

FRANCE - UK Collaboration

Ju 3432

CRN 94-27

Unfavoured signature partner superdeformed bands associated with proton excitations in ¹⁵¹Tb

B.Kharraja¹, T.Byrski¹, F.A.Beck¹, C.W.Beausang², M.A.Bentley³, D.Curien¹, P.J.Dagnal², G.Duchêne¹, S.Flibotte^{1,4}, G.De France¹, Zs. Fülop⁵, B.Haas¹, A.Z.Kiss⁵, J.C.Lisle⁶, C.M.Petrache^{1,7}, Ch.Theisen¹, P.J.Twin², J.P.Vivien¹ and K.Zuber⁸

- ¹ Centre de Recherches Nucléaires, Institut National de Physique Nucléaire et de Physique des Particules, Centre National de la Recherche Scientifique, Université Louis Pasteur, F-67037 Strasbourg Cedex 2, France
- Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
- ³ School of Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom
- ⁴ Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L85 4M1, Canada
- ⁵ Institute of Nuclear Research, Bem tér 18/c, H-4001 Debrecen PF51, Hungary
- ⁶ Schuster Laboratory, University of Manchester M139PL, United Kingdom
- ⁷ Institute of Physics and Nuclear Engineering, Box MG-6, Bucharest, Romania
- ⁸ Institute of Nuclear Physics, PL-342 Krakow, Poland

Submitted to Physics Letters B

CENTRE DE RECHERCHES NUCLEAIRES STRASBOURG

IN2P3 CNRS UNIVERSITE LOUIS PASTEUR

Unfavoured signature partner superdeformed bands associated with proton excitations in ¹⁵¹Tb

B.Kharraja⁽¹⁾, T.Byrski⁽¹⁾, F.A.Beck⁽¹⁾ C.W.Beausang⁽²⁾
M.A.Bentley⁽³⁾, D.Curien⁽¹⁾, P.J.Dagnal⁽²⁾, G.Duchêne⁽¹⁾, S.Flibotte^(1,4),
G.de France⁽¹⁾, Zs.Fülöp⁽⁵⁾, B.Haas⁽¹⁾, A.Z.Kiss⁽⁵⁾, J.C.Lisle⁽⁶⁾,
C.M.Petrache^(1,7), Ch.Theisen⁽¹⁾, P.J.Twin⁽²⁾, J.P.Vivien⁽¹⁾, and K.Zuber⁽⁸⁾

May 17, 1994

- (1) Centre de Recherches Nucléaires, IN2P3-CNRS/Université Louis Pasteur, F-67037 Strasbourg Cedex, France
- (2) Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX,
 United Kingdom
- (3) School of Sciences, Staffordshire University, Stoke-on-Trent, United
 Kingdom
 - (4) Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L85 4M1, Canada
- (5) Insitute of Nuclear Rechearch, Bern tér 18/c, H-4001 Debrecen PF51, Hungary
 - (6) Schuster Laboratory, University of Manchester M139PL,
 United Kingdom
 - (7) Institute of Physics and Nuclear Engineering,

 Box MG-6, Bucharest, Romania
 (8) Institute of Nuclear Physics, PL-342 Kracow, Poland

Abstract

Candidates for two excited superdeformed (SD) bands based on unfavoured signature partners of proton particle-hole excitations in the 152 Dy core have been observed in the 151 Tb nucleus with the EUROGAM spectrometer. In the framework of cranked shell model calculations, one of these bands is interpreted as the signature partner of the 151 Tb yrast band. The second band is suggested as the signature partner of the 151 Tb first excited band with a proton $\pi[301]1/2$ configuration or as the excitation from the $\pi[303]5/2$ into the [651]3/2 intruder orbitals. These new data do not allow to confirm whether the pseudo-spin symmetry is still preserved. A comparison with predictions from self-consistent relativistic Hartree-Fock calculations shows evidence for large disagreement.

The quantum structure effects related to nuclear superdeformation (corresponding to an ellipsoidal nucleus with a 2:1 axis ratio) have seen a resurgence in activity with the advent of the new generation of γ -ray spectrometer such as EUROGAM due to their ability to obtain data on very weakly populated superdeformed (SD) structures. The observation of the first excited SD band in 151Tb [1] has suggested the important role played by the quantal pseudo-SU(3) symmetry and its pseudo-spin subsymmetry at high spin and large deformation; indeed this symmetry has been proposed to explain the remarkable transition energy degeneracy between the first excited SD band in 151 Tb based on a hole in the [301]1/2 $\alpha = -1/2$ proton orbit and the ¹⁵²Dy yrast SD band giving a decoupling parameter a = 1 in agreement with experiment [2]. Recent fully self-consistent relativistic calculations [3] have predicted the energies of proton excited SD bands in the nucleus 151Tb by removing one proton from the 152Dy core and, in particular, have been able to reproduce the degeneracy observed between the first excited SD band in 151Tb and the yrast SD band in 152Dy. The purpose of the present work was to search for the signature partners of the yrast and first excited SD bands in 151Tb in order to establish experimentally the lowest SD proton particle-hole excitations.

This letter reports the discovery of two excited SD bands in 151 Tb corresponding to proton particle-hole excitations. The first new band has been identified as the signature partner of the yrast SD band which is based on the [651]3/2 ($\alpha = + 1/2$) intruder orbital configuration. The calculated signature splitting gives an estimate of the relative excitation energy of this excited band compared to the yrast band. The second new band is a candidate for the signature partner of the original identical SD band based on a hole in the [301]1/2 ($\alpha = -1/2$) orbit, and if confirmed it does not follow the expected pseudo-spin symmetry. However the configuration of this band may also be based on a different proton orbital and this leads to the conclusion that the two signature partners could have identical γ -ray transitions, thus confirming the simple pseudo-spin picture. The

data on the new bands also show that there is a large disagreement with the predictions of recent relativistic self-consistent calculations[3].

The experiment was carried out at the Daresbury Nuclear Structure Facility. The SD bands in ¹⁵¹Tb were populated using the ²⁷Al + ¹³⁰Te reaction at a bombarding energy of 154 MeV. The target of 550 μ gcm⁻² thickness,was evaporated onto a 440 μ gcm⁻² gold film facing the beam in order to let the residue recoil into vacuum. In the present experiment the EUROGAM spectrometer [4] had 42 operational Ge detectors surrounded by BGO anti-Compton shields. The suppressed peak to total ratio with a ⁶⁰Co source was approximately 55 %. The counting rate in the individual Ge detectors was ~ 8 kHz. Unsuppressed events with a γ -ray multiplicity greater or equal to seven were recorded, and after the Compton suppression requirement, the average number of coincident detectors was ~ 4. A total data set of 5.5 \times 10⁸ suppressed events with Ge fold \geq 3 has been obtained. The unfolding of these events led to 3.1 \times 10⁹ coincidences of order four. The final spectra were obtained by summing combinations of 3 dimensional gates set on SD transitions in a 4-dimensional analysis [5].

Under the present conditions, apart from the two previously reported SD bands in ¹⁵¹Tb [1,6], six new SD bands have been assigned to this nucleus. These excited bands have been labelled from 2 to 8 generally according to their intensities relative to the yrast band (band 1). The assignment to a given isotope is based on the unambiguous observation of known γ -ray transitions of the normal deformed scheme which are in coincidence with the SD band members The intensities with the uncertainties of the various bands relative to the yrast band are 50 (5)% (band 2), 35 (5)% (band 3), 6 (2)% (band 4), 10 (2)% (band 5), 9 (2)% (band 6), 11 (2)% (band 7), 7 (3)% (band 8). Bands labelled 5 to 8 have been interpreted in terms of single neutron excitations accross the N = 86 shell gap [7] and will not be discussed here. The γ -ray transition energies of bands 1 to 4 are listed in table 1.

The dynamical moments of inertia $\Im^{(2)}=4\hbar^2/\Delta E_{\gamma}$ (where ΔE_{γ} is the energy spacing between two consecutive transitions) of bands 2 and 4 are

very similar to each other and to the yrast band of the ¹⁵²Dy isotone but although band 3 shows a similar variation with frequency, its magnitude is slightly smaller. These data indicate that bands 2 and 4 have the same high - N proton configuration as ¹⁵²Dy with four N = 6 proton intruder orbitals occupied. Concerning band 3 the similarity of the variation of the $\mathfrak{F}^{(2)}$ moment of inertia with that of the ¹⁵²Dy yrast SD band and its dissimilarity to the dynamical moments of inertia associated with other high - N configurations (yrast SD bands of ¹⁵¹Dy, ^{150,151}Tb, ^{149,150}Gd) suggest that the deformation associated to band 3 is large like in the case of ¹⁵²Dy, but that one orbital which has a constant change in slope with frequency is unoccupied.

In assigning the most probable configurations to SD bands 3 and 4, it is useful to extract the effective alignments corresponding to these bands relative to the yrast SD band in 152Dy, assuming the spin values proposed in Ref[8]. The effective alignment between a given SD band and the reference band is equal to their difference in spin at a given γ -ray energy. These alignments together with those of band 2 are reported as a function of rotational frequency in fig.1 (upper panel). In discussing the configurations of these bands we first focus on the previously known band 2. With the high quality data set obtained in the present experiment it has been possible to extend band 2 (see table.1) both to higher and lower γ ray energies, and to measure the transition energies very accurately. The data show that the identity with the γ -ray transition energies of the ¹⁵²Dy yrast SD band is maintained, on average, to less than 1.5 keV over 20 transitions yielding an effective alignment of - 0.55 \hbar relative to the ¹⁵²Dy yrast SD band (fig.1). Band 2 has been associated with a hole in the (α =-1/2) signature member of the [301]1/2 proton orbital of the SD ¹⁵²Dy core configuration. The concept of pseudo-SU(3) asymptotic limit has been introduced [2] in order to explain the observed similarities between the yrast SD band in 152 Dy (Z = 66) and band 2 in 151 Tb (Z = 65). It gives the correct value for the decoupling parameter (a = +1) of the [301]1/2hole in the 152 Dy core, equivalent to an effective alignment of - 0.5 \hbar . Decoupling parameters calculated with the Nilsson model are usually closer to the pseudo-SU(3) limit and it was proposed [2] that band 2 in 151 Tb was an almost perfect example of the pseudo-SU(3) symmetry. However the cranked shell model calculations also give good agreement with band 2 as the effective alignment varies between - 0.3 \hbar for anharmonic oscillator [8] and -0.5 \hbar for Woods - Saxon [9] potentials.

The next two most favourable proton excitations are the signature partners of bands 1 and 2 and they are expected to have similar large deformations. First we consider the signature partner of band 1, an excitation from the [651]3/2, $\alpha = -1/2$ ($\pi 6_3$) to the [651]3/2, $\alpha = +1/2$ ($\pi 6_4$) intruder orbitals (fig.2), and we associate band 3 with this excitation. The alignment as a function of rotational frequency for the $\pi 6_3$ active orbital can be extracted (fig.1, upper panel) from the differences in spin between band 3 and the yeast SD band in 152 Dy which has both $\pi6_3$ and $\pi6_4$ occupied. It is compared with the effective alignments calculated for the same orbital [8] (fig.1, lower panel) and indeed the agreement with theory is excellent. The figure also shows other experimental alignments of the $\pi 6_3$ orbital obtained by comparing the yrast SD bands of 149Gd and 150Gd to the yrast SD bands of the isotones 150 Tb and 151 Tb respectively. In these two cases there is reasonable agreement with calculated values for high rotational frequencies $\hbar\omega > 0.6$ MeV, but large differences occur for lower frequencies. As suggested in ref. [7,8] the discrepancies are probably due to pairing correlations which have not been taken into account in the calculations, and which are important in these two nuclei as evidenced for example by the large increase in S⁽²⁾ at low frequency in the case of the yrast SD band of the 150Gd. In contrast the excellent agreement in the case of band 3 in 151 Tb shows that pairing effects are greatly reduced. We conclude that band 3 corresponds to the promotion of the last proton from the [651]3/2 ($\alpha = 1/2$) intruder orbital into its signature partner, and we have therefore identified, in the same nucleus, two bands corresponding to both signatures of the [651] intruder level. It is worth noting that their signature splitting is rather insensitive to small changes in the deformation parameters. It turns out that in Woods-Saxon calculations this splitting corresponds to ~ 650 keV at a frequency of ~ 0.7 MeV (fig.2). As a consequence, we suggest that band 3 lies 600 - 700 keV above the yrast SD band in the feeding region and that this amount of excitation energy is responsible for the factor ~ 3 loss in intensity of the corresponding ¹⁵¹Tb excited band compared to the yrast band. Furthermore an estimate can be made of the average excitation energy of the final state feeding the SD states. Using the data on the two [651]3/2 signature proton bands i.e. the energy separation is 650 keV and their relative intensity is 35%, and assuming the intensities of γ -ray decays vary as E_{γ}^{4} [10], this excitation energy is 2.7 MeV. This data then enables us to estimate the relative excitation energy in the feeding region of all excited SD bands in ¹⁵¹Tb.

We now consider the possible configurations for band 4. One possibility is that it is the excitation from the other signature of the [301]1/2 orbital. The 3(2) moment of inertia has the correct variation with frequency. The experimental effective alignment is $\sim 0.2~\hbar$ (fig.1), close to the values predicted by cranked shell model calculations. However the intensity of the band is $\sim 12\%$ of that of the other signature partner [301]1/2 band, which from cranked shell model calculations is only 0.2 -0.3 MeV different in energy. This is a much smaller intensity than the 60 - 70 % expected from a comparison with the above discussion on the [651]3/2 signature partners and raises doubts about this interpretation. A second possibility for band 4 is that it is associated with an excitation from the next proton orbital [303]5/2 (fig.2) which would explain its low relative intensity. However in this case there should be a signature partner [303]5/2 band with no signature splitting and thus have γ -ray transition energies at the half point energies of band 4. It is not possible to confirm or deny the existence of such a signature partner band as the expected γ -ray transitions are very close in energy to those of the yeast band (for $0.47~{
m MeV} \le \hbar\omega \le 0.66~{
m MeV}$) and identical to those of band 6 at the lowest frequencies. If this explanation of band 4 is correct it raises the question of the missing [301]1/2 signature partner. We note that in the simple pseudo-SU(3) limit with a decoupling parameter of a=+1 the missing [301]1/2 band would have identical γ -ray energies with band 2 and thus the spectrum of band 2 would be the sum of both [301]1/2 signature partners. This scenario would confirm that the simple pseudo-SU(3) limit is correct but be at variance with the cranked shell model predictions which have given a good description of the first excited band in ¹⁵¹Tb and the neutron particle-hole SD excitations in the A=150 mass region [7,9].

Very recently the problem of identical bands in SD nuclei has been investigated using a relativistic self-consistent cranking theory [3]. In particular bands in 151 Tb have been calculated by removing one proton from the 152Dy core. Taking particles out of the orbits directly below the large Z=66 proton gap (the orbits with approximate Nilsson quantum numbers [651]3/2 and [301]1/2) produces four bands in ¹⁵¹Tb which are associated, respectively, with bands 1, 3, 2 and possibly 4 discussed previously. The energy differences $\Delta E_{\gamma} = E_{\gamma}(\text{Tb}) - E_{\gamma}(\text{Dy})$ between the transition energies of the above four bands in ¹⁵¹Tb and the yrast SD band in ¹⁵²Dy have been calculated in the framework of that model [3]. The corresponding experimental quantities are shown in the lower panel of fig.3 whereas the theoretical calculations are presented in the upper panel. Although the observed degeneracy between band 2 of ¹⁵¹Tb and the yrast band of ¹⁵²Dy is nicely reproduced (the calculated ΔE_{γ} values are of the order of 1 keV over the whole energy range), the predicted energy differences for bands 1, 3 and 4 are in marked disagreement with the data.

In summary, with the use of high fold γ -ray coincidences, we have discovered two new proton excited SD bands in the nucleus ¹⁵¹Tb. The expected signature partner of the yrast SD band has been observed. The proposed configurations for the other band have new implications on our understanding of excited SD bands. Either the intensity of signature partners is not linked to their energy splitting or the cranked shell model calculations are not correctly predicting the alignment of the [301]1/2 unfavoured signature orbital whereas the simple pseudo-spin limit is giving a good description. The resolution of these problems may not be solved

by further data on ¹⁵¹Tb but probably requires a systematic study of proton-hole excited SD bands in neighbouring A = 150 nuclei. Finally, although they give good agreement for the first excited band of ¹⁵¹Tb the relativistic fully self - consistent calculations do not reproduce the energy variations with frequency of the other proton excited bands.

Eurogam is funded jointly by the SERC (U.K.) and IN2P3 (France). PJD acknowledges receipt of a SERC postgraduate studentship, KZ is partially supported by the Polish KBN Grant number 204519101/p02. Zs.Fülöp acknowledges the support from the Hungarian OTKA grant number F4350.

References

- [1] Th.Byrski et al., Phys.Rev.Lett. 64 (1990) 1650
- [2] W.Nazarewicz et al., Phys. Rev. Lett. 64 (1990) 1654
- [3] J.König and P.Ring Phys. Rev. Lett. 71 (1993) 3079
- [4] F.A.Beck, Prog.Part.Nucl.Phys. 28, (1992)443; C.W.Beausang et al., Nucl.Inst. and Meth. A 313 (1992)37.
- [5] S.Flibotte et al., Nucl. Instr. and Meth. A320, (1992) 325
- [6] P.Fallon et al., Phys. Lett. B218 (1989) 137
- [7] G.de France et al., —Phys.Lett.B in press
- [8] I.Ragnarsson, Nucl. Phys. A557, (1993) 167c
- [9] J.Dudek, private communication
- [10] S.Tobbeche et al., Z.Phys A325, (1986) 85; B.Herskind et al.,
 Phys.Rev.Lett. 59(1987)37

Figure Captions

- Fig1 (Upper panel) Measured effective alignments as a function of rotational frequency for bands 2, 3 and 4. The chosen reference is the SD ¹⁵²Dy yrast band. (Lower panel) The measured effective alignment as a function of rotational frequency of band 3 is compared with those of the superderformed yrast bands of ¹⁴⁹Gd and ¹⁵⁰Gd for which the reference bands are the yrast SD bands of isotones ¹⁵⁰Tb and ¹⁵¹Tb, respectively. The calculated values within the framework of the modified harmonic oscillator ref [8], for the π6₃ active orbital are also shown.
- Fig2 Calculated proton routhians as a function of rotational frequency using the Woods Saxon potential [9]. The orbitals with parity and signature $(\pi, \alpha) = (+,+1/2), (+.-1/2), (-,+1/2)$ and (-,-1/2) are indicated by solid, dashed-dotted, dashed and dotted lines, respectively.
- Fig3 Gamma-ray energy differences $\Delta E_{\gamma} = E_{\gamma}(^{151}Tb) E_{\gamma}(^{152}Dy)$ as a function of γ -ray energy; lower panel, the experimental values for bands 1 to 4; upper panel, calculated values in a relativistic fully self-consistent description [3] for the lowest four proton excitations from the [651]3/2 and [301]1/2 orbitals.

Table 1:Measured gamma-ray energies in keV of SD bands 1 to 4 in

151 Tb. The errors on the energies are given in parenthesis. The assumed spins for the transitions marked *) are given at the end of the table.

¹⁵¹ Tb			
Band 1	Band 2	Band 3	Band 4
	602.1 (8)		
	646.4 (5)		
	691.9 (5)	681.5 (10)	
726.5 (5)	737.4 (3)	727.7 (8)	
769.3 (5)	783.4 (3)	773.9 (5)	768.6 (5)
811.2 (3)	828.7 (3)	821.2 (8)	816.3 (10)
854.0 (3)	874.8 (3)	867.8 (8)	865.3 (6)
897.5 (3)	921.6 (4)	915.8 (5)	913.9 (5)
942.7 (3)	968.1 (4)	963.6 (10)	961.9 (6)
988.2 (3)	1015.7 (4)	1013.3 (5)	1009.4 (6)
1034.2 (3)	1063.0 (5)	1061.8 (5)	1056.6 (5)
1082.0 (3)	1110.5 (6)	1111.4 (5)	1103.8 (8)
1130.0 (4)	1158.6 (6)	1160.8 (5)	1152.5 (6)
1178.0 (3)	1206.9 (8)	1209.6 (5)	1201.1 (7)
1227.9 (3)	1254.8 (6)	1258.8 (5)	1248.5 (6)
1277.9 (3)	1303.2 (8)	1309.6 (7)	1296.5 (7)
1328.2 (8)	1352.0 (8)	1357.7 (7)	1344.8 (7)
1379.3 (5)	1339.5 (9)	1408.2 (8)	1392.9 (10)
*)1431.7 (7)	* ⁾ 1448.3 (9)	*)1456.8 (9)	* ⁾ 1439.3 (10)
1483.0 (7)	1495.0 (11)	1504.8 (10)	1485.5 (10)
1535.2 (10)			
$60.5^+ \rightarrow 58.5^+$	$62.5^- o 60.5^-$	$61.5^+ \rightarrow 59.5^+$	$61.5^- o 59.5^-$

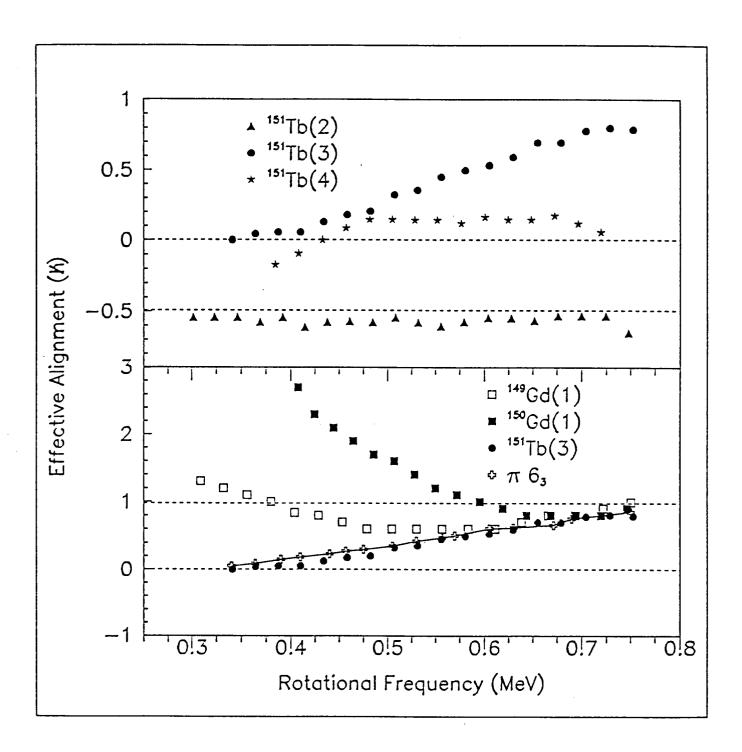


Fig.1

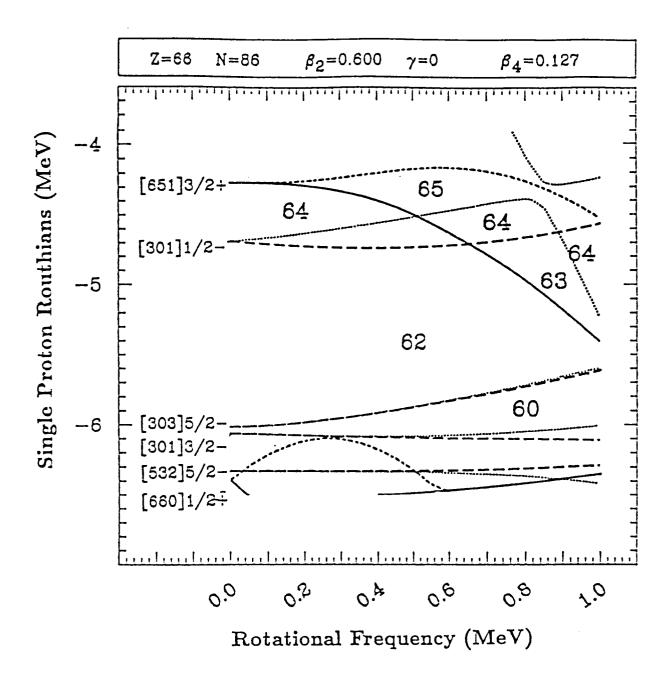


Fig.2

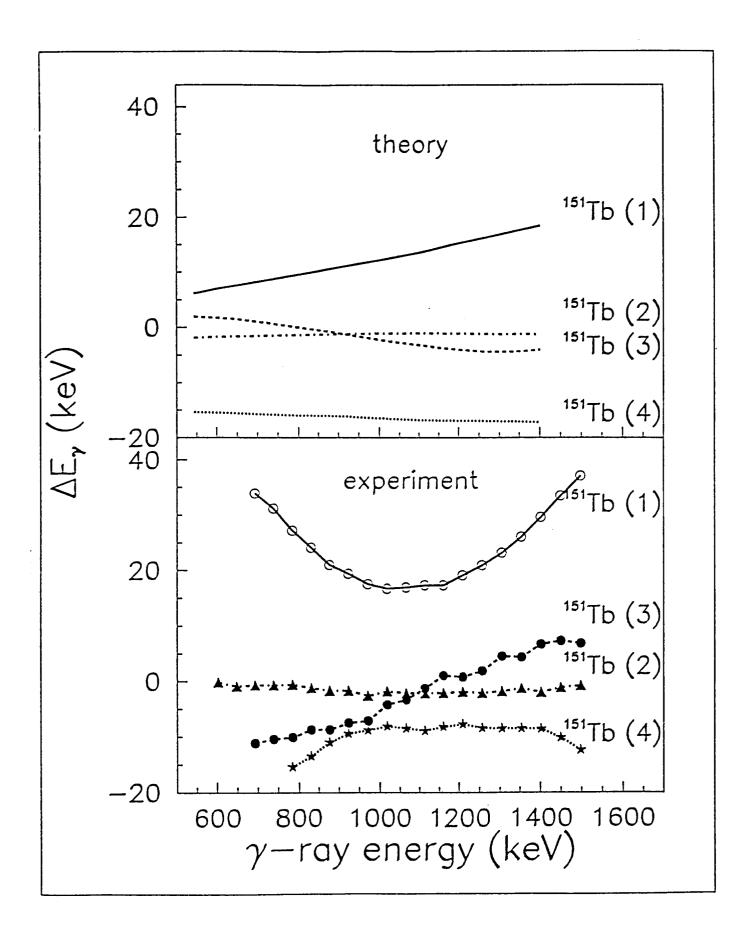


Fig.3

