

Acceptor Creation

$$N_A(\phi)=g_{eff}\phi$$

Extrapolation of acceptor density in p-bulk (Method)

Neutrons Irradiation effects on p-bulk 50µm thick

C-V Measurement parameters:

- Measurement Model = C_p R_P
- Measurement Frequency = 1 kHz
- Measurement temperature = Room Temperature
- Sensors measured after annealing (80min @ 60°)

Acceptor Creation in 50 μ m thick PiN diodes

- High fluences (~ $3 \cdot 10^{15} n_{eq}/cm^2$): data in agreement with the model, $g_{eff}=0.02cm^{-1}$ is a good parameterization
- Low fluences (~ 10¹⁴ n_{eq}/cm²): increasing of the distance between data and model as fluences decrease, is it possible a not complete acceptor removal?

Acceptor Creation in 50 μ m thick PiN diodes

- Applying the NIEL there is an agreement between data and model at fluences ~10¹⁵ n_{eq}/cm²
- Without NIEL Factor the parameterization of g_{eff} is lower than 0,02cm⁻¹

Summary

- The addition of Carbon to the gain layer improves the radiation resistance, the c coefficients are about a factor of two smaller for B+C and Ga+C than B and Ga
- The c_p coefficients of acceptor removal are comparable with c_n coefficients considering the real protons fluence. Instead applying the NIEL Factor to the protons fluence the c_p coefficients are almost twice c_n.
- Thinner and more doped gain layer implants are less prone to initial acceptor removal: B LD has a lower c_n coefficient than B.
- Acceptor Creation measurements on neutrons irradiated PiN diodes are in agreement with the model $N_A = g_{eff} \Phi (g_{eff} = 0.02 \text{ cm}^{-1})$ for fluences above $10^{15} \text{ n}_{eq}/\text{cm}^2$
- Acceptor Creation measurements on protons irradiated PiN diodes are comparable with results obtain with neutrons if the NIEL Factor is used. Considering the real protons fluence, the g_{eff} parameter is lower than 0,02 cm⁻¹

Acknowledgements

We kindly acknowledge the following funding agencies, collaborations:

- INFN Gruppo V
- Horizon 2020, grant UFSD669529
- Horizon 2020, grant INFRAIA
- Ministero degli Affari Esteri, Italy,MAE, "Progetti di Grande Rilevanza Scientifica"
- U.S. Department of Energy grant number DE-SC0010107
- Grant Agreement no. 654168 (AIDA-2020)

Backup

IV Curve on UFSD2 (Not Irr)

- Boron and Gallium doped sensors show the same behavior;
- Low leakage current (>10s pA; <10s nA);</p>
- The knee at ~30V proves the gain layer implant;
- Current Exponential growth gives an information about the internal gain of the sensors;

CV Curves of UFSD2 (Not Irr)

CV Curves of all wafer (B/Ga/B-C/Ga-C)

IV Measurements on Irradiated Sensors

Initial acceptor removal + Acceptor Creation

Gain Of Irradiated sensors

GAIN = (Signal area LGAD)/(Signal area PiN) irradiated at the same fluence \rightarrow only from gain layer

▷ Carbonated Boron at ~ 600 V maintains factor 2 higher gain than standard Boron

Standard

Carbonated

CV measurements (laboratory setup)

Keysight B1505A Power Device Analyzer / Curve Tracer

Modules

- High Voltage SMU: Max Range (±3000V, ±4mA);
 Min Range (200V, 1nA);
- CMU Modules: Range In frequency (1khz-1MHz);

Probe station

Cf measurements of irradiated sensor (3•10¹⁵ n_{eq}/cm²)

Cf measurements of an LGAD sensors (Wafer 8, Boron) irradiated with neutrons (fluence = $3 \cdot 10^{15} n_{eq}/cm^2$)

Acceptor Creation

