
C. Leggett 2019-03-19
1

Simulating Diverse HEP Workflows on

Heterogeneous Architectures

Charles Leggett, Illya Shapoval (on behalf of the ATLAS collaboration)

Marco Clemencic (LHCb), Chris Jones (CMS)

ACAT 2019 Saas Fee, Switzerland

Mar 13 2019

C. Leggett 2019-03-19
2

Next Generation HPC Architectures
► In the next generation of supercomputers we see extensive use of accelerator

technologies
• Oak Ridge: Summit (2018)

• 4608 IBM AC922 nodes w/ 2x Power9 CPU
• 3x NVIDIA Volta V100 + NVLink / CPU

• Texas: Frontera (2019)
• 8064 x2 Xeon
• "single precision GPU subsystem"

• Argonne: Aurora A21 (2021)
• exascale
• "novel architecture" -> maybe CSA?

► In order to meet the HL-LHC computing requirements, we need to use all available
computing resources, or cut back physics projections

► US funding agencies have indicated that we will not be able to get allocations if
our code does not make use of accelerator hardware

• LLNL: Sierra (2018)
• 4320 IBM AC922 nodes w/ 2x Power9 CPU
• 2x NVIDIA Volta V100 + NVLink / CPU

• LBL: NERSC-9 "Perlmutter" (2020)
• AMD Epyc "Milan" x86 only nodes +

mixed CPU / "next gen" NVidia GPU

• Similarly in Asia and Europe

C. Leggett 2019-03-19
3

Offloading HEP Software To Accelerators
► In general, very little HEP software has been coded to run on accelerators

• mostly tracking
• some Geant4 EM and neutral processes
• calorimeter cluster seeding
• most HEP codebases don't parallelize easily

► Extensive work is being done to rewrite certain Algorithms making use of machine
learning technologies
• not easy, and time consuming

► Before expending vast resources recoding, it is essential to understand how much
actually needs to be rewritten to make use of accelerators
• can we identify critical bottlenecks?

► We can simulate HEP workflows and see what kind of Algorithms are most beneficial
to offload

C. Leggett 2019-03-19
4

Understanding HEP Workflows
► We selected several standard reconstruction workflows from ATLAS, CMS and LHCb

• Algorithm data interdependencies, control flow and timings have been extracted from
actual data

► Ran simulation using Gaudi Avalanche task scheduler, with artificial CPU Crunchers
instead of real Algorithms, allowing maximal concurrency of all Algorithms

► Generated a precedence trace, showing execution path of scheduler through
Algorithm sequence

► Analyzed graph to identify critical path
• Longest path through the graph, with run times taken as node weights
• Algorithms that, with sufficient concurrency, determine event processing time

► Used critical path to determine which
Algorithms to simulate offloading to
accelerator. I/O is not offloaded

Workflow Total Algorithms
Critical Path
Algorithms

Critical Path
without I/O

ATLAS 309 : 14.6s 20 : 8.33s 17 : 5.78s

ATLAS high-μ 309 : 127.3s 32 : 95.7s 29 : 85.7s

CMS 707 : 13.4s 147 : 8.38s 145 : 7.32s

LHCb 282 : 491.8s 13 : 258.5s 11 : 233.9s

C. Leggett 2019-03-19
5

ATLAS Precedence Trace

ATLAS

309 Algorithms: 14.6s
17 on critical path: 5.8s

C. Leggett 2019-03-19
6

ATLAS High μ Dataset Precedence Trace

ATLAS μ ≈ 90

309 Algorithms: 127s
29 on critical path: 85.7s

C. Leggett 2019-03-19
7

CMS Precedence Trace

CMS

 707 Algorithms: 13.4s
145 on critical path: 7.32s

C. Leggett 2019-03-19
8

LHCb Precedence Trace

LHCb

282 Algorithms: 492s
13 on critical path: 234s

C. Leggett 2019-03-19
9

Algorithm Offloading
► An Algorithm that offloads data to an external resource blocks its software thread

• allow blocking thread to be pre-empted and displaced from the linux kernel run queue until
it wakes up

• hide latency by scheduling another thread if one is available
• oversubscribe the scheduler with more threads than available hardware threads
• for offline processing, event throughput is the only metric that matters

► Model offloading by modifying runtime torig of the Algorithm with 3 parameters:
• fraction (frac) of Algorithm runtime that can be offloaded
• efficiency (eff) of running offloaded part on accelerator (does it run faster or slower?)
• extra time (textra) to transfer data to/from accelerator
• the CPU will then run for tcpu and the accelerator for toffload

tcpu = torig * (1-frac) toffload = torig * frac * (1+eff) + textra

► Actual offload simulation performed by calling sleep
• linux kernel does the rest for us

C. Leggett 2019-03-19
10

Offloading Critical or Non-Critical Path Algorithms
► Choosing which Algorithms to

offload can be critical
► We can measure the throughput

of the job varying the offloading
fraction and efficiency

► If the accelerator takes much
longer to execute the Algorithm
than the CPU, it has the effect of
lengthening the critical path. This
can be overcome by increasing
the number of concurrent events.
• this may be limited by other

system resource constraints
► While the actual algorithmic content of the Algorithm will ultimately decide whether it

can be usefully offloaded, knowing that offloading Algorithms on the critical path has a
larger impact on throughput will reduce the number of Algorithms to manually inspect

C. Leggett 2019-03-19
11

Comparison of Changing Accelerator Efficiency
► Offload Algorithms on

the critical path

► Does it matter if
Algorithms don't run much
faster on the accelerator?

► Decreasing the accelerator
efficiency (runs faster on
accelerator) has the effect of
increasing the occupancy,
and decreasing the length of
the critical path
• throughput 2.7x higher

threads: 35
concurrent events: 10
offload frac: 0.9
offload eff: 0.75 -> -0.75

100 events

267 events

eff = .75

eff = -.75

average occupancy: .477

average occupancy: .738
hardware: 2x Intel Xeon CPU E5-2630 v4

10 physical cores / CPU, HT enabled

C. Leggett 2019-03-19
12

Offloading Algorithms not on Critical Path
► Offloading Algorithms

not on the critical path,
with different
accelerator efficiencies

► Total throughput is
comparable, but one
has significantly higher
occupancy than the
other
• can take advantage of low

occupancy to schedule
additional concurrent events,
maximizing throughput

threads: 35
concurrent events: 10
total events: 100
offload frac: 0.9
offload eff: 0.75 -> -0.75

eff = .75

eff = -.75

average occupancy: .581

average occupancy: .353

C. Leggett 2019-03-19
13

Offloading Algorithms not on Critical Path
► Offloading Algorithms

not on the critical path,
with different
accelerator efficiencies

► Total throughput is
comparable, but one
has significantly higher
occupancy than the
other
• can take advantage of low

occupancy to schedule
additional concurrent events,
maximizing throughput

threads: 35
concurrent events: 40
total events: 217
offload frac: 0.9
offload eff: 0.75 -> -0.75

eff = .75

eff = -.75

average occupancy: .581

average occupancy: .959

217 events

C. Leggett 2019-03-19
14

Oversubscription
► Running with only as many software threads as hardware threads results in less than

full occupancy, as the offloaded Algorithms' hardware threads are often idle

► offload only Algorithms
on the critical path,
except those that do I/O

use taskset to limit execution to
10 physical cores, occupying all

non-HT cores on one physical CPU

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

Throughput Scaling

10 threads, offload frac = 0.9

eff = -0.75 eff = -0.5

eff = -0.25 eff = 0

eff = 0.25 eff = 0.5

eff = 0.75 no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

Throughput Scaling

10 threads, offload frac = 0.9

eff = -0.75 eff = -0.5

eff = -0.25 eff = 0

eff = 0.25 eff = 0.5

eff = 0.75 no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

C. Leggett 2019-03-19
15

Oversubscription : ATLAS
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe the CPU with more threads to maximize throughput

► This may require
increasing the number
of concurrent events
depending on available
concurrency to get
maximum throughput

10 threads 12 threads

25 threads20 threads15 threads

C. Leggett 2019-03-19
16

Oversubscription : ATLAS
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe the CPU with more threads to maximize throughput

► ATLAS: offload just 4
slowest Algorithms (3 on
critical path)
• 7% decrease in throughput

10 threads 12 threads

25 threads20 threads15 threads

C. Leggett 2019-03-19
17

Oversubscription : ATLAS High-μ
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe the CPU with more threads to maximize throughput

► ATLAS high-μ input
dataset

10 threads 12 threads

25 threads20 threads15 threads

C. Leggett 2019-03-19
18

Oversubscription : CMS
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe the CPU with more threads to maximize throughput

► CMS scenario

10 threads 12 threads

25 threads20 threads15 threads

C. Leggett 2019-03-19
19

Oversubscription : LHCb
► Running with as many software threads as hardware threads results in less than full

occupancy, as the offloaded Algorithms' hardware threads are idle

► We can oversubscribe the CPU with more threads to maximize throughput

► LHCb scenario

10 threads 12 threads

25 threads20 threads15 threads

C. Leggett 2019-03-19
20

Observational Notes
► ATLAS reconstruction with current

data has a much higher degree of
inherit concurrency than CMS or LHCb.
• Percentage of single event time spent

on critical path (not counting I/O) is 40%
• When a high-μ dataset is used, the

critical path is lengthened to 68%. This
has the effect of decreasing the available
concurrency

► CMS has the most sequential reconstruction sequence, and the largest number of
Algorithms: 55% of the time is on the critical path

► LHCb falls between the two, with 48% of time spent on the critical path

► Longer critical paths lead to less inherent concurrency, requiring more
oversubscription and concurrent events in order to maximize throughput

Workflow Total Algorithms Critical Path
Algorithms

Critical Path
without I/O

ATLAS 309 : 14.6s
20

8.33s / 57.1%
17

5.78s / 39.6%

ATLAS high-μ 309 : 127.3s
32

95.7s / 75.2%
29

85.7s / 67.3%

CMS 707 : 13.4s
147

8.38s / 62.5%
145

7.32s / 54.6%

LHCb 282 : 491.8s
13

258.5s / 52.6%
11

233.9s / 47.6%

C. Leggett 2019-03-19
21

Accelerator Data Transfer Latencies
► It takes time to marshal data, and send it to (and get it back) from an accelerator
► Depending on the Algorithm, this might be significant
► Does this added latency matter?

► Has a similar effect on throughput as decreasing the efficiency of the offloaded
Algorithm
• at some point, it begins to matter
• effect is very dependent on the runtime of the Algorithm on the accelerator, and the amount

of data transmitted

► The effect (less than optimal CPU occupancy) can be managed by increasing the
number of concurrent events
• some downsides due to increased memory usage

► In general, as long as the CPU is not spending time converting/transmitting data (ie,
data is already in a form that the accelerator can easily use), this is not likely to be a
problem

C. Leggett 2019-03-19
22

Conclusions
► Understanding the critical path of Algorithm execution is very important when

determining where to concentrate efforts in offloading Algorithms

► While simulated throughput studies show that offloading Algorithms on the critical path
can be much more advantageous than others
• latency hiding means that anything you offload is essentially a win, whether or not it's on

the critical path
• offloading Algorithms not on the critical path require increasing the number of concurrent

events to maximize throughput
• rewriting these Algorithms for the accelerator is an exercise left for the implementer....

► Algorithms don't need to run exceptionally efficiently on the accelerator (ie. faster than
on the CPU)
• inefficient accelerator usage can be offset by increasing number of concurrent events

► Oversubscription of CPU hardware threads is essential to maximizing overall throughput
• threads that offload Algorithms are basically sleeping until the accelerator returns
• in our scenarios the cost of context switching in negligible enough to not affect performance
• blocking nature of linux kernel for I/O enables similar performance benefits for I/O Algorithms

C. Leggett 2019-03-19
23

f in

C. Leggett 2019-03-19
24

ATLAS Timeline
► ATLAS timeline chart for 1 event w/ 35 threads, no offloading

• critical path Algorithms in red

C. Leggett 2019-03-19
25

ATLAS High-μ Timeline

C. Leggett 2019-03-19
26

CMS Timeline

C. Leggett 2019-03-19
27

LHCb Timeline

C. Leggett 2019-03-19
28

ATLAS High-μ : Massive Oversubscription
► ATLAS high-μ scenario with 50 threads

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Throughput Scaling

50 threads, offload frac = 0.9

eff = -0.75 eff = -0.5

eff = -0.25 eff = 0

eff = 0.25 eff = 0.5

eff = 0.75 no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Throughput Scaling

50 threads, offload frac = 0.9

eff = -0.75 eff = -0.5

eff = -0.25 eff = 0

eff = 0.25 eff = 0.5

eff = 0.75 no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

C. Leggett 2019-03-19
29

CMS : Massive Oversubscription
► CMS scenario with 50 threads

0 5 10 15 20 25
0

5

10

15

20

Throughput Scaling

50 threads, offload frac = 0.9

eff = -0.75 eff = -0.5

eff = -0.25 eff = 0

eff = 0.25 eff = 0.5

eff = 0.75 no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

0 5 10 15 20 25
0

5

10

15

20

Throughput Scaling

50 threads, offload frac = 0.9

eff = -0.75 eff = -0.5

eff = -0.25 eff = 0

eff = 0.25 eff = 0.5

eff = 0.75 no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

C. Leggett 2019-03-19
30

LHCb : Massive Oversubscription
► LHCb Scenario with 50 threads

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

Throughput Scaling

50 threads, offload frac = 0.9

eff = -0.75 eff = -0.5

eff = -0.25 eff = 0

eff = 0.25 eff = 0.5

eff = 0.75 no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

Throughput Scaling

50 threads, offload frac = 0.9

eff = -0.75 eff = -0.5

eff = -0.25 eff = 0

eff = 0.25 eff = 0.5

eff = 0.75 no offload

Concurrent Events

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

C. Leggett 2019-03-19
31

Oversubscription : ATLAS High-μ, 3 Slowest Algs
► ATLAS high-μ input dataset, 3 slowest Algorithms (all on critical path)

15 threads 20 threads

50 threads35 threads25 threads

10 threads

C. Leggett 2019-03-19
32

ATLAS: Offload 10% Of Event Processing Time
► ATLAS: randomly select Algorithms on/off critical path, such that total time is equal to ~10% of one event's

Algorithms not on critical path
1.46s / 89 Algs

Algorithms on critical path
1.50s / 4 Algs

C. Leggett 2019-03-19
33

► ATLAS timeline chart for 35 concurrent evts w/ 35 threads, no offloading, 500 events,
showing occupancy of each thread

C. Leggett 2019-03-19
34

Time Distribution of Algorithms

ATLAS ATLAS high-mu

CMS LHCb

C. Leggett 2019-03-19
35

ATLAS: Algorithms on the Critical Path

Algorithm time (s)

InDetSiSpTrackFinderAlg 1.920

InDetAmbiguitySolverAlg 1.365

InDetExtensionProcessorAlg 0.924

btagging_antikt4emtopoAlg 0.542

MuonCombinedInDetCandidateAlg 0.291

CaloCellMakerAlg 0.217

InDetTRT_ExtensionAlg 0.163

InDetTrackCollectionMergerAlg 0.129

MuonInsideOutRecoAlg 0.112

CaloTopoClusterAlg 0.067

InDetTrackParticlesAlg 0.026

TileRChMakerAlg 0.010

MuonCreatorAlg 0.006

TileDQstatusAlg 0.005

InDetCaloClusterROISelectorAlg 0.002

egammaTopoClusterCopierAlg 0.001

InDetCopyAlg 0.001

Algorithm time (s)
InDetSiSpTrackFinderAlg 29.416
InDetAmbiguitySolverAlg 18.112

EMBremCollectionBuilderAlg 13.262
egammaRecBuilderAlg 6.917

InDetExtensionProcessorAlg 6.233
egammaSelectedTrackCopyAlg 2.945

electronSuperClusterBuilderAlg 2.274
EMVertexBuilderAlg 1.355

InDetTRT_ExtensionAlg 1.079
PFAlgorithmAlg 0.945

InDetTrackCollectionMergerAlg 0.765
topoEgammaBuilderAlg 0.683
PFTrackSelectorAlg 0.612
CaloTopoClusterAlg 0.444
CaloCellMakerAlg 0.225

InDetTrackParticlesAlg 0.175
METAssociationAlg 0.167

jetalgAntiKt4EMPFlowJetsAlg 0.051
InDetCaloClusterROISelectorAlg 0.038
PFONeutralCreatorAlgorithmAlg 0.012

TileRChMakerAlg 0.012
edalg_Kt4EMPFlowEventShapeAlg 0.006

TileDQstatusAlg 0.005
egammaTopoClusterCopierAlg 0.003

jetalgCHSPFlowAlg 0.003
METMakerAlg_AntiKt4EMTopoAlg 0.002

ThinNegativeEnergyCHSNeutralPFOsAlg 0.001
PFLeptonSelectorAlg 0.001

InDetCopyAlg 0.001

