CERN Accélérateur de science

Published Articles
Title An Enhanced Quench Detection System for Main Quadrupole Magnets in the Large Hadron Collider
Author(s) Spasic, Jelena (CERN) ; Calcoen, Daniel (CERN) ; Denz, Reiner (CERN) ; Froidbise, Vincent (CERN) ; Georgakakis, Spyridon (CERN) ; Podzorny, Tomasz (CERN) ; Siemko, Andrzej (CERN) ; Steckert, Jens (CERN)
Publication 2018
Number of pages 4
In: 9th International Particle Accelerator Conference, Vancouver, Canada, 29 Apr - 4 May 2018, pp.WEPAF081
DOI 10.18429/JACoW-IPAC2018-WEPAF081
Subject category Accelerators and Storage Rings ; Detectors and Experimental Techniques
Abstract To further improve the performance and reliability of the quench detection system (QDS) for main quadrupole magnets in the Large Hadron Collider (LHC), there is a planned upgrade of the system during the long shutdown period of the LHC in 2019-2020. While improving the already existing functionalities of quench detection for quadrupole magnets and field-bus data acquisition, the enhanced QDS will incorporate new functionalities to strengthen and improve the system operation and maintenance. The new functionalities comprise quench heater supervision, interlock loop monitoring, power cycling possibility for the whole QDS and its data acquisition part, monitoring and synchronization of trigger signals, and monitoring of power supplies. In addition, the system will have two redundant power supply feeds. Given that the enhanced QDS units will replace the existing QDS units in the LHC tunnel, the units will be exposed to elevated levels of ionizing radiation. Therefore, it is necessary to design a radiation tolerant detection system. In this work, an overview of the design solution for such enhanced QDS is presented.
Copyright/License CC-BY-3.0

Corresponding record in: Inspire


 Notice créée le 2019-03-16, modifiée le 2019-03-16


Fichiers:
Télécharger le document
PDF