AIDA-2020-SLIDE-2019-004

AIDA-2020

Advanced European Infrastructures for Detectors at Accelerators

Presentation

LYCORIS, a large area strip telescope for the DESY test beam

Wu, Mengqing (DESY)

29 May 2018

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package **15: Upgrade of beam and irradiation test infrastructure**.

The electronic version of this AIDA-2020 Publication is available via the AIDA-2020 web site <http://aida2020.web.cern.ch> or on the CERN Document Server at the following URL: <http://cds.cern.ch/search?p=AIDA-2020-SLIDE-2019-004>

Copyright © CERN for the benefit of the AIDA-2020 Consortium

LYCORIS, a large area strip telescope for the DESY test beam

Wu, Mengqing, DESY on behalf of the Lycoris telescope team

ALCW2018, Fukuoka May 29, 2018

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

Beam Telescopes at DESY

Telescope Concept Intro:

- Infrastructural Tool for detector R&D, user like ATLAS/CMS and etc;
- Provide **reference track** for the Device Under Test (DUT), required:
 - Good spatial resolution;
 - Low material budget;

EUDET-type Telescope: Mimosa26 based (7 worldwide, 2 at DESY)

- Hardware: 6 sensor planes
 - + Find pitch of 18.4 $\mu m \rightarrow$ a resolution of 5.3 μm ;
 - + Low material budget \rightarrow 50 μ m thick.
- **Trigger Logic Unit** (TLU)
- **DAQ software: EUDAQ**
 - TLU & many users integrated
- **Recon. software: EuTelescope** w/ GBL implemented;
 - Based on ILCSoft : LCIO, Gear, Marlin;
 - Various DUTs integrated, e.g. ATLAS ITKStrip;

Beam area T24/1 at DESY

A 1T solenoid, PCMAG

- Equipped with a **1 T Solenoid** to put DUT inside:
 - Wall material budget 0.2 X₀ (momentum smearing)
 - Possible to install a EUDET telescope (small DUT)

However, not cover use cases that needs:

- Momentum measurements inside the PCMAG, requiring a large active area for curvature covering;
 - EUDET-type: small active area: 1x2 cm²;
- For large DUT, such as a LP-TPC: Limited space (~3.5 cm) left for telescope;
 - ◆ <u>EUDET-type</u>: high amount of channels → dedicated water cooling; support structure <u>demands a lot space</u>;
- For users who want **higher event rate**:
 - + <u>EUDET-type</u>: relatively <u>slow integratioin time</u> (~100 μ s)

A new telescope to address the user demands

Funded by AIDA2020, in collaboration w/ SLAC

- Target: Build a new large area strip telescope (LYCORIS) in beam area 24/1:
 - movable, suitable for large DUT in the 1T solenoid;
- **Status:** R&D currently;
- Design requirements to address the user demands:
 - Large active area (10 x 10 cm²)
 → 90 96% particles (1 6 GeV);
 - Support in a thickness of ~3.5 cm to cover the first large DUT case (LP-TPC);
 - Momentum measurements: spatial resolution
 better than 10 μm along bending direction Y;
 - Resolution along field direction Z less important:
 σ_z > 1 mm

LYCORIS Design Overview: the SiD strip sensor

Designed by SLAC for an ILC environment

Strip Silicon Sensor

- Size of **10 x 10 cm²**;
- Thickness of 320 μ m \rightarrow **0.3% X**₀;
- Pitch of **25 \mum**, thus hit resolution **~7.2 \mum**;
- Alternate strips readout.

Readout & way to power

- An integrated (bump-bonding) pitch adapter and digital <u>readout ASIC</u>: KPiX;
- A <u>Kapton Flex Cable</u> glued (Araldite2011) + wirebonded to the sensor
 - Provide bias voltage to the sensor;
 - KPiX is <u>communicated/powered</u> via it.

DESY. | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

Page 5

LYCORIS Design Overview: Data Acquisition Choose a common DAQ, EUDAQ2

- KPiX runs in pulse cycles, max. 4 evts/channel/cycle;
- Run control by EUDAQ2, implemented via a DAQ board;
- Data Acquisition:
 - + In each cycle, once a particle passing through:
 - PMT triggered \rightarrow TLU sent trigger to DAQ board
 - Trigger sent to all connected KPiX: ADC count on all activated channels recorded by KPiX;
 - + End of a cycle:
 - <u>digitize</u> recorded KPiX data and send to DAQ board,
 - DAQ board pack & send to EUDAQ2 via optic fibre.

LYCORIS Design Overview

Sensor downstream holder (mirror symmetric to the upstream)

LYCORIS Design Overview

Magnet telescope structure

DESY. | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

Rail structure for movement along magnet axis Telescope cassette **Rail structure for movement** along magnet angle

Sid Strip Sensor

The SiD strip sensor: IV/CV curves

Sensor characterization

Timeline

- **Nov 2016**: ordered at Hamamatsu
- July 2017: sensor arrived
 - IV/CV curves ~ Sep 2017
 - **Good behaviour**:
 - ~100 nA currents and stable up to 300V;
 - Two sensors show the beginning of a breakdown around 280V.

DESY | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

Page 10

The SiD strip sensor: IV/CV curves

Sensor characterization

Timeline

- **Nov 2016**: ordered at Hamamatsu
- July 2017: sensor arrived
 - IV/CV curves ~ Sep 2017
 - **Good behaviour**:
 - ~100 nA currents and stable up to 300V;
 - Two sensors show the beginning of a breakdown around 280V.
 - All sensors fully depleted around 50V;

The SiD strip sensor: IV/CV curves

Sensor characterization

Timeline

- Nov 2016: ordered at Hamamatsu
- July 2017: sensor arrived
 - IV/CV measurements: Good behaviour, depleted at ~50V
- Jan 2018: 27 bump-bonded sensors delivered back by IZM-Berlin (sent mid-Sep 2017)
 - Good IV/CV response: expected higher current (less than 1 uA), same depletion voltage;
- Feb 2018: Start final assembly process
 → glue & wire-bond kapton flex cable.

Final Assembly Process

KPiX: Sensor readout ASIC

Designed / produced by SLAC for an ILC environment

- Fully digital readout with 13 bit resolution (ADC range up to 8192)
- **2** trigger modes:
 - Self trigger = 4 events per channel per cycle stored
 - External trigger = 4 events per cycle stored
- Length of the opening period / cycle depends on timing resolution + bunch trains (up to 8192)
 - + 100 MHz acq. clock \rightarrow min. timing resolution is 8 x 10 ns (particle event);
 - Only open for a max. time of (8192 x 8 x acq.clock);
 - e.g. with a <u>timing resolution</u> configured as 2560 ns \rightarrow 20.97 ms <u>max. open-time</u>

Acquisition Cycle

~ 1 ms	8*acq.clock*#BunchTrains		
Start-up	Up to 8192 bunch trains	Storage (up to 4 ever	

Example to show the noise level Based on 1st & 2nd module

- Self-trigger mode, pedestal running
- for each KPiX data taking **cycle**: each readout channel can record **max. 4** particle **events**;
- 1st module did not responde to any threshold, always triggered;
- 2nd module respond, but weird block seen.

==> for the working one, try to point a radioactive source to see the response.

entries

1.5

0.5

DESY | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

Page **16**

1 working example with radioactive source Based on 2nd module

- Point a Sr90 source to test signal response;
- pointing to the kpix2, next to the right edge:
 - expecting to see strips at right fired most, with a graduately decay to left;
 - Quite good response, but weird block still there.

DESY | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

Strip_Entries

Revise the Assembly Process New gluing tool

- Learnt from CMS group of the University of Hamburg : their gluing tool for CMS silicon upgrade;
- Checked with Engineer \rightarrow only a few changes needed to adjust the design for us:
 - Vacuum pick up and placement of the kapton flex
 - Program in the pathway
 - Some dummy gluing tests
 - Adjust the vacuum head, tool could also be used to place sensor into the frame

Page **18**

- **KPiX** sync to **DESY** via a shutter signal generated by **TLU** to start the KPiX acq. cycle:
 - Status: **tested/validated** by feeding a manipulated shutter signal to KPiX.
- **KPiX** synced to **TLU** via a common TLU clock: <u>Status:</u> to test, new TLU exp. mid-June.
- **TPC** synced to TLU by counting triggers, so sync **TPC & KPiX** by a common start T_0
 - <u>Status:</u> to test, testbeam exp. this fall.

Data Analyzing: EuTelescope

Motivation & status

Motivation

- Integrate to a common reconstruction software
- Characterize Lycoris using EUDET telescope == > we have to use its analysis software anyway == > EuTelescope

Current status

- <u>Challenges</u>:
 - no tracker data available to prepare the code;
 - + tight schedule: code needs to be ready in this fall, and finalized by the delivery due 01/2019;
- <u>Flow chart of one version for strip DUT w/ pixel telescope:</u>
 - Con: binary readout, no pedestal DB used;
 - Con: only one strip layer as DUT w/ Mimosa;
 - Pro: Raw to LCIO converter: done in EUDAQ side;
 - Other modules: to be tuned;

LYCORIS Summary

Project Overview

Milestones to achieve before delivery in Jan, 2019

- Key target: convey a 1st user analysis —> testbeam w/ TPC forseen in fall 2018:
- Hardware to be ready:
 - Mechanics for final system: well track to be on time;
 - Make assembled Lycoris sensor module work;
 - New DAQ board exp. 18/06/2018: 1-2 weeks to SLAC to learn & test;
 - New AIDA2020 TLU exp. 06/2018: both hardware & software to test, and w/ new DAQ board;
- Software to be ready:
 - + Lycoris module works w/ TLU + mimosa on simple e-lab tests: EUDAQ2 to be ready;
 - Alignment, characterize module w/ mimosa: beam time needed
 - event definition and EuTelescope to be ready.

==> Many efforts ongoing under collaborations with SLAC, University of Bristol, and cross-group support locally at DESY

DESY | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

TBL

LYCORIS Summary

Documentation & Outlook

Well organized/tracked to face the reality

Documentations:

- Confluence page to log all working activities;
- Notes: project milestone report, KPiX note, software manuals etc in lively updating.

Outlook

- 1st real case application of the SiD sensor;
- portable and movable to serve for various use cases
 - upgradable to 10 x 20 cm², distance between sensors ajustable, sensor orientation adjustable and etc.
- Important: local support group at DESY!
- More contribution to the beam telescope community.

AIDA-2020 External Silicon Strip Tracker

Pages

PAGE TREE

Blog

SPACE SHORTCUTS

AIDA 2020 Project

- Administration
- Device Log Book
- Software Log book
- Mechanics and Electronics
- ECAL measurements
- Hamamatsu Sensors
- > KPiX
- Testbeams
- Slow Control System
- Presentations
- TLU
- Silicon Tracker
- Software

Bookkeeping of the project cost

The Lycoris Crew

Thank you for your attention!

Everyone needs back-up!

Beam spill structure

Beam avaibility

— copyright goes to Dr. Marcel Stanitziki

- DESY II synchrotron
 - + 6.3 GeV electrons
 - Main purpose: injector for the Petra-III top-up

Test beam is thus a parastic user

- Beam structure
 - 500MHz RF +
 - Basic magnet cycle 12.5Hz s(accelerating from 450 + MeV to 6.3 GeV)
 - 1 bunch per fill (30 ps)
- Interruption during beam extraction for Petra (sec-min)
 - otherwise almost DC beam —> no spill structure

Strip Sensor inspections Subheading, optional

- Comparing IV/CV curves from bump-bonded sensors cross-section inspection of a bump bond;
- Further inspection before glue the kapton cable to se
 - IV measurements at different steps of putting glue
 - → avoid glue on outter rings.

KPiX Timing Studies: diff from internal to external

Study based on an hexagonal ECal sensor

- Matching between external timestamps and internal timestamps shows a small delay between signals.
- Event selection will be done using this information

DESY, ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

 $\Rightarrow \Delta 4 =$ Time difference for channel K

U

X

gives

6

evt/channe

internal

timestamp

Study on Sensor Orientation

By comparing to user demand

- Analytical calculations using GeneralBrokenLines (GBL) by Claus Kleinwort with a 25 µm pitch strip sensor; Depending on the orientations, correlations between planes severely limit the resolution;
- The right orientation means the Telescope can easily achieve the curvature resolution needed for the LP TPC.

KPiX studies: do we need cooling?

Infra camera measurements

As a result of power pulsing and only 1024 readout channels \rightarrow a low Power Consumption is expected

(40 mW in total)

- Measurement of heat production done via infrared camera
- Overall power consumption and heat generation is negligible

 \rightarrow No dedicated cooling needed

DESY | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

KPiX Chip

Page **30**

Assembled modules Copyright goes to Sebastiaan Roelofs Sensor 59

Characteristics:

- KPiX 2 shows very good ٠ calibration results
- Very high noise level
- Sensor depletes
- KPiX cannot take data together •
- KPiX 1 has 128 channels bad ADC channels

- Characteristics: ٠
 - KPiX 2 can take data ٠
 - Sensor does not deplete ٠
 - KPiX 1 cannot be talked to ٠
 - KPiX 2 has supposedly 300 ٠ disconnected channels
 - KPiX 2 shows a block structure ٠ when data is taken

DESY | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

Sensor 58

Sensor 52

- Characteristics: ٠
 - Both KPiX show very bad ٠ calibration results
 - KPiX 1 can take data ٠
 - Sensor does not deplete ٠
 - KPiX 2 does not send data ٠
 - Calibration results suggests that ٠ the sensor cannot be used

EUDAQ2 integration

Status

- Sensor readout AISC KPiX: ullethas its own DAQ
- **Customized Modules:** \bullet
 - dedicated **RunControl** module with its **GUI** customized to show more info

- dedicated **Producer**/ **DataCollector** modules with KPiX DAQ as dynamic lib
- corresponding **DataConverters** in progress

Curr	ent State: I	Runnina		
Control				
Init file:	/home/lycoris-dev/Lycoris-C	onfiguration/eudaq/lycoris_autotrigger	.ini	Lo
Config file:	/home/lycoris-dev/Lycoris-C	onfiguration/eudaq/lycoris_autotrigger	conf	Lo
Next RunN:				Sta
				Re
Log:				Lo
Connections type DataCollect Producer	 name state r lycorisDC CONF lycoris CONF 	connection message tcp://127.0.0 Started tcp://127.0.0 Started	information <eventn> 3296 <configuration tab=""> cont. value</configuration></eventn>	ep://45321 es.computed from .config i <data <="" ev="" th=""></data>
	7			

oris / user / aldastrip / module / src /	Create new file	Upload files	Find file Hi
t behind lycoris.eudaq2.master.		រឿ Pull red	quest 🖹 Con
root updated		Latest comm	it 05611ff on M
DoReceive() func updated to adapt to changes in main libs	s from centra		6 months
lycoris analyzer from raw to root updated			a month
kpix event converter update, with changes in CMakeFiles f	for tbsc clea		7 months
update for kpix data converting			2 months

EUDAQ2 integration: Validate data buffering Validation

- EUDAQ2 using FIFO to stream data from KPiX DAQ \bullet
 - many other ways tried, failed (time shift...)
- Validate data collected by EUDAQ2: \bullet
 - compare w/ data from KPiX DAQ.
- **Target**: sanity check w/ diff. run conditions (external \bullet trigger/internal trigger, sync/unsync to beam)
 - data output from both KPiX DAQ side and EUDAQ2 side in the same run.
- **Status**: validated \bullet
 - internal trigger: perfect agreed
 - external trigger: agreed w/ understood delay issue (not affect using EUDAQ2)

Data Analyzing: EuTelescope

— copyright goes to ATLAS-ITkStrip

A comprehensive set of MARLIN processors. Each reconstruction step has a steering file containing multiple processors

- **converter**(noisypixel):

converter (determine noisy pixels/strips)

- clustering: retrieve the geometry of the sensor and give the coordinate of the strips/pixels center; group nearby strips/pixels together with noise pixel/strips removed

- hitmaker : find the cluster center to give the hit position

- patternRecognition : attach hits from planes together to Alignement form a track

- **GBLAlign** : determination of transformation from global frame to each local plane frame

GBLTrackFit : fit of the track using hits attached together from pattern recognition

TLU integration: KPiX sync to DUTs

DUTs can use common TLU clock

In general, DUTs can be categorized: sync to TLU or not

- 1. a DUT sync to the TLU:
 - The **TLU** common **global clock** to sync all devices;
 - Activation (shutter) issued by TLU
 - Busy signals (TLU state idle) to TLU: either global or local
 - <u>Global</u>: no trigger when any device is busy;
 - Local: trigger continuously issuing though some device busy

clk		
T0-sync		\
Timestamp	0	X 1
Emin		
Shutter		
Particles		
Trigger		
TLU state		

Shutter: activation signal T0_sync: 1 per run, common start signal

In general, DUTs can be categorized: <u>sync</u> T0-sync

to TLU or not;

- 1. a DUT sync to the TLU:
- 2. a DUT unsync to the TLU:
 - Synchronization by trigger counting; Trigger

DUTs can not use common TLU clock

- <u>Global busy</u> used: no trigger sent, when either device is busy;
- Add-on TLU func: **configurable delayed** TLU active period

Status:

- new TLU will be issued by end of this month;
- a first use case needed to test.

DESY | ALCW2018, Fukuoka | Mengqing Wu, 29.5.2018

Shutter **Particles** TLU state T0-sync Timestamp Emin Shutter Particles Trigger TLU state

Timestamp 0 Emin

Shutter: activation signal T0_sync: 1 per run, common start signal

