AIDA-2020-POSTER-2019-003

AIDA-2020

Advanced European Infrastructures for Detectors at Accelerators

Poster

Lycoris: Large Area Silicon Strip Telescope

Krämer Uwe (DESY) et al

12 June 2018

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package **15: Upgrade of beam and irradiation test infrastructure**.

The electronic version of this AIDA-2020 Publication is available via the AIDA-2020 web site <http://aida2020.web.cern.ch> or on the CERN Document Server at the following URL: <http://cds.cern.ch/search?p=AIDA-2020-POSTER-2019-003>

Copyright © CERN for the benefit of the AIDA-2020 Consortium

Programme Matter and Technologies

Lycoris: Large Area Silicon Strip Telescope

4rd Annual MT Meeting - 2018, HZB Berlin

CONTRACTOR

U. Krämer, S. Roelofs M. Stanitzki, M. Wu

Requirements

AIDA2020 project: design and commissioning of the Lycoris silicon telescope for the DESY II Test Beam Facility.

• A large coverage of at least 10 cm

Lycoris telescope

Design parameters of the large area strip telescope:

- 10 x 10 cm² sensors, 2 KPiX chips bump bonded on each
- Telescope consists of 2 cassettes, one on each magnet side with

6 sensors grouped in 2 stacks \rightarrow sensitive area: 10 x 20 cm²

- Cassettes installed in a rail structure within the PCMAG Movement along B-field: ~ 2 m
- Limited usable space together with large DUTs (TPC) inside the magnet bore: thickness ≤ 3.5 cm
- Spatial point resolution of better than
- $\sigma_v = 10 \,\mu m$ along bending direction in magnetic field
- $\sigma_{2} = 1 \text{ mm}$ along magnetic field axis

• Sensor layers under stereo angle of $+2^\circ$, -2° , 0° (for z resolution)

- Rotation along circumference: ~ 45°
- Readout system integrated in common EUDAQ framework

Sensor and Readout

Based on the requirements, a silicon strip sensor designed by SLAC for an ILC environment has been chosen:

SiD Strip Sensor

- $10 \times 10 \text{ cm}^2$ active area,
- 3680 strips \rightarrow strip pitch of 25 µm \rightarrow resolution of ~7 µm
- Alternate strip read out \rightarrow 1840 active strips
- Thickness of 320 μ m \rightarrow material budget of 0.3% X₀
- Signal routing through metallization layer

KPiX Readout Chip

- Integrated pitch adapter and digital readout chip: KPiX **4** Directly bump bonded to sensor surface
- 1024 channels per KPiX, 13 bit ADC resolution
- 100 MHz clock $\rightarrow \sim$ 3 ns time resolution

• Two triggering modes: self- and external triggering • Operates in power pulsing

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement No 654168.

