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Abstract: In this paper we study the calculation of multiloop Feynman integrals that

cannot be expressed in terms of multiple polylogarithms. We show in detail how certain

types of two- and three-point functions at two loops, which appear in the calculation of

higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally

be expressed in terms of a recently introduced elliptic generalisation of multiple polyloga-

rithms by direct integration over their Feynman parameter representation. Moreover, we

show that in all examples that we considered a basis of pure Feynman integrals can be

found.
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1 Introduction

Feynman integrals constitute the building blocks for the study of scattering processes in

perturbative quantum field theory (QFT). High precision calculations in QFT require the

ability to compute increasingly more complicated Feynman integrals which involve many

internal loops and external legs. The success of the collider physics program, highlighted

in the last years by the impressive results obtained by the LHC at CERN, has pushed the

required precision of theoretical computations to an unprecedented level. In order to keep

up with the experimental demands, theoretical predictions of processes involving Feynman

integrals with internal masses and with at least two loops and up to five external legs have

become mandatory. In spite of the extreme complexity of these calculations, the last two

decades have witnessed an impressive advancement in our understanding of perturbative

QFT and, as a result, of our ability to keep such calculations under control.

Typically, complicated Feynman integrals are computed by means of two seemingly

orthogonal methods. On the one hand, one can attempt their direct integration over some

integral representation (for example in terms of Feynman parameters or Mellin-Barnes in-

tegrals). On the other hand, one can derive differential equations (DE) satisfied by the

Feynman integrals and try to solve them [1–4]. Understanding the importance of multiple

polylogarithms (MPLs) [5–7] in high-energy physics [8, 9], and the study of their analyti-

cal, algebraic [10–12] and numerical [13] properties, have been crucial steps to systematise

both strategies. For what concerns direct integration techniques, this program culminated

in the enunciation of the criterion of linear reducibility [14, 15], which allows one to define

a (quite general) class of Feynman integrals that can be algorithmically expressed in terms

of MPLs by direct integration over their Feynman-parameter representation. A similarly

important result in the context of the differential-equation method (even if mathematically
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less well established) is the concept of canonical basis of master integrals [16]. Canoni-

cal master integrals fulfil differential equations which admit solutions in terms of iterated

integrals over particularly simple kernels, which in turn can be expressed as total differen-

tials of logarithms. If there exists a parametrisation of the external kinematics in terms of

which the arguments of the logarithms are all rational functions, the corresponding iter-

ated integrals can be straightforwardly expressed in terms of MPLs. Indeed, both by direct

integration through the linear reducibility criterion, and in the case of canonical differential

equations1, one ends up with iterated integrals in a set of variables over rational functions

in these variables. It is then a well-known fact that the space defined by these integrals is

spanned by linear combinations of MPLs and rational functions.

Despite their applicability to large classes of problems in high-energy physics, already at

the second loop order MPLs are known not to exhaust the whole space of special functions

required for the computation of Feynman integrals. Indeed, as early as 1962 A. Sabry,

in an attempt to compute the two-loop corrections to the electron propagator in QED,

encountered integrals of complicated algebraic functions which could not be evaluated in

terms of polylogarithms [17], but instead required the introduction of elliptic integrals

and integrals thereof. It was not until the second decade of the twenty-first century that

such integrals came back to the centre of investigation in particle physics, when it was

realised that similar mathematical objects were required for the computation of multiloop

corrections to processes of crucial importance to the physics programme at the LHC, like

the production of tt̄ pairs in NNLO QCD. Since then, the development of techniques

to treat integrals beyond MPLs has been a very pressing issue, both for their potential

phenomenological impact in collider physics, and also for their conceptual relevance [18–

51]. Thanks to this concerted effort, in the last years significant steps have been taken in

extending both strategies (i.e. direct integration and differential equations) to the so-called

elliptic case, namely when the natural geometry associated to the Feynman graphs under

consideration is related to a family of Riemann surfaces of genus one.

The scope of this paper is to show how the algorithms for the direct integration of

Feynman integrals in terms of MPLs can be suitably generalised to the elliptic case by ex-

ploiting the properties of the elliptic polylogarithms (eMPLs) defined in refs. [40, 52, 53].

We recall here that these eMPLs are essentially equivalent to the multiple elliptic polylog-

arithms defined by Brown and Levin in ref. [25]. In particular, by working out different

examples explicitly, we demonstrate how to treat those classes of Feynman integrals which

do not fulfil the criterion of linear reducibility and, instead, require dealing with iterated

integrals over more general rational functions R(x, y), where y =
√
P (x) defines an el-

liptic curve2. We stress that, in order for our approach to be successful, one must deal

with integrals where only one single elliptic curve appears and no other square roots are

present. In this sense, this paper constitutes a concrete step towards the generalisation of

the machinery developed to integrate Feynman integrals in terms of MPLs to the elliptic

case.

1In the absence of square roots which cannot be rationalised.
2In this case, P (x) can be an irreducible cubic or quartic polynomial.
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As an important by-product of our calculations, we show that in all examples that we

have considered, a basis of pure master integrals can be defined, following the definition

provided in ref. [52]. The existence of a pure basis of master integrals is conjectured in the

polylogarithmic case and the results presented in this paper constitute non-trivial evidence

of a possible generalisation of the current conjectures to Feynman integrals beyond MPLs.

It is possible to draw a parallel between our approach and the idea of “elliptic linear

reducibility” recently put forward in ref. [43]. There, a generalisation of the criterion of

linear reducibility to the elliptic case is attempted. Our approach is different since we work

in the framework of a well defined class of functions whose algebraic and analytic properties

can be studied rigorously and for which a concept of transcendental weight can be defined.

The possibility of evaluating Feynman integrals in terms of a well-known class of func-

tions with understood algebraic properties is not only important for computational reasons,

but can also be of conceptual relevance. Indeed, the notion of transcendental weight, which

is an integer number associated to a pure function, can be used as an organisational tool

to classify different expressions. For specific theories, such as N = 4 super Yang-Mills,

scattering amplitudes at every loop order L are believed to be of strictly maximal weight

2L. This property is obeyed by all known examples and can significantly reduce the space

of functions needed to represent an amplitude. This fact has been heavily explored by the

amplitudes bootstrap community in refs. [54–62] in order to obtain results up to four loops

and seven external legs or five loops and six external legs. Although every amplitude in

N = 4 super Yang-Mills which evaluates to MPLs is indeed of uniform maximal weight, it

is known that more complicated functions (of the elliptic kind and beyond) are inevitable

also in this theory starting already at two loops [63, 64]. Therefore, extending the notion

of transcendental weight to functions beyond MPLs is a crucial step in order to test the

conjecture that observables in N = 4 super Yang-Mills evaluate to functions of uniform

weight.

Before diving into the computations, one more comment is in order. It is very clear

to us that, even at two loops, the class of functions that we are considering will probably

not be the end of the story, since either multiple elliptic curves [45, 46], or entirely new

geometrical objects [38, 64–67] can appear. Still, with this paper we aim to show that our

framework is general and flexible enough to cover many problems of direct physical interest

and, therefore, deserves to be developed further. We will show explicitly how different two-

and three-point functions at two loops can be integrated in terms of eMPLs, discussing the

details of the manipulations required to bring the integrals to the correct form.

The paper is organised as follows. We begin in Section 2 with a review of eMPLs and

their properties, in particular how to assign them a concept of (uniform) transcendental

weight, in view of their usage in the next sections. We then move to explicit applications.

In Section 3 we consider a family of two-loop non-planar three-point Feynman integrals,

whose calculation is relevant for tt̄ and γγ production at the LHC. This family contains

two elliptic master integrals, which we express in terms of eMPLs by direct integration over

the Feynman parameters. In Section 4 we consider a similar family of two-loop three-point

functions, relevant for the computation of the electroweak form factor. The latter contains

three elliptic Feynman integrals, which we also explicitly integrate in terms of eMPLs. In
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Section 5 we show that the same ideas can be applied also for the two-loop kite integral

with different internal masses. Finally, in Section 6 we draw our conclusions.

2 Review of Elliptic Polylogarithms

Our goal in this paper is to show explicitly how the notion of elliptic multiple polyloga-

rithms (eMPLs) developed in refs. [25, 40, 44, 52] can be put into action for a wide range

of Feynman integrals known not to be expressible in terms of ordinary MPLs. Before

presenting the inner workings of this framework in specific examples, in this section we

review the necessary concepts in the context of both ordinary and elliptic MPLs, and in

particular the eMPLs introduced recently in ref. [52]. The literature on eMPLs is vast, so

here we content ourselves with summarising only the most important aspects necessary for

the present calculations and refer the interested reader to refs. [40, 52] for more detailed

discussions.

Multiple polylogarithms are multi-valued functions defined recursively as iterated in-

tegrals over kernels which are rational functions with at most simple poles. The most

well-known examples are the classic polylogarithms Lin(x), of which the logarithm is a

special case,

Li1(x) = − log(1− x) , Lin(x) =

∫ x

0

dx′

x′
Lin−1(x′) . (2.1)

General MPLs are functions of many variables ai denoting the poles of the rational inte-

gration kernels, as well as the endpoint of the integration contour,

G(a1, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t) , G(;x) = 1 . (2.2)

They satisfy properties such as homotopy invariance (they do not depend on the details of

the integration path and as such are functions only of its endpoint x) and shuffle relations,

G(a1, . . . , ak;x)G(ak+1, . . . , ak+l;x) =
∑

σ∈Σ(k,l)

G(aσ(1), . . . , aσ(k+l);x) , (2.3)

where Σ(k, l) stands for all order-preserving permutations of {a1, . . . , ak}∪{ak+1, . . . , ak+l},
called shuffles.

It is possible to assign notions of length and weight to MPLs. The length of an iterated

integral (polylogarithmic or not) is always defined as the number of integrations, thus the

length of an MPL G(a1, . . . , an;x) is n. The notion of weight, however, is more subtle.

For MPLs, the weight is the same as the length, but as will become clear once we discuss

its elliptic version, this is not the general case. One can also assign a notion of weight for

constants which correspond to MPLs evaluated at special arguments. While a constant has

length zero (there are no integrals left to perform; see ref. [52] for a detailed discussion),

the weight remembers that of the iterated integral it originated from. For example,

log(−1) = iπ → Weight(iπ) = 1 , Length(iπ) = 0 ,

ζn = Lin(1) → Weight(ζn) = n , Length(ζn) = 0 .
(2.4)
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Upon total differentiation, MPLs undergo a length drop, and their differential takes a

particularly simple form,

dG(a1, . . . , an; z) =

n∑
i=1

G(a1, . . . , âi, . . . , an; z) d log
ai−1 − ai
ai+1 − ai

, (2.5)

where we defined a0 ≡ 0 and an+1 ≡ z. Functions whose total differential does not contain

any homogeneous term are referred to as unipotent, and this concept will become important

in the following discussions.

Elliptic generalisations of MPLs are functions which behave like MPLs but accommo-

date (in addition to the kernels 1/(x − a)) functions which are rational in the variables x

and y which define an elliptic curve, i.e. [x, y, 1] ∈ CP2 where x and y satisfy a polynomial

equation y2 = Pn(x) of degree n = 3, 4. For our purposes, we consider only the case with

n = 4 since the n = 3 case can be seen a gauge-fixed version of the former and the examples

we consider arise naturally as square roots of degree-four polynomials. Therefore, we are

interested in iterated integrals of rational functions in the variables (x, y) subject to the

constraint

y2 = P4(x) = (x− a1)(x− a2)(x− a3)(x− a4) . (2.6)

The elements of the vector ~a ≡ (a1, a2, a3, a4) are referred to as the branch points of the

elliptic curve. The periods and quasi-periods of the elliptic curve are chosen according to

ω1 = 2 c4

∫ a3

a2

dx

y
= 2 K(λ) ,

ω2 = 2 c4

∫ a2

a1

dx

y
= 2iK(1− λ) ,

(2.7)

η1 = −1

2

∫ a3

a2

dx Φ̃4(x,~a) = E(λ)− 2− λ
3

K(λ) ,

η2 = −1

2

∫ a2

a1

dx Φ̃4(x,~a) = −iE(1− λ) + i
1 + λ

3
K(1− λ) ,

(2.8)

where

λ =
a14 a23

a13 a24
, c4 =

1

2

√
a13a24 , aij = ai − aj , (2.9)

and K and E denote the complete elliptic integrals of the first and second kind, respectively,

K(λ) =

∫ 1

0

dt√
(1− t2)(1− λt2)

, E(λ) =

∫ 1

0
dt

√
1− λt2
1− t2

. (2.10)

The function Φ̃4(x,~a) entering the integrand of the quasi-periods is defined as

Φ̃4(x,~a) ≡ 1

c4 y

(
x2 − s1

2
x+

s2

6

)
, (2.11)

where sn ≡ sn(~a) denotes the nth elementary symmetric polynomial in the branch points.

The periods and quasi-periods are not independent and satisfy the Legendre relation,

ω1 η2 − ω2 η1 = −iπ . (2.12)
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Since an elliptic curve y is given in terms of a square root, it is important to make

a choice for the signs of the branches of the square root y which is consistent with the

conventions for the periods and quasi-periods in eqs. (2.7) and (2.8). In particular, we

find it convenient to order the branch points such that ω1 ∈ R and ω2 ∈ iR, whenever

possible. Note that this implies that λ defined in eq. (2.9) lies between 0 and 1. Moreover,

in order to correctly define eMPLs we need to provide a prescription for how to perform

the integrals in the regions of interest, namely on the real line and between branch points.

In this paper, we deal with Feynman-parameter integrals whose integrands are ratios of

polynomials defined over the real numbers. Therefore, depending on the kinematic regime

we wish to consider, the branch points can be real or complex so long as the polynomial

y2 = P4(x) is real. There are only three possible configurations for the branch points such

that y2 is real, which we consider in turn below (see fig. 1):

Figure 1. Three possible configurations of the branch points in the complex plane such that

y2 = P4(x) ∈ R. (i) All branch points are real and ordered. (ii) Two branch points are real and

two branch points are complex conjugate to each other. (iii) All branch points are complex and

pairwise complex conjugate to each other.

(i) All branch points are real.

In this situation, we only need to consider integrations over the real axis. We order

the branch points according to a1 < a2 < a3 < a4 and fix the signs of the branches

of the square root as

y =
√
P4(x) ≡

√
|P4(x)| ×


−1 , x ≤ a1 or x > a4 ,

−i , a1 < x ≤ a2 ,

1 , a2 < x ≤ a3 ,

i , a3 < x ≤ a4 .

(2.13)

(ii) Two branch points are real and two are complex conjugate to each other.

The configuration of the branch points that feature in our applications is such that
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one can always impose the following ordering ~a = (a1, a2, a3, a4) where

a1 = a∗4 ∈ C , Im(a1) > 0 ,

a2, a3 ∈ R , a2 > a3 ,

Im(a1) >
a2 − a3

2
,

(2.14)

where the branch points satisfy

a4 = 1− a1 , a3 = 1− a2 ,

Re(a1) = Re(a4) = 1/2 .
(2.15)

This choice seems particularly ad hoc, but we can motivate it as follows. In this

situation, the polynomial P4(x) is negative on the real axis for a3 < x < a2 and for

x = 1/2+ i t, Im(a4) < t < Im(a1). We recall here that, in order to define the periods

we need a prescription for how to compute integrals between different branch points.

In this case, in addition to a prescription to integrate along the real axis, it is enough

to supplement it with a prescription on the line x = 1/2+i t for Im(a4) ≤ t ≤ Im(a1),

see fig. 1(ii). With this in mind, we define the elliptic curve in all regions of interest

as

y = −i
√
−(x− a1)(x− a2)(x− a3)(x− a4) . (2.16)

(iii) All branch points are complex and pairwise complex conjugate.

In this case, we order the roots such that

a1 = a∗2 , a3 = a∗4 ,

Re(a1) < Re(a3) , Im(a2), Im(a3) > 0 , Im(a1), Im(a4) < 0 .
(2.17)

Since there is no branch cut on the real axis and P4(x) ≥ 0 for x ∈ R, we simply

choose [52]

y =
√
P4(x) . (2.18)

eMPLs were originally defined in refs. [25, 68, 69] as iterated integrals on a complex

torus. This description is related to the one presented here through the relation between

elliptic curves defined by the equation y2 = P4(x) and a torus defined as the complex

plane quotiented by a two-dimmensional lattice Λ = Zω1 + Zω2. The ratio of the two

lattice periods τ = ω2/ω1 is called the modular parameter and it is easy to see that

the lattice Λ remains invariant under modular transformations SL(2,Z) mixing the two

periods. Modular transformations act on τ as Möbius transformations. The way to map

an elliptic curve to its equivalent torus description is via the function [40],

κ(z) =
−3a1a13a24℘(z) + a2

1s̄1 − 2a1s̄2 + 3s̄3

−3a13a24℘(z) + a2
1 − 2a1s̄1 + 3s̄2

. (2.19)

Here z is a variable on the torus, ℘(z) is the Weierstrass ℘-function, s̄n ≡ sn(a2, a3, a4) and

the sn are the symmetric polynomials defined below eq. (2.11). The κ-function satisfies a
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differential equation which is identical to the definition of the elliptic curve in eq. (2.6),

namely

(c4κ
′(z))2 = P4(κ(z)) , (2.20)

and thus one may identify (x, y)↔ (κ(z), c4κ
′(z)). The inverse of the κ-function is known

as Abel’s map, which takes a point (x, y) on the elliptic curve to a point zx on the complex

torus,

zx =
c4

ω1

∫ x

a1

dx′

y
=

√
a13a24

4 K(λ)

∫ x

a1

dx′

y
. (2.21)

Since elliptic curves are isomorphic to complex tori, eMPLs can be described as iterated

integrals over functions related to the torus, and were originally defined as such in refs. [25,

68, 69]. In this context, eMPLs are defined as iterated integrals given by

Γ̃( n1 ... nk
z1 ... zk ; z, τ) =

∫ z

0
dz′ g(n1)(z′ − z1, τ) Γ̃

( n2 ... nk
z2 ... zk ; z′, τ

)
, (2.22)

where the integration kernels are the coefficients in the expansion of the Kronecker-Eisenstein

series F (z, α, τ),

F (z, α, τ) =
1

α

∑
n≥0

g(n)(z, τ)αn =
θ′1(0, τ) θ1(z + α, τ)

θ1(z, τ) θ1(α, τ)
, (2.23)

and θ1(z, τ) is the odd Jabobi theta function with θ′1(z, τ) denoting a derivative with respect

to its first argument.

The eMPLs (2.22) behave similarly to ordinary MPLs in that they also form a shuffle

algebra and are unipotent. Moreover, they are pure according to the definition of ref. [52],

namely: A function is called pure if it is unipotent and its total differential involves only

pure functions and one-forms with at most logarithmic singularities.

In the calculation of Feynman integrals that evaluate to functions of the elliptic kind,

the representation of elliptic polylogarithms in terms of a polynomial equation y2 = P (x)

appears more naturally than the torus picture. Therefore in this paper we use the definition

of pure eMPLs on the elliptic curve recently put forward in ref. [52]. They are defined as

iterated integrals of kernels that are rational functions on the elliptic curve with at most

logarithmic singularities in all variables,

E4( n1 ... nk
c1 ... ck ;x,~a) =

∫ x

0
dtΨn1(c1, t,~a) E4( n2 ... nk

c2 ... ck ; t,~a) . (2.24)

In contrast with MPLs, for the elliptic case the requirement that all integrations over

rational functions on the elliptic curve close on the same space of functions put together

with the requirement that all integrals must have at most logarithmic singularities leads

to an infinite tower of independent kernels Ψn for n ∈ Z. This fact can also be seen from

the torus description, where an infinite number of kernels are generated by eq. (2.23).

In particular, the kernels in eq. (2.24) depend on a certain kind of functions which are

themselves transcendental, namely

Z4(x,~a) ≡
∫ x

a1

dx′Φ4(x′,~a) , with Φ4(x,~a) ≡ Φ̃4(x,~a) + 4c4
η1

ω1

1

y
, (2.25)
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and Φ̃4(x,~a) given in eq. (2.11).

The kernels Ψn entering the eMPLs in eq. (2.24) are spelled out below for |n| = 0, 1, 2.

Higher values of n do not appear in the present applications since the corresponding func-

tions would satisfy higher-order differential equations. Before writing down the expressions

for the kernels, we introduce some functions which appear as ingredients. The first is the

function Z4(x,~a) defined in eq. (2.25). Likewise, an important element is the image of the

point x = −∞ under Abel’s map (2.21),

z∗ =
c4

ω1

∫ −∞
a1

dx′

y
. (2.26)

It is possible to represent z∗ in terms of elliptic integrals. In the situation where all roots

are real and ordered, it is given by [52],

z∗ = Z∗(α, λ) ≡ 1

2
− F(

√
α|λ)

2 K(λ)
, α =

a13

a14
, (2.27)

and for other configuration of the branch points (or complex ones), z∗ may pick up a minus

sign depending on the conventions for the branches of the square root. Finally, the kernels

entering the pure eMPLs depend on the function G∗(~a), which is simply the image of the

point z∗ under g(1) (see eq. (2.23)),

G∗(~a) ≡ 1

ω1
g(1)(z∗, τ) . (2.28)

As shown in ref. [52], G∗ can be integrated explicitly in terms of (incomplete) elliptic

integrals of the first and second kind. In the situation where the branch points ~a are real

and ordered according to a1 < a2 < a3 < a4 one finds

G∗(~a) =

(
2η1

ω1
− λ

3
+

2

3

)
F
(√
α|λ
)
− E

(√
α|λ
)

+

√
α(αλ− 1)

α− 1
. (2.29)

In the special case where the point z∗ is of the form3

z∗ = a+ b τ(λ) , (2.30)

for a and b constants, then G∗(~a) admits an even simpler form, namely

G∗(~a) =
(1− λ) [λα′(λ) + α]√
α(1− α)(1− αλ)

− b 2πi

ω1
. (2.31)

This follows because eq. (2.27) together with eq. (2.30) imply that α = α(λ).

At last, we are now ready to write down the expressions for the kernels. For n = 0,

there is only one kernel,

Ψ0(0, x,~a) =
c4

ω1 y
. (2.32)

3The situation with a, b ∈ Q is common in applications, and a point on the elliptic curve of this form is

called a torsion point.
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For n = 1, we have instead four kernels (with c 6=∞)

Ψ1(c, x,~a) =
1

x− c
,

Ψ−1(c, x,~a) =
yc

y(x− c)
+ Z4(c,~a)

c4

y
, (2.33)

Ψ1(∞, x,~a) = −Z4(x,~a)
c4

y
,

Ψ−1(∞, x,~a) =
x

y
− 1

y
[a1 + 2c4G∗(~a)] ,

where yc ≡
√
P4(c). Finally, for n = 2, we have (with c 6=∞),

Ψ2(c, x,~a) =
ω1

12(x− c)

[6 (a1 − c)Z4(x,~a)

x− a1
+

6ycZ4(c,~a) (−a1 + 2c− x)

(c− a1)y

− 2(c− x)(yc(3a13a24(Z
(2)
4 (c,~a) + Z

(2)
4 (x,~a)) + a1(2(a2 + a3 + a4)− 3(c+ x))

c4ycy

−a2a3 − (a2 + a3)a4 + 3cx) + 3
√
a13a24(c− a2)

(
c− a3)(c− a4)Z4(c,~a)

)
c4ycy

]
,

Ψ−2(c, x,~a) =
ω1

2(x− c)

[−ycZ4(x,~a)

y
+ Z4(c,~a)

(
c4(c− x)Z4(x,~a)

y
+ 1

)]
,

Ψ2(∞, x,~a) =
1

4

ω1

c4y

[
2a13a24Z

(2)
4 (x,~a) + 4c4G∗(~a) (a1 − x) + a13a24G∗(~a)2

+ 2(−a1 + a2 + a3 + a4)x+ a2
1 − a2a3 − a2a4 − a3a4 − 2x2

]
− 1

2
ω1
Z4(x,~a)

a1 − x
,

Ψ−2(∞, x,~a) =
ω1

2c4

[
1 +

Z4(x,~a) (2c4 (a1 − x) + a13a24G∗(~a))

2y

]
,

(2.34)

where Z
(2)
4 (x,~a) stands for a degree-two polynomial in Z4(x,~a),

Z
(2)
4 (x,~a) =

1

8
Z4(x,~a)2 +

(a2 − x) (a3 − x) (a4 − x)Z4(x,~a)

c4x

+
−3a3x− 3a4x− a1 (a2 + a3 + a4 − 3x) + a2 (2a3 + 2a4 − 3x) + 2a3a4 + 3x2

6a13a24
.

(2.35)

We conclude this short exposition of pure eMPLs with a comment: much like with

ordinary MPLs, one can associate a concept of length and of weight to eMPLs and to

quantities which arise from evaluating eMPLs at special points, for example the periods

and quasi-periods of the elliptic curve defined in eqs. (2.7) and (2.8). In summary we have

the values shown in Table 1.

Using the formalism revised in this section, in the rest of this paper we will show

how certain Feynman integrals which evaluate to functions beyond MPLs can be brought

to neat expressions in terms of combinations of pure eMPLs (2.24) of uniform weight by

direct integration of their Feynman parametrisation.
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Length Weight

Γ̃( n1 ... nk
z1 ... zk ; z, τ) k

∑k
i=1 ni

E4( n1 ... nk
c1 ... ck ;x,~a) k

∑k
i=1 |ni|

ω1, η1 0 1

τ 1 0

Table 1. Length and weight of eMPLs and related constants.

3 A non-planar triangle with a massive loop

In this first application, we consider the family of two-loop non-planar three-point functions

with a massive loop shown in fig. 2. These integrals involve massless propagators and a

massive loop with four propagators with mass m. Two external legs are massless, i.e. p2
1 =

p2
2 = 0 and we set our kinematic variable q2 = (p1 + p2)2. The family of two-loop integrals

is then

Ia1,...,a7 = − 1

πD

∫
dDk1d

Dk2
D−a7

7∏6
i=1D

ai
i

, (3.1)

where the ai are the exponents of the propagators, and we consider only integrals with

a7 < 0. The propagators are

D1 = k2
1 −m2, D3 = (k1 − p1)2 −m2, D5 = (k1 − k2 − p1)2,

D2 = k2
2 −m2, D4 = (k2 − p2)2 −m2, D6 = (k2 − k1 − p2)2, D7 = k1 · p2.

(3.2)

Figure 2. Triangle with massive loop.

The family of integrals in eq. (3.1) was studied in ref. [37] by means of the differential-

equation method, where it was shown that there are two master integrals for the top

topology which satisfy a coupled two-dimensional system.4 We choose as basis integrals

M1 = I1,1,1,1,1,1,0 , M2 = I2,1,1,1,1,1,0 , (3.3)

where we note that both integrals are finite in D = 4 space-time dimensions. In ref. [37],

the solution of the system was presented as an expansion in the dimensional-regularisation

4For a numerical implementation of this integral, see ref. [70].
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parameter ε = (4−D)/2 with coefficients being integrals over elliptic integrals of the first

and second kind multiplied by ordinary MPLs and rational functions.

In this paper, we apply the framework of eMPLs on the elliptic curve reviewed in

Section 2 in order to obtain analytic expressions for these Feynman integrals and study

their properties. In particular, we show that once the two master integrals in the top sector

are expressed in terms of our class of functions, one can easily transform them to a new

basis of master integrals which are explicitly pure, similarly to what one would do if they

were standard MPLs. To this end, we approach the problem through direct integration over

the Feynman parameter representation of the integrals and show that all integrations up

to the penultimate can be performed in terms of ordinary MPLs with algebraic arguments

that can in general depend on an elliptic curve. In order to perform the last integration,

we employ partial fractioning to rewrite the integrand as kernels of the eMPLs defined in

eq. (2.24) (see eqs. (2.32), (2.33) and (2.34)). We now look in detail at the computation of

the two master integrals.

3.1 First master integral

We start by considering the first master integral M1, defined in eq. (3.3). Our task is

to find an order of integration of the Feynman parameters such that linear reducibility is

achieved for all integrations except the last one, which will in turn require the introduction

of eMPLs. The Feynman parameter representation of the first master integral is given by

M1 = Γ(6−D)

∫ ∞
0

6∏
i=1

dxi δ(1−
6∑
i=1

xi)
U6−3D/2

F6−D , (3.4)

where U and F are the Symanzik polynomials associated with the graph. Since this integral

is finite, it can be evaluated directly in D = 4, where the U-polynomial drops out.

The next step is to apply the Cheng-Wu theorem [71] in order to find a particular

parametrisation of the integral such that as many Feynman parameter integrations as

possible can be done in terms of ordinary MPLs. In practice, the Cheng-Wu theorem

allows one to exchange the integration domain ∆ of a Feynman integral by using any

subset of propagators Σ such that

∆Σ =
{
xi > 0

∣∣∣∑
i∈Σ

xi = 1
}
. (3.5)

Here we choose to apply the theorem with Σ = {1, 2, 3, 4}. This particular ordering was

used first in ref. [43] to write a one-fold integral representation for a similar integral.

In doing so, the integral (3.1) becomes

M1 = 2

∫ ∞
0
dx6

∫ ∞
0
dx5

∫ 1

0
dx4

∫ 1−x4

0
dx2

∫ 1−x2−x4

0
dx3

∫ 1−x2−x3−x4

0
dx1

δ(1−
∑4

i=1 xi)

F2
,

(3.6)

where the polynomial F with x1 = 1− x2 − x3 − x4 reads

F = (−q2)
[
a
(
x2

2 + (2x4 − 1)x2 + x2
4 − x4 − x5 − x6

)
+ x5x

2
4

+ (x2 + x3 − 1)x5x4 − (x2x3 + x5)x6

]
,

(3.7)
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and we have factored out (−q2) and encoded the kinematic dependence in the dimensionless

variable

a ≡ m2

(−q2)
. (3.8)

From now on we set m2 = 1 for simplicity and restore its dependence at the end using

dimensional analysis. The integrals over x6, x5 and x3 can be done easily in terms of

MPLs (2.2) as the integrand is linearly reducible in these variables. This results in a

two-fold integral,

M1 = 2a2

∫ 1

0
dx4

∫ 1−x4

0
dx2

1

a(x2 + x4) + (x2 + x4 − 1)x2x4

{
G(1− x4;x2)

[
G
( a
x4

; 1− x2 − x4

)
−G

(
1− a

x2
− x2 − x4; 1− x2 − x4

)]
−G

(
1 +

a

x4
− x4;x2

)
G
( a
x4

; 1− x2 − x4

)
+G

(
1− a

x2
− x2 − x4; 1− x2 − x4

)[
G
(

1 +
a

x4
− x4;x2

)
+G((x4 − 1)x4; a)

−G(−x4;x2)
]
−G((x4 − 1)x4; a)G

( a
x4

; 1− x2 − x4

)
+G(−x4;x2)G

( a
x4

; 1− x2 − x4

)
+G

(
1− a

x2
− x2 − x4, 1 +

a

x4
− x2 − x4; 1− x2 − x4

)
−G

( a
x4
,− a

x2
; 1− x2 − x4

)
+G

(
1− a

x2
− x2 − x4,−

a

x2
; 1− x2 − x4

)
−G

( a
x4
,
a

x4
− x2 − x4 + 1; 1− x2 − x4

)}
.

(3.9)

The next integration to be done is over x2. We notice immediately that the overall rational

pre-factor is quadratic both in x2 and x4. Indeed, as we will see below, upon integration in

either variable this will give rise to a square root of a polynomial of degree four in the other

one, defining an elliptic curve. On top of this, performing a study of the symbol alphabet

of the combination of MPLs in eq. (3.9), we find the following letters,

{a, x2, x4, x2 + x4, 1− x2 − x4, a+ x2(1− x2 − x4),

a−x2(1− x2 − x4), a+ x4(1− x2 − x4), a− x4(1− x2 − x4)} .
(3.10)

The alphabet above involves quadratic letters both in x2 and x4, such that by rewriting the

MPLs in the form G(. . . , x2), one would in general be left with MPLs involving multiple

square roots involving x4. The presence of these additional square roots could prevent us

from performing the last integration in terms of eMPLs algorithmically. However, it is

easy to realise that after a simple change of variables x2 → x̄2 ≡ x2 + x4 all symbol letters

become linear in x4,

{a, x4, 1− x̄2, x4 − x̄2, x̄2, a+ x4(1− x̄2), a− x4(1− x̄2)

a+ (1− x̄2)(x̄2 − x4), a− (1− x̄2)(x̄2 − x4)} ,
(3.11)

such that if we perform the change of variables and exchange the order of integration in

eq. (3.9) as follows,∫ 1

0
dx4

∫ 1−x4

0
dx2 =

∫ 1

0
dx4

∫ 1

x4

dx̄2 =

∫ 1

0
dx̄2

∫ x̄2

0
dx4 , (3.12)
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we expect to be able to perform the integral in x4 without introducing any additional

square roots in x̄2. Note that, while this transformation linearises the overall symbol of

the integrand, individual MPLs may still involve quadratic symbol letters that cancel out

in the combination. Indeed, in this case it turns out that in order to rewrite the individual

MPLs one needs to introduce the square-root valued letters

r± =
1

2
(1−

√
1± 4a) . (3.13)

These letters enter in identities of the type

G

(
a

x4
− x4 + 1; x̄2 − x4

)
=G

(
− a

1− x̄2
;x4

)
−G (r+;x4)−G (1− r+;x4)

G ((x4 − 1)x4; a) =G (r+;x4) +G (1− r+;x4) + log

(
a

x4(1− x4)

)
.

(3.14)

Once these identities are inserted back into eq. (3.9), the dependence on r± cancels out, as

expected from eq. (3.11). Note however that, for this particular example, the cancellation

of r± at this stage is not required for the integration algorithm to go through, since r± do

not depend on the remaining integration variable x̄2.

By performing these manipulations and integrating over x4 through the recursive def-

inition of MPLs (2.2) we arrive at a one-fold integral in the variable x̄2 given by

M1 =
2a2

3

∫ 1

0

dx̄2

y

×

[
6

(
G ((x̄2 − 1) x̄2; a)

(
G−

(
− a

x̄2 − 1
; x̄2

)
+ 2G− (x̄2; x̄2)

)
+G (0; x̄2)

(
2G− (x̄2; x̄2)−G−

(
a

x̄2 − 1
+ x̄2; x̄2

))
−G (1; x̄2)G−

(
a

x̄2 − 1
+ x̄2; x̄2

)
+ 2G−

(
0,

a

x̄2 − 1
; x̄2

)
+G−

(
− a

x̄2 − 1
,
a− x̄2

2 + x̄2

1− x̄2
; x̄2

)
+ 2G−

(
x̄2,

a− x̄2
2 + x̄2

1− x̄2
; x̄2

)
+G−

(
a

x̄2 − 1
+ x̄2,

a

x̄2 − 1
; x̄2

)
− 2 log(a)G− (x̄2; x̄2) + log(a)G−

(
a

x̄2 − 1
+ x̄2; x̄2

)
+ 2G (1; x̄2)G− (x̄2; x̄2)

)

−G− (x̄2)

(
6G (0; x̄2)G ((1− x̄2) x̄2; a) + 6G (1; x̄2)G ((1− x̄2) x̄2; a)

+ 6G (0, (1− x̄2) x̄2; a) + 6G (0, (x̄2 − 1) x̄2; a)− 6 log(a)G ((1− x̄2) x̄2; a) + π2

)]
,

(3.15)

where y is the square root of a quartic polynomial, as anticipated,

y2 = P4(x̄2) = x̄2(x̄2 − 1)(x̄2 − b+)(x̄2 − b−) , (3.16)
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and as such defines an elliptic curve with branch points

~b = (b−, 1, 0, b+) , b± =
1

2
(1±

√
1− 16a) . (3.17)

The ordering of the branch points in ~b is chosen following the prescription in eq. (2.14)

for the kinematic region where a > 1/16, so that b− = (b+)∗ are complex. This choice is

made for convenience, as it is simpler to perform a numerical evaluation of the final result

when the branch points and potential poles are not on the real axis. In eq. (3.15) we have

also introduced the shorthand notation for symmetric and anti-symmetric combinations of

MPLs depending on the elliptic curve,

G±(~n, x) ≡ G(R+, ~n, x)±G(R−, ~n, x)

2
, (3.18)

with the variables R± given by

R± ≡
−x̄2(1− x̄2)±

√
P4(x̄2)

2 (x̄2 − 1)
. (3.19)

In order to compute the integral in eq. (3.15), our next task is to recast its integrand

in terms of eMPLs whose dependence on the integration variable is of the form E4(. . . ; x̄2)

multiplied by eMPL kernels (see eqs. (2.32), (2.33) and (2.34)). This way, the last integral

in the variable x̄2 can be performed trivially using the recursive definition of eMPLs (2.24).

This is a bottom-up procedure in the length of the eMPLs: at a given length L = n, it can

be achieved through a sequence of four steps:

1. Differentiation in the variable x̄2, which in general produces rational functions on the

elliptic curve5 and eMPLs of length L = n − 1. Since we are working bottom-up,

we can assume that all eMPLs of length L = n − 1 are already known in the form

E4(. . . ; x̄2).

2. Partial fractioning of the derivative to cast it as a linear combination of eMPL kernels,

times eMPLs of length L = n− 1.

3. Finding the primitive in x̄2 using the recursive definition of the eMPLs.

4. Fixing of the integration constant comparing the original expression and the new one

for a fixed (possibly simple) value of x̄2.

This procedure guarantees that all eMPLs are of the form E4(. . . ; x̄2) times an elementary

eMPL kernel and thus can be trivially integrated using eq. (2.24). Note that this is a

standard procedure for ordinary MPLs and the only difference here is that we need to

identify and use the elliptic kernels instead.

To illustrate the mechanism, let us first consider the MPLs that do not depend on the

elliptic curve, i.e. G(~n;x) where the endpoint x and the letters ~n are either constants or

5We recall that a rational function on the elliptic curve is defined as a rational function in two variables,

R(x, y), with the constraint y =
√

P4(x).
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depend on the square-root letters defined in eq. (3.13), but not on y. In this situation, a

derivative in x̄2 plus partial fractioning will lead to an integrand which depends only on

polylogarithmic kernels of the form 1
x̄2−c , with c independent of x̄2. As such, it can simply

be integrated back to an MPL of the form G(~m, x̄2) with ~m independent of x̄2.

In a similar fashion, for the situation where the MPLs depend on the elliptic curve,

the procedure will lead to a combination of eMPL kernels which can then be integrated to

E4 functions. As an example, consider the weight-one function

G−(x̄2) =
G(R+, x̄2)−G(R−, x̄2)

2
=

1

2
log

(
x̄2(1− x̄2) +

√
P4(x̄2)

x̄2(1− x̄2)−
√
P4(x̄2)

)
. (3.20)

Taking a derivative with respect to x̄2 yields

∂

∂x̄2
G−(x̄2) =

1− 2x̄2

2
√
x̄2 (x̄2 − 1) (4a− x̄2(1− x̄2))

=
1

2y
− x̄2

y
. (3.21)

The next step is to integrate the above expression back in terms of E4 functions. To this

end, we rewrite the integrand in terms of the kernels defined in eqs. (2.32) and (2.33),

G−(x̄2) =

∫ x̄2

0

dt

y
− 2

∫ x2

0

dt t

y
+ c

=
ω1

c4

∫ x̄2

0
Ψ0(0, t,~b)− 2

[∫ x̄2

0

(
Ψ−1(∞, t,~b)

)
+ (b− + 2c4G∗(~b))

ω1

c4
Ψ0(0, t,~b)

]
+ c

= −2 E4

(
−1
∞ ; x̄2,~b

)
.

(3.22)

In the expression above, the terms proportional E4

(
0
0 ; x̄2,~b

)
cancel out since for the elliptic

curve under consideration G∗(~b) and c4 are related and in particular G∗(~b) evaluates to a

simple algebraic function,

c4 =
1

4

(
1−
√

1− 16a
)
,

G∗(~b) = −1 +
1

1−
√

1− 16a
,

(3.23)

see eq. (2.31). Moreover, we fixed the boundary term c = 0 by expanding G−(x̄2) around

x̄2 = 0. Performing similar steps on all MPLs appearing in the integrand of eq. (3.15) we

are able to express the integral as eMPLs, obtaining a very compact expression in terms

of a weight-one prefactor times a pure combination of eMPLs of uniform weight 3,

M1 = Ω
(tt̄)
1 M̃1 , (3.24)
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with

Ω
(tt̄)
1 = − 16 a2 ω1

m4(1−
√

1− 16a)
M̃1 = 5T1+(a) + 3T1−(a) +O(ε) ,

T1+(a) = E4

(
0 −1 1 1
0 ∞ 0 1−r+ ; 1

)
+ E4

(
0 −1 1 1
0 ∞ 0 r+ ; 1

)
+ E4

(
0 −1 1 1
0 ∞ 1 1−r+ ; 1

)
+ E4

(
0 −1 1 1
0 ∞ 1 r+ ; 1

)
,

T1−(a) = − E4

(
0 −1 1 1
0 ∞ r− 0 ; 1

)
− E4

(
0 −1 1 1
0 ∞ r− 1 ; 1

)
− E4

(
0 −1 1 1
0 ∞ 1−r− 0 ; 1

)
− E4

(
0 −1 1 1
0 ∞ 1−r− 1 ; 1

)
+ log(a)

[
E4

(
0 −1 1
0 ∞ 1−r− ; 1

)
+ E4

(
0 −1 1
0 ∞ r− ; 1

)]
,

(3.25)

where we omitted the dependence of E4 on the branch points ~b for clarity and restored

the factors of m2 using dimensional analysis. Note that, in order to obtain the expression

above, we used the fact that for this region the expression for G∗(~b) reduces to the simple

algebraic function in eq. (3.23). We stress once more that a Feynman integral which can

be put in this form (i.e. one single prefactor which depends on the elliptic periods times

a combination of elliptic polylogarithms of uniform transcendental weight) appears to be

the natural generalisation of a pure integral from the polylogarithmic to the elliptic case.

We remind the reader that the expression in eq. (3.25) is valid in the region where

a > 1/16 for which two of the roots of the elliptic curve are located outside of the real axis,

and the branch points are ordered according to the conventions outlined in eq. (2.14), as

shown in eq. (3.17). It is easy to see that in the Euclidean region 0 < a < 1/16 the roots

are real and can be ordered on the real axis between 0 and 1 (see fig. 3 below). Moreover,

the special points r+/− defined in eq. (3.13) also become real and, in particular, one finds

0 < r− < 1. Therefore, in this region the pole r− lies on the integration contour and

eq. (3.25) is not a convenient representation. As an example of the analytic continuation

of an expression written in terms of eMPLs, in Appendix A we show how to analytically

continue eq. (3.25) to the region 0 < a < 1/16.

Figure 3. Location of the ranch points of the final expression for the top-production triangle

integral (3.25) in terms of eMPLs E4 in the region 0 < a < 1/16.

3.2 Second master integral

Performing similar steps for the second master integral, M2 in eq. (3.3), we can express

it in terms of the same class of functions. Contrary to the first master, we find that the

second master integral cannot be written as one single (transcendental) prefactor times a

pure combination eMPLs of uniform weight. Instead, by direct integration we find

M2 = Ω
(tt̄)
2 M̃1 +H

(tt̄)
2 M̃2 , (3.26)
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where

Ω
(tt̄)
2 =

(
1 +
√

1− 16a
)

(1− 20a) a

12m4(1− 16a)
ω1 +

2
(
1−
√

1− 16a
)
a2

m4(1− 16a)
η1 +O(ε) ,

H
(tt̄)
2 = −

(
1−
√

1− 16a
)
a2

m4(1− 16a)

1

ω1
+O(ε) ,

(3.27)

and M̃1 is the very same combination of eMPLs defined in eq. (3.25). M̃2 is instead another

(independent) pure combination of eMPLs very similar to eq. (3.25) given by

M̃2 = 5T2+(a) + 3T2−(a) +O(ε) , (3.28)

where T2+(a) and T2−(a) are pure functions of uniform weight four given by

T2+(a) = E4

(
−2 1 1
∞ 0 r+ ; 1

)
+ E4

(
−2 1 1
∞ 1 r+ ; 1

)
+ E4

(
−2 1 1
∞ 0 1−r+ ; 1

)
+ E4

(
−2 1 1
∞ 1 1−r+ ; 1

)
,

T2−(a) = − E4

(
−2 1 1
∞ r− 0 ; 1

)
− E4

(
−2 1 1
∞ r− 1 ; 1

)
− E4

(
−2 1 1
∞ 1−r− 0 ; 1

)
− E4

(
−2 1 1
∞ 1−r− 1 ; 1

)
+ log(a)

[
E4

(−2 1
∞ r− ; 1

)
+ E4

(
−2 1
∞ 1−r− ; 1

)]
.

(3.29)

We note here that, according to the prescription provided in ref. [52], the prefactors Ω
(tt̄)
2

and H
(tt̄)
2 in formula (3.26) have different “weights”, namely Ω

(tt̄)
2 has weight w

Ω
(tt̄)
2

= 1,

while H
(tt̄)
2 has weight w

H
(tt̄)
2

= −1. Similarly, while the combination M̃1 has weight

wM̃1
= 3, M̃2 has weight wM̃2

= 4. This shows that the second master integral M2, as it

stands, is not a function of uniform transcendental weight.

Nevertheless, direct inspection of eq. (3.26) suggests that we perform a change of basis

from the master integrals M1, M2 to a new basis of pure master integrals M̃1, M̃2 defined

as (
M1

M2

)
=

(
Ω

(tt̄)
1 0

Ω
(tt̄)
2 H

(tt̄)
2

)(
M̃1

M̃2

)
. (3.30)

It turns out that the prefactors Ω
(tt̄)
1 and Ω

(tt̄)
2 have a natural interpretation in terms

of the maximal cuts of the integrals M1 and M2. In order to see why this is the case, let us

recall that the two master integrals M1 and M2 fulfil a system of two coupled differential

equations which, neglecting the subtopologies, read [37]

∂a

(
M1

M2

)
=

(
2
a

4
a

1
1−16a

2(1−8a)
a(1−16a)

)(
M1

M2

)
= H

(
M1

M2

)
. (3.31)

A complete solution of eq. (3.31) can be obtained by considering the matrix of the maximal

cuts of the two master integrals evaluated along two independent integration contours [32,

38, 72, 73]. The number of independent contours is always equal to the number of master
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integrals. We denote a basis of independent contour by Cj , j = 1, 2. By indicating the

maximal cut of the integral Mi along the contour Cj as Cutj(Mi) we find

G =

(
Cut1(M1) Cut2(M1)

Cut1(M2) Cut2(M2)

)
⇒ ∂aG = HG . (3.32)

This in turn implies that if we define a new basis of master integrals as(
M1

M2

)
= G

(
F1

F2

)
, (3.33)

then by construction the new basis fulfils Cutj(Fi) = δij . Let us write Cut1(Mj) = Ωj and

Cut2(Mj) = Hj , and decompose the matrix G as follows

G =

(
Ω1 H1

Ω2 H2

)
=

(
Ω1 0

Ω2 X2

)(
1 τ

0 1

)
with τ =

Ω1

H1

, X2 =
Ω1H2 − Ω2H1

Ω1

. (3.34)

Comparing eq. (3.34) with eq. (3.30), one can explicitly make the identifications(
1 τ

0 1

)(
F1

F2

)
=

(
M̃1

M̃2

)
,

(
Ω1 0

Ω2 X2

)
=

(
Ω

(tt̄)
1 0

Ω
(tt̄)
2 H

(tt̄)
2

)
, (3.35)

such that Ω
(tt̄)
1 and Ω

(tt̄)
2 correspond to the maximal cuts of the two master integrals along

the first integration contour. Clearly, the choice of which integration contour is considered

to be the first one and which the second ones is arbitrary. This is reflected in the ambiguity

of the splitting in eq. (3.34). Using this insight, we can verify that indeed Ω
(tt̄)
1 and Ω

(tt̄)
2

fulfil the differential equation in eq. (3.31)

Ω
(tt̄)
2 =

1

4
(a∂a − 2) Ω

(tt̄)
1 . (3.36)

Before summarising the main points of these calculations, it is worth stressing once

again that the result that we obtained, in particular in terms of two independent combi-

nations of pure functions eq. (3.30), is a-priori non trivial and it provides a strong hint

towards the generalisation of the idea of a pure basis of master integrals to the elliptic case.

3.3 Summary

With the explicit computation of the family of non-planar triangles considered in this

section, we have discovered an elegant structure underlying these integrals. In particular,

we highlight here the main features of the computation and result:

• eMPLs provide a natural language to express Feynman integrals which depend on

an elliptic curve. Their recursive definition (2.24) provides an algorithmic method

for computing each integration step. In the examples considered in this section, we

applied the Cheng-Wu theorem in order to delay the appearance of the square root

defining the elliptic curve to the last integration, but we stress that this is only for
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technical simplicity, the framework can accommodate a dependence on the elliptic

curve at any step. The only caveat is that, as mentioned earlier, the framework is

suited for cases where only a single elliptic curve is present, and thus in earlier inte-

grations steps one cannot handle elliptic curves that still depend on other integration

variables.

• The results of the two master integrals shown in eqs. (3.24) and (3.26) are naturally

organised in terms of pure building blocks of uniform weight. These results can easily

be rewritten in a new basis of pure master integrals. However, in contrast with the

polylogarithmic case, the change of basis is not algebraic and depends on the periods

and quasi-periods of the elliptic curve (see eqs. (3.25) and (3.27)).

• Since the Feynman-parameter integrals we started from are simply integrals over

rational functions, the final result expressed in terms of eMPLs should reflect the

property that the original integral has no intrinsic dependence on which sign we

choose for the square root y. As such, the final integral should be invariant under

the parity transformation y → −y. Using the fact that ω1, η1 and Z4(x,~a) are parity

odd, it is easy to see from the definitions of the eMPLs kernels in eqs. (2.32), (2.33),

(2.34) that under y → −y the kernels transform as

Ψ0(x)→ Ψ0(x) , Ψ±n(x)→ ±Ψ±n(x) n > 0 . (3.37)

With this, one can see that every term in the final results for the two master integrals

are manifestly parity-even as desired.

After learning the details of this computation and the properties of the result, we now

turn our attention to a different integral which has a very similar structure: a particular

contribution to the electroweak form factor.

4 Electroweak form factor

In this section we consider another two-loop three-point function which is at first sight very

similar to the one considered in the previous section. The topology is shown in fig. 4 and

differs from that of fig. 2 in that two additional internal propagators are massless.

Figure 4. Triangle with massive loop.

This family of integrals contributes to non-planar two-loop corrections to the elec-

troweak form factor and was studied in ref. [74], where an approximate solution as series
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expansions around all singular points was obtained. We define the integral family as

Ja1,...,a7 =

∫
dDk1d

Dk2

(iπ)D
D−a7

7∏6
i=1D

ai
i

, (4.1)

where as before a7 < 0 and the remaining ai > 0 are the powers of the propagators below,

D1 = k2
1 −m2, D3 = (k1 − p1)2, D5 = (k1 − k2 − p1)2,

D2 = k2
2 −m2, D4 = (k2 − p2)2, D6 = (k2 − k1 − p2)2, D7 = k1 · p2 .

(4.2)

As for the previous family of integrals, we define q2 = (p1 + p2)2 = −m2/a, where a is

a dimensionless ratio. In contrast with the integrals discussed in Section 3, in this case

the top-sector is reduced to three master integrals which satisfy a coupled system of three

differential equations. We choose the three master integrals as follows

N1 = J1,1,1,1,1,1,0 , N2 = J2,1,1,1,1,1,0 , N3 = J1,1,1,1,1,1,−1 , (4.3)

where we notice that all three master integrals are finite in D = 4 space-time dimensions.

We proceed similarly to the previous example and integrate all three master integrals

explicitly starting from their Feynman parameter representation. As before, in order to be

able to express all three master integrals in terms eMPLs, we need to find an ordering of

Feynman parameters (or more precisely an application of the Cheng-Wu theorem) which

allows us to perform all integrations either in terms of standard MPLs or by introducing

at most one square root of a quartic polynomial in one of the integration variables. This

square root will define the elliptic curve associated to the problem. By direct inspection

we find that the same application of the Cheng-Wu theorem as in the previous section does

the trick. The polynomial equation defining the elliptic curve resulting from it, though,

appears to be substantially more complicated, at least once its roots are seen as functions

of the kinematic invariant a defined in eq. (3.8) above. The elliptic curve is defined by

y2 = (x− d−)(x− d+)(x− 1 + d−)(x− 1 + d+) , (4.4)

where the roots are defined as

d± =
1

2

(
1−

√
1− 4a(1 + 2a)± 8

√
a3(a+ 1)

)
. (4.5)

Moreover, in the intermediate integration steps we find standard MPLs which have branch

cuts in the special points x ∈ {a,−a, 1 + a, 1− a, r−, 1− r−} with

r− =
1

2
(1−

√
1− 4a) . (4.6)

Similarly to the integrals considered in the previous section, since the integration over

the last Feynman parameter varies in the interval (0, 1), it is convenient to work in a

kinematical region where there are no explicit poles on their integration contour. Since, in

order to implement Feynman’s prescription, the dimensionless ratio a becomes a complex

number with a small negative imaginary part, we choose to work with Re(a) > 1, such
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that the all poles lie outside of the integration contour and, in particular, r+/− are complex

conjugate to each other. In this situation, two of the branch points of the elliptic curve in

eq. (4.4) are real and located between 0 and 1, whereas the two remaining branch points

are complex conjugate to each other and have real part equal to 1/2. We order the branch

points of the elliptic curve according to the conventions of Section 2 such that eqs. (2.14)

and (2.15) are satisfied, namely

~d = (d−, 1− d+, d+, 1− d−) , (4.7)

with d± given in eq. (4.5). In order to arrive at compact expressions for the integrals in

terms of pure eMPLs, we use the fact that the functions c4(~d), Z4(x, ~d) and G∗(~d) admit

particularly simple representations in this case, namely

c4(~d) = − 1

2
d+− ,

Z4(0, ~d) = − 1 + 4a

3 d+−
+

8πi

3ω1
,

Z4(1, ~d) =
1 + 4a

3 d+−
+

4πi

3ω1
,

G∗(~d) =
2d− − 1

2 d+−
,

(4.8)

where we defined d+− = d+ − d−. While the evaluation of the three master integrals

proceeds at least conceptually along the same lines described in detail in Section 3, the

individual manipulations and the final results are more cumbersome, mainly due to the

explicit form of the branch points of the elliptic curve.

The result for the first master integral in terms of pure eMPLs is given by

N1 = Ω
(ew)
1 Ñ1 , (4.9)

where

Ω
(ew)
1 = − 2a2

m4 d+−
ω1 , Ñ1 = 2Q1−(a) +Q1(a) +O(ε) ,

Q1−(a) = E4

(
0 −1 1 1
0 0 r− 0 ; 1

)
+ E4

(
0 −1 1 1
0 0 r− 1 ; 1

)
+ E4

(
0 −1 1 1
0 1 r− 0 ; 1

)
+ E4

(
0 −1 1 1
0 1 r− 1 ; 1

)
+ 2
[
E4

(
0 −1 1 1
0 ∞ r− 0 ; 1

)
+ E4

(
0 −1 1 1
0 ∞ r− 1 ; 1

) ]
− 4iπ

[
E4

(
0 0 1 1
0 0 r− 0 ; 1

)
+ E4

(
0 0 1 1
0 0 r− 1 ; 1

) ]
− log(a)

[
2E4

(
0 −1 1
0 ∞ r− ; 1

)
+ E4

(
0 −1 1
0 0 r− ; 1

)
+ E4

(
0 −1 1
0 1 r− ; 1

)
− 4iπE4

(
0 0 1
0 0 r− ; 1

) ]
+ (r− → 1− r−) ,

Q1(a) = − 4
[
E4

(
0 −1 1 1
0 ∞ 0 −a ; 1

)
+ E4

(
0 −1 1 1
0 ∞ 1 1+a ; 1

)
+ E4

(
0 −1 1 1
0 ∞ 0 1 ; 1

)
+ E4

(
0 −1 1 1
0 ∞ 1 0 ; 1

) ]
− 3
[
E4

(
0 −1 1 1
0 ∞ 1−a 1 ; 1

)
+ E4

(
0 −1 1 1
0 ∞ 1−a −a ; 1

)
+ E4

(
0 −1 1 1
0 ∞ a 0 ; 1

)
+ E4

(
0 −1 1 1
0 ∞ a 1+a ; 1

)
+ E4

(
0 −1 1 1
0 0 a 0 ; 1

)
+ E4

(
0 −1 1 1
0 0 a 1+a ; 1

)
+ E4

(
0 −1 1 1
0 1 1−a 1 ; 1

)
+ E4

(
0 −1 1 1
0 1 1−a −a ; 1

) ]
+ E4

(
0 −1 1 1
0 0 1+a 1 ; 1

)
+ E4

(
0 −1 1 1
0 1 −a 0 ; 1

)
− 2
[
E4

(
0 −1 1 1
0 0 0 −a ; 1

)
+ E4

(
0 −1 1 1
0 0 1 1+a ; 1

)
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+ E4

(
0 −1 1 1
0 0 −a 0 ; 1

)
+ E4

(
0 −1 1 1
0 1 0 −a ; 1

)
+ E4

(
0 −1 1 1
0 1 1 a+1 ; 1

)
+ E4

(
0 −1 1 1
0 1 1+a 1 ; 1

) ]
+ 3(E4

(
0 −1 1 1
0 ∞ −a 0 ; 1

)
+ E4

(
0 −1 1 1
0 ∞ 1+a 1 ; 1

)
) + 4iπ

[
E4

(
0 0 1 1
0 0 1−a 1 ; 1

)
+ E4

(
0 0 1 1
0 0 1−a −a ; 1

)
+ E4

(
0 0 1 1
0 0 −a 0 ; 1

)
+ 2E4

(
0 0 1 1
0 0 0 −a ; 1

)
+ 2E4

(
0 0 1 1
0 0 1 1+a ; 1

)
+ 2E4( 0 0 1 1

0 0 a 0 ; 1)

+ 2E4

(
0 0 1 1
0 0 a 1+a ; 1

) ]
+ log

(
a+ 1

a

)[
− 2(E4

(
0 −1 1
0 0 1 ; 1

)
+ E4

(
0 −1 1
0 1 1 ; 1

)
)

+ 8iπ(E4( 0 0 1
0 0 a ; 1) + E4( 0 0 1

0 0 1 ; 1))− 4E4

(
0 −1 1
0 ∞ 1 ; 1

)
− 3(E4

(
0 −1 1
0 ∞ a ; 1

)
+ E4

(
0 −1 1
0 0 a ; 1

)
)
]

+
1

6
E4( 0

0 ; 1)

(
−6G(−1, 0,−1, a) + 6G(0, 0,−1, a)− π2 log

(
a+ 1

a

)
− 12ζ3

)
.

(4.10)

The three master integrals in eq. (4.3) corresponding to the top-dimensional topologies

of this family of integrals follow a structure similar to that observed in the previous section

for the triangle with a massive loop. Indeed, after computing the second and third master

integrals also through direct integration of the Feynman-parametric integral, it is possible

to transform them into a basis of functions which are pure combinations of eMPLs of

uniform weight, N1

N2

N3

 =

Ω
(ew)
1 0 0

Ω
(ew)
2 H

(ew)
2 0

Ω
(ew)
3 0 X

(ew)
3


Ñ1

Ñ2

Ñ3

 . (4.11)

The entries of the matrix in eq. (4.11) are given by

Ω
(ew)
2 =

a2(4a(3a+ 2)− 1)

2m4(8a− 1)(a+ 1) d+−
ω1 + 3

a2 d+−
m4(1 + a)(8a− 1)

η1

H
(ew)
2 =

a2d+−
6m4(1 + a)(1− 8a)

1

ω1
, Ω

(ew)
3 =

(2− a)a

3m2d+−
ω1 , X

(ew)
3 =

a

72m2
.

(4.12)

Similarly to the triangle considered in the previous section, the Ω
(ew)
i above satisfy the

differential equations for the maximal cuts of the three master integrals (see eq. (3.36)),

namely:

Ω
(ew)
2 =

1

2
(a∂a − 2)Ω

(ew)
1 ,

(1− a∂a)Ω(ew)
3 =

1

6a
[(2− a)a∂a − (4− a)] Ω

(ew)
1 .

(4.13)

The pure function Ñ2 is a weight-four function which we can decompose into a part

that depends on the variable r− as well as a part with dependence only on the variable a

and a piece which is purely polylogarithmic. It is given by

Ñ2 = 18Q2−(a) + 9Q2(a) +Q2,MPL(a) +O(ε) ,

Q2−(a) = −2E4

(
−2 1 1
∞ r− 0 ; 1

)
− 2E4

(
−2 1 1
∞ r− 1 ; 1

)
− E4

(
−2 1 1
0 r− 0 ; 1

)
− E4

(
−2 1 1
0 r− 1 ; 1

)
+ E4

(
1 −2 1
r− 1 0 ; 1

)
+ E4

(
1 −2 1
r− 1 1 ; 1

)
+ E4

(
1 1 −2
r− 0 1 ; 1

)
+ E4

(
1 1 −2
r− 1 1 ; 1

)
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2iπ
[
− log(a)E4

(
1 1
∞ r− ; 1

)
+ E4

(
1 1 1
∞ r− 0 ; 1

)
+ E4

(
1 1 1
∞ r− 1 ; 1

)]
+ log(a)

[
2E4

(−2 1
∞ r− ; 1

)
+ E4

(
−2 1
0 r− ; 1

)
− E4

(
1 −2
r− 1 ; 1

)]
+ (r− → 1− r−) ,

Q2(a) = 4E4

(−2 1 1
∞ 0 −a ; 1

)
+ 4E4

(−2 1 1
∞ 1 a+1 ; 1

)
+ 3E4

(−2 1 1
∞ 1−a 1 ; 1

)
+ 3E4

(−2 1 1
∞ 1−a −a ; 1

)
− 3E4

(−2 1 1
∞ −a 0 ; 1

)
+ 3E4

(−2 1 1
∞ a 0 ; 1

)
+ 3E4

(−2 1 1
∞ a a+1 ; 1

)
− 3E4

(−2 1 1
∞ a+1 1 ; 1

)
+ log

(
1

a
+ 1

)
(3E4(−2 1

∞ a ; 1) + 3E4

(−2 1
0 a ; 1

)
+ 4E4

(−2 1
∞ 1 ; 1

)
+ 2E4

(−2 1
0 1 ; 1

)
)

+ 2E4

(−2 1 1
0 0 −a ; 1

)
+ 2E4

(−2 1 1
0 1 a+1 ; 1

)
+ 2E4

(−2 1 1
0 −a 0 ; 1

)
+ 3E4

(−2 1 1
0 a 0 ; 1

)
+ 3E4

(−2 1 1
0 a a+1 ; 1

)
− E4

(−2 1 1
0 a+1 1 ; 1

)
− 2E4

(
1 −2 1
0 1 −a ; 1

)
− 3E4

(
1 −2 1

1−a 1 1 ; 1
)

− 3E4

(
1 −2 1

1−a 1 −a ; 1
)

+ E4

(
1 −2 1
−a 1 0 ; 1

)
− 2E4

(
1 −2 1

a+1 1 1 ; 1
)
− 2E4

(
1 1 −2
0 −a 1 ; 1

)
− 3E4

(
1 1 −2

1−a 1 1 ; 1
)
− 3E4

(
1 1 −2

1−a −a 1 ; 1
)

+ E4

(
1 1 −2
−a 0 1 ; 1

)
+ 4E4

(−2 1 1
∞ 0 1 ; 1

)
+ 4E4

(−2 1 1
∞ 1 0 ; 1

)
+ 4Li2(−a)E4(−2

∞ ; 1)− 4ζ2E4(−2
∞ ; 1)− 2iπ

[
2E4

(
1 1 1
∞ 0 −a ; 1

)
+ 2E4

(
1 1 1
∞ 1 a+1 ; 1

)
+ E4

(
1 1 1
∞ 1−a 1 ; 1

)
+ E4

(
1 1 1
∞ 1−a −a ; 1

)
+ E4

(
1 1 1
∞ −a 0 ; 1

)
+ 2E4( 1 1 1

∞ a 0 ; 1) + 2E4

(
1 1 1
∞ a a+1 ; 1

)
+ 2 log

(
1

a
+ 1

)(
E4( 1 1
∞ 1 ; 1) + E4( 1 1

∞ a ; 1)
)]
,

Q2,MPL(a) = iπ3
[
15 log(a)− 3 log(a+ 1)− 4 log

(
(1− r−)r2

−
) ]

+ 12π2
[

log(r−(1− r−)) log(r−(1 + r−))− log(a) log ((r− − 1)(1 + r−))
]

− iπ
[
6G−1,0,0(a) + 24G0,0,1(r−) + 24G1,1,0(r−) + 6 log(a) log2

(
r− − 1

r−

)
− log3(a)− 4 log3(1− r−)− 4 log3(r−)− 24ζ3

]
. (4.14)

Finally, the function Ñ3 is more complicated than the previous two and we prefer not

to write it here explicitly. Its expression is attached to the ancillary files of the arXiv

submission of this paper.

As for the previous case of the tt̄ triangle, we see that following eq. (4.11) the three

elliptic Feynman master integrals can be re-expressed in a new basis of three pure master

integrals, Ñ1, Ñ2 and Ñ3. This provides further evidence that it is possible to find a pure

basis to represent master integrals which do not evaluate to MPLs.

5 Kite with three distinct masses

Having computed several three-point functions by performing the integrations over Feyn-

man parameters in terms of pure eMPLs, we now consider an example of a two-point

function with more scales, namely the kite integral with three distinct masses shown in

fig. 5.

The integral we consider is given by

K(p2,m2
1,m

2
2,m

2
3)

= −e
2γEε

πD

∫
dDk dDl

l2 (k − p)2 (k2 −m2
1)((k − l)2 −m2

2)((l − p)2 −m2
3)
,

(5.1)
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Figure 5. Kite integral with three internal massive propagators with masses m1, m2 and m3.

in D = 2− 2ε. A simpler version of this integral, when all three internal masses have the

same value m1 = m2 = m3 = m, has been computed in the literature in terms of iterated

integrals over products of elliptic integrals and polylogarithms [31] or modular forms [35], in

terms of elliptic generalisations of polylogarithms [35] and finally, more recently, in terms

of the eMPLs considered here [52]. We consider here the more general case with three

different internal masses. We encode the kinematic dependence is the three dimensionless

ratios

ai = −m
2
i

p2
, i = 1, 2, 3 . (5.2)

We compute the kite integral in the region 0 < p2 < min(m2
1,m

2
2,m

2
3). The branch points

are complex and given by

~a =
{
a−, a

∗
−, a+, a

∗
+

}
, (5.3)

where

a− =
σ− +

√
φ−(α− + β−)

2(1 + a3)3
, a+ =

σ+ − i
√
φ+(α+ + β+)

2(1 + a3)3
,

σ+ =
(

(
√
a3 − i)2 − a1 + a2

)
(
√
a3 − i) (

√
a3 + i)3 ,

σ− =
(

(
√
a3 + i)2 − a1 + a2

)
(
√
a3 − i)3 (

√
a3 + i) ,

α+ = −2a1

(
a2 + (

√
a3 − i)2

)
, α− = −2a1

(
a2 + (

√
a3 + i)2

)
, (5.4)

β+ = a2
1 +

(
a2 − (

√
a3 − i)2

)2
, β− = a2

1 +
(
a2 − (

√
a3 + i)2

)2
,

φ+ = − (
√
a3 − i)2 (

√
a3 + i)6 , φ− = (

√
a3 − i)6 (

√
a3 + i)2 .

As in the previous applications for three-point functions, the kite integral can be computed

in terms of a pure combination of eMPLs of uniform weight three. In order to arrive at

the final expressions, we make use of the following relations valid for the kinematic region
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we consider,

G∗(~a) =
1

2

(
−Z4

(
− a2

a1 − a2
,~a

)
+
a− (a1 − a2) + a2

(a2 − a1) c4
+

2iπ

ω1

)
,

Z4

(
a3 − a2

a1 − a2 + a3 + 1
,~a

)
=

1

(a1 − a2) (a3 + 1) (a1 − a2 + a3 + 1) c4

[
c4Z4(0,~a)

+ (a1 − a2) (a3 + 1) (a1 − a2 + a3 + 1) c4Z4

(
− a2

a1 − a2
,~a

)
− 2 (a1 − a2) (a3 + 1) (a1 − a2 + a3 + 1) + a3

1 − 3a2a
2
1 + 2a2

1

+ 3a2
2a1 − 4a2a1 + a3a1 + a1 − a3

2 + 2a2
2 + a2a

2
3 + a2a3

]
+

2iπ

ω1
,

Z4(1,~a) =
− (a3 + 1) c4Z4(0,~a) + a1 − a2

(a3 + 1) c4
+

2iπ

ω1
.

(5.5)

The result for the kite integral (5.1) with three distinct masses in terms of eMPLs is given

by

K(p2, ai) =
1

p6

[
K̃(ai) + K̃MPL(ai)

]
+O(ε) , (5.6)

where

K̃(ai) = E4

(−1 −1 1
0 0 1 ; 1

)
+ E4

(−1 −1 1
0 1 1 ; 1

)
+ E4

(−1 −1 1
0 ∞ 1 ; 1

)
− E4

(−1 −1 1
0 λ 1 ; 1

)
+ E4

(−1 1 −1
0 1 0 ; 1

)
+ E4

(−1 1 −1
0 1 1 ; 1

)
+ E4

(−1 1 −1
0 1 ∞ ; 1

)
− E4

(−1 1 −1
0 1 λ ; 1

)
+ E4

(
1 −1 −1
0 1 0 ; 1

)
+ E4

(
1 −1 −1
0 1 1 ; 1

)
+ E4

(
1 −1 −1
0 1 ∞ ; 1

)
− E4

(
1 −1 −1
0 1 λ ; 1

)
− E4

(
1 −1 −1
ρ ∞ 0 ; 1

)
− E4

(
1 −1 −1
ρ ∞ 1 ; 1

)
− E4

(
1 −1 −1
ρ ∞ ∞ ; 1

)
+ E4

(
1 −1 −1
ρ ∞ λ ; 1

)
+

1

2

[
− E4

(−1 −1 1
∞ 0 1 ; 1

)
− E4

(−1 −1 1
∞ 1 1 ; 1

)
− E4

(−1 −1 1
∞ ∞ 1 ; 1

)
+ E4

(−1 −1 1
∞ λ 1 ; 1

)
+ E4

(
−1 −1 1
ξ 0 1 ; 1

)
+ E4

(
−1 −1 1
ξ 1 1 ; 1

)
+ E4

(
−1 −1 1
ξ ∞ 1 ; 1

)
− E4

(
−1 −1 1
ξ λ 1 ; 1

)
− E4

(−1 1 −1
∞ 1 0 ; 1

)
− E4

(−1 1 −1
∞ 1 1 ; 1

)
− E4

(−1 1 −1
∞ 1 ∞ ; 1

)
+ E4

(−1 1 −1
∞ 1 λ ; 1

)
+ E4

(
−1 1 −1
ξ 1 0 ; 1

)
+ E4

(
−1 1 −1
ξ 1 1 ; 1

)
+ E4

(
−1 1 −1
ξ 1 ∞ ; 1

)
− E4

(
−1 1 −1
ξ 1 λ ; 1

)
+ E4

(
1 −1 −1
0 ∞ 0 ; 1

)
+ E4

(
1 −1 −1
0 ∞ 1 ; 1

)
+ E4

(
1 −1 −1
0 ∞ ∞ ; 1

)
− E4

(
1 −1 −1
0 ∞ λ ; 1

)
− E4

(
1 −1 −1
0 ξ 0 ; 1

)
− E4

(
1 −1 −1
0 ξ 1 ; 1

)
− E4

(
1 −1 −1
0 ξ ∞ ; 1

)
+ E4

(
1 −1 −1
0 ξ λ ; 1

)
+ E4

(
1 −1 −1
ρ 0 0 ; 1

)
+ E4

(
1 −1 −1
ρ 0 1 ; 1

)
+ E4

(
1 −1 −1
ρ 0 ∞ ; 1

)
− E4

(
1 −1 −1
ρ 0 λ ; 1

)
− E4

(
1 −1 −1
ρ 1 0 ; 1

)
− E4

(
1 −1 −1
ρ 1 1 ; 1

)
− E4

(
1 −1 −1
ρ 1 ∞ ; 1

)
+ E4

(
1 −1 −1
ρ 1 λ ; 1

)
+ E4

(
1 −1 −1
ρ λ 0 ; 1

)
+ E4

(
1 −1 −1
ρ λ 1 ; 1

)
+ E4

(
1 −1 −1
ρ λ ∞ ; 1

)
− E4

(
1 −1 −1
ρ λ λ ; 1

)
+ E4

(
1 −1 −1
ρ ξ 0 ; 1

)
+ E4

(
1 −1 −1
ρ ξ 1 ; 1

)
+ E4

(
1 −1 −1
ρ ξ ∞ ; 1

)
− E4

(
1 −1 −1
ρ ξ λ ; 1

) ]
− 2iπ

[
E4

(
0 −1 1
0 0 1 ; 1

)
+ E4

(
0 −1 1
0 1 1 ; 1

)
+ E4

(
0 −1 1
0 ∞ 1 ; 1

)
− E4

(
0 −1 1
0 λ 1 ; 1

)
+ E4

(
0 1 −1
0 1 0 ; 1

)
+ E4

(
0 1 −1
0 1 1 ; 1

)
+ E4

(
0 1 −1
0 1 ∞ ; 1

)
− E4

(
0 1 −1
0 1 λ ; 1

)
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+ E4

(
1 0 −1
ρ 0 0 ; 1

)
+ E4

(
1 0 −1
ρ 0 1 ; 1

)
+ E4

(
1 0 −1
ρ 0 ∞ ; 1

)
− E4

(
1 0 −1
ρ 0 λ ; 1

) ]
+ log

(
a3

a2

)[
− E4

(−1 1
0 1 ; 1

)
+

1

2
E4

(−1 1
∞ 1 ; 1

)
− 1

2
E4

(
−1 1
ξ 1 ; 1

)
− E4

(
1 −1
0 1 ; 1

)
− 1

2
E4

(
1 −1
0 ∞ ; 1

)
+ 2iπE4( 0 1

0 1 ; 1) +
1

2
E4

(
1 −1
0 ξ ; 1

)
− 1

2
E4

(
1 −1
ρ 0 ; 1

)
+

1

2
E4

(
1 −1
ρ 1 ; 1

)
+ E4

(
1 −1
ρ ∞ ; 1

)
− 1

2
E4

(
1 −1
ρ λ ; 1

)
− 1

2
E4

(
1 −1
ρ ξ ; 1

)
+ 2iπE4

(
1 0
ρ 0 ; 1

) ]
, (5.7)

where we define the shorthand notation

ξ =
a1 (a3 − a2)

a1 (a2 (a3 − 1) + a3)− a2a3
, λ =

a1

a1 − a2
, ρ =

1

1− a3
, η =

a1a3

a1 + a3 − a1a3
.

(5.8)

The part of the result which depends only on ordinary MPLs, K̃MPL(ai), in turn is given

by

K̃MPL(ai) = G(1, a3)
[
G(η, 0, a2)−G(η, a3, a2)−G(a1, 0, a2) +G(a1a3, a3, a2)

]
+

3

2
G(η, 0, 0, a2)− 2G(η, 0, 1, a2)−G(η, η, 0, a2) +G(η, η, a3, a2)

− 1

2
G(η, a1, 0, a2) +G(η, a1, 1, a2) +

1

2
G(η, a3, 0, a2) +G(η, a3, 1, a2)

−G(η, a3, a3, a2)− 1

2
G(η, a1a3, 0, a2) +G(a3, η, 0, a2)−G(a3, η, a3, a2)

+
1

4
G(0, a2)3 − 1

4
G(0, a3)3 +

1

6
G(1, a1)3 +

1

6
G(a3, a2)3

+
1

2
G(a1a3, a2)

[
−G(1, a1)2 + 2G(0, 1, a1) +G(1, 0, a1)

]
+G(0, 0, 1, a1) +G(0, 0, 1, a2)−G(0, 0, a3, a2) +

1

2
G(0, 1, 0, a1)− 1

2
G(0, 1, 0, a3)

−G(0, 1, 1, a1)−G(0, a1, 0, a2)− 1

2
G(0, a3, 0, a2)− 1

2
G(0, a1a3, 0, a2)

+G(0, a1a3, a3, a2)−G(1, 0, 1, a1)− 1

2
G(1, 1, 0, a1)− 3

2
G(a1, 0, 0, a2)

+
3

2
G(a1, a1, 0, a2) +

1

2
G(a1, a1a3, 0, a2)− 3

2
G(a3, 0, 0, a2)− 1

2
G(a3, a3, 0, a2)

+
1

2
G(a3, a1a3, 0, a2) +G(a1a3, 0, 1, a2) +G(a1a3, 0, a3, a2)−G(a1a3, a1, 1, a2)

+
1

2
G(a1a3, a3, 0, a2)−G(a1a3, a3, 1, a2)−G(a1a3, a1a3, a3, a2) +

1

4

[(
(G(0, a2)

−G(0, a3) +G(η, a2)−G(a1, a2)−G(a3, a2)
)
G(0, a1)2 +

(
− 2G(0, a2)2

+ 2G(0, a3)G(0, a2) + 2G(η, a2)2 − 3G(a1, a2)2 + 2G(a3, a2)2

− 4G(1, a3)G(η, a2) + 4G(1, a3)G(a1, a2) + 2G(0, a3)
(
G(η, a2)

−G(a1, a2)−G(a3, a2)
)

+ 4G(0, a1, a2) + 2G(0, a1a3, a2)− 4G(η, 0, a2)

+ 2G(η, a1, a2)− 4G(η, a3, a2) + 2G(η, a1a3, a2) + 4G(a1, 0, a2)
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− 2G(a1, a1a3, a2) + 4G(a3, 0, a2)− 4G(a3, η, a2)− 2G(a3, a1a3, a2)
)
G(0, a1)

−G(0, a3)G(1, a1)2 − 2G(1, a1)G(η, a2)2 − 2G(1, a1)G(a3, a2)2

+ 2G(1, a1)G(a1a3, a2)2 −G(0, a2)2 (G(0, a3)− 2G(1, a1)) +G(0, a3)2G(η, a2)

− 2G(0, a3)G(1, a1)G(η, a2) + 4G(1, a1)G(1, a3)G(η, a2)−G(0, a3)2G(a1, a2)

− 3G(0, a3)2G(a3, a2) + 2G(0, a3)G(1, a1)G(a3, a2) + 2G(0, a3)G(1, a1)G(a1a3, a2)

− 4G(1, a1)G(1, a3)G(a1a3, a2) + 2G(0, a3)G(0, 1, a1) + 2G(0, a3)G(0, a1a3, a2)

− 4G(1, a1)G(0, a1a3, a2) + 2G(0, a3)G(1, 0, a1)− 2G(η, a2)G(1, 0, a1)

+ 2G(a3, a2)G(1, 0, a1) +G(0, a2)
(
G(0, a3)2 − 2G(1, a1)G(0, a3) + 2G(1, a1)2

− 4G(0, 1, a1)− 2G(1, 0, a1)
)
− 2G(η, a2)G(1, 0, a3) + 2G(a1, a2)G(1, 0, a3)

− 2G(0, a3)G(η, 0, a2) + 4G(1, a1)G(η, 0, a2)− 4G(1, a1)G(η, a1, a2)

+ 4G(1, a1)G(η, a3, a2) + 2G(0, a3)G(η, a1a3, a2) + 2G(0, a3)G(a1, 0, a2)

− 2G(0, a3)G(a1, a1a3, a2) + 4G(0, a3)G(a3, 0, a2)− 4G(1, a1)G(a3, 0, a2)

+ 4G(1, a1)G(a3, η, a2)− 2G(0, a3)G(a3, a1a3, a2)− 4G(1, a1)G(a1a3, 0, a2)

+ 4G(1, a1)G(a1a3, a1, a2)− 8ζ3

]
+

1

2
ζ2

(
5G(η, a2)−G(0, a1)

+ 5G(0, a2)− 3G(0, a3) +G(1, a1)− 5G(a1, a2)− 5G(a3, a2)
)
.

6 Conclusions

In this paper we gave a detailed account of the calculation of different classes of two-

loop Feynman integrals which evaluate to elliptic polylogarithms. The main goal has

been to show that the direct integration algorithms used to deal with polylogarithmic

Feynman integrals can be suitably generalised to include a considerably large class of elliptic

Feynman integrals. We considered in detail two different two-loop non-planar three-point

functions appearing in the production of tt̄ pairs in QCD and in the electroweak form

factor, respectively. Subsequently, we computed the famous two-loop kite integral with

three different internal masses. As it is well known, the kite integral inherits its elliptic

nature from the two-loop massive sunrise subtopology. The two families of three-point

functions on the other hand are genuinely elliptic at the level of the top topology and

in particular contain elliptic curves that are not directly related to the sunrise case. In

spite of their apparent diagrammtic similarity, these two families of three-point functions

differ substantially. In fact, in the tt̄ case the elliptic top-sector can be reduced to two

independent master integrals (up to simpler polylogarithmic sub-topologies), while in the

electroweak form factor case, the elliptic sector is reduced to three independent master

integrals (again, up to subtopologies).

By direct integration over their Feynman parameter representation, we have shown

that the complete set of master integrals for the three problems above can be consistently

expressed in terms of elliptic polylogarithms. We have performed all computations in the

Euclidean region, such that all our results are real. In doing so, we described how to define
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our integrals consistently depending on the location in the complex plane of the four branch

points that define the elliptic curve. As a crucial result of our calculations, we showed that

for all examples considered it was always possible to organise the master integrals of a

given topology into a basis of pure building blocks. We stress here once more that by

calling it a basis we mean that we can find a number of independent pure building blocks

which is equal to the number of master integrals in the problem under consideration. This

supports the conjecture according to which a basis of pure functions should always exist

for master integrals that can be expressed in terms of MPLs only, and constitutes a strong

hint towards its generalisation to the elliptic case.

Finally, there are strong indications that also many two-loop four-point Feynman inte-

grals can be expressed in terms of the same set of functions and that similar considerations

on their transcendentality properties apply. We postpone the details of these calculations

to future publications.
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A An example of analytic continuation

In Section 3.1, we presented a result for the first master integral for the two-loop triangle

integral relevant for top production in terms of eMPLs. The result shown in eq. (3.25) was

however not well defined in the Euclidean region for which 0 ≤ a ≤ 1
16 as there were poles

on the integration contour. In this section, we show how to circumvent this problem by

rewriting each E4 appearing in eq. (3.25) as a well defined combinations of eMPLs without

poles on the integration contour. This can be achieved through manipulations similar to

how the integrand of eq. (3.15) was converted into eMPLs, i.e. by taking a derivative

with respect to the kinematic variables r+/− and integrating back, thus ensuring the end-

point of the contour for every eMPL to be r+/−. In order to fix the imaginary parts of the

eMPLs, we fix the imaginary parts of r+/− using a Feynman iε prescription which amounts

to giving a small positive imaginary part to q2 in eq. (3.8). Using eq. (3.13) this gives in

the Euclidean region

Im(a) > 0 , Im(r−) > 0 , Im(r+) < 0 . (A.1)

We recall here that for the problem at hand a and r+/− are not independent, see eq. (3.13).

Nevertheless, we imagine to treat them as independent variables in what follows.
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The expression in eq. (3.25) contains eMPLs of length 3 and 4, which must be recast as

eMPLs with endpoints r+/−. Like for ordinary MPLs, this procedure consists of taking a

derivative, thus generating lower-length eMPLs and integrating these back in the variable

r+/−. Therefore, one needs to work out first the length 1 examples in order to build

the higher length iteratively. In the following we show examples of this procedure and in

particular how to compute the boundary constants in some intricate cases.

A.1 Length 1 example

As a warm-up, consider the eMPL E4

(
1
r− ; 1

)
which is simply a logarithm, log(1 − 1/r−).

Taking a derivative with respect to r− we find

∂

∂r−
E4

(
1
r− ; 1

)
=

∂

∂r−

∫ 1

0

dx

x− r−
=

∫ 1

0

dx

(x− r−)2
= − 1

r−(1− r−)
. (A.2)

Then, integrating back we find∫ r−

dr′−
∂

∂r′−
E4

(
1
r′−

; 1
)

= −
∫ r−

dr′−
1

r′−(1− r′−)

= − log(r−) + log(1− r−) + c = −E4( 1
0 ; r−) + E4( 1

1 ; r−) + c .

(A.3)

The integration constant c is then fixed by taking the limit r− → 0. In situations like the

example above, there are logarithmic divergences in this limit due to the lower integration

boundary at zero. As such, it is necessary to extract divergent logarithms in order to

compute the boundary constant. For Im(r−) > 0 we have for the left-hand-side

lim
r−→0

E4

(
1
r− ; 1

)
= lim

r−→0
log(1− 1/r−)

= lim
r−→0

(log(1− r−)− log(r−)− iπ) = − lim
r−→0

E4( 1
0 ; r−) + iπ ,

(A.4)

whereas for the right-hand-side we have

lim
r−→0

(−E4( 1
0 ; r−) + E4( 1

1 ; r−) + c) = − lim
r−→0

E4( 1
0 ; r−) + c , (A.5)

thus fixing c = iπ.

A.2 Length 2 example

We now consider a more intricate example of length two and explicit dependence on the

elliptic curve, namely E4

(
0 1
0 r− ; 1

)
, in order to illustrate the typical steps involved in the an-

alytic continuation of certain eMPLs. Note that due to the presence of the kernel Ψ1(r−, x),

the integration on the real axis 0 < x < 1 cannot be performed for 0 < r− < 1 because the

integrand has a pole on the contour. This is the case for the tt̄ triangle in the Euclidean

region. To avoid this problem, our goal is to rewrite E4

(
0 1
0 r− ; 1

)
as a combination of eMPLs

of the form E4( ······ ; r−) such that there are no poles in the new contour 0 < x < r−. Similarly

to the previous length-one example, this is achieved by differentiating the expression with
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respect to r− and integrating back in terms of eMPLs with a different end point. The first

step is

∂

∂r−
E4

(
0 1
0 r− ; 1

)
=

∂

∂r−

∫ 1

0
dx1Ψ0(0, x1)

∫ x1

0
dx2Ψ1(r−, x2)

=
∂

∂r−

∫ 1

0
dx1

c4

ω1y

∫ x1

0

dx2

x2 − 1
,

(A.6)

where we used the explicit expressions for the eMPLs kernels in eqs. (2.32) and (2.33) and

we omit the explicit dependence on the branch points of the elliptic curve,

~b (Euc) = (0, b−, b+, 1) , b± =
1

2
(1±

√
1− 16a) . (A.7)

Note that the ordering above differs from that of eq. (3.17) as we are now in a configuration

with 0 < a < 1/16 where all roots are real and ordered.

Taking the derivative in r− explicitly under the integral sign (recall the definition of

Z4 in eq. (2.25)) and integrating in x1 and x2, we find

∂

∂r−
E4

(
0 1
0 r− ; 1

)
=

(b− − 1)

2ω1yr−
E4

(−1
r− ; 1

)
−
(

(b− − 1)Z4(r−)

2yr−
+

1

r−

)
E4( 0

0 ; 1) . (A.8)

In order to simplify intermediate expressions, we use eq. (3.23) and the fact that for this

particular case we have

Z4(0) = Z4(1) = 0 . (A.9)

We are not yet ready to integrate back in r− due to the presence of E4

(−1
r− ; 1

)
which is not

in the desired form E4( ······ ; r−). Therefore, we need to work separately on E4

(−1
r− ; 1

)
and

rewrite it first in a suitable form. We start in the same way, i.e. by taking a derivative with

respect to r−,

∂

∂r−
E4

(−1
r− ; 1

)
=

∂

∂r−

∫ 1

0
dx
[ yr−
y(x− r−)

+ Z4(r−)
c4

y

]
. (A.10)

Once again, computing the derivative explicitly and integrating in x we find that it vanishes

and therefore E4

(−1
r− ; 1

)
is a constant,

∂

∂r−
E4

(−1
r− ; 1

)
= 0 ⇒ E4

(−1
r− ; 1

)
= c1 , (A.11)

In order to compute c1 we consider the limit r− → 0. We know that in this limit Z4(r−)→ 0

and thus we are left with only the first term in the integrand (A.10),

c1 = lim
r−→0

E4

(−1
r− ; 1

)
= lim

r−→0

∫ 1

0
dx

yr−
(x− r− − iε)y

, (A.12)

where we show explicit the Feynman iε prescription according to eq. (A.1). Changing

variables to t = x/r− and taking the limit r− → 0, the square roots above become very

simple,

lim
r−→0

yr− = −iπ
√
r−b−b+ , lim

r−→0
y = −iπ

√
t r−b−b+ . (A.13)
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With this we can obtain the result for the integration constant c1,

c1 = lim
r−→0

∫ 1/r−

0
dt

1

(t− 1− iε)
√
t
∼
∫ ∞

0
dt

1

(t− 1− iε)
√
t

= −iπ . (A.14)

We are now ready to plug the result E4

(−1
r− ; 1

)
= −iπ back into eq. (A.8) and integrate in

r−. We get

E4

(
0 1
0 r− ; 1

)
= −E4( 0

0 ; 1) (E4( 1
∞ ; r−) + E4( 1

0 ; r−)) + iπE4( 0
0 ; r−) + c2 , (A.15)

where c2 is another integration constant which can again be determined by studying the

limit r− → 0. The left-hand side of eq. (A.15) diverges logarithmic in the limit (recall that

E4( 1
0 ; r−) is simply log(r−)),

lim
r−→0

[E4( 0
0 ; 1) (−E4( 1

∞ ; r−)− E4( 1
0 ; r−)) + iπE4( 0

0 ; r−) + c2]

= − E4( 0
0 ; 1)

[
lim
r−→0

E4( 1
0 ; r−)

]
+ c2 ,

(A.16)

whereas for the right-hand side we need to first unshuffle the logarithmic divergence,

lim
r−→0

E4

(
0 1
0 r− ; 1

)
= lim

r−→0

[
E4( 0

0 ; 1) E4

(
1
r− ; 1

)
− E4

(
1 0
r− 0 ; 1

)]
= iπE4( 0

0 ; 1)− E4( 1 0
0 0 ; 1)− E4( 0

0 ; 1)
[

lim
r−→0

E4( 1
0 ; r−)

] (A.17)

where we used the polylogarithmic relation

E4

(
1
r− ; 1

)
= E4( 1

1 ; r−)− E4( 1
0 ; r−) + iπ . (A.18)

Equating eqs. (A.16) and (A.17) we find

c2 = iπE4( 0
0 ; 1)− E4( 1 0

0 0 ; 1) , (A.19)

and thus we get our final expression valid for 0 < a < 1/16,

E4

(
0 1
0 r− ; 1

)
= −E4( 0

0 ; 1)
[
E4( 1
∞ ; r−) + E4( 1

0 ; r−)− iπ
]
− E4( 1 0

0 0 ; 1) + iπE4( 0
0 ; r−) . (A.20)

Since both 0 and 1 are branch points of the integral, we have that certain eMPLs simplify

using the definitions of the periods and quasi-periods. For example, we have

E4( 0
0 ; 1) =

1

2
. (A.21)

The procedure shown for this particular example can be generalised for arbitrary length and

used to transform the complete expression into a result valid in the Euclidean region. For

illustrative purposes, in the following section we show the first master integral completely

transformed using these techniques.
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A.3 Result for top-production first master in the Euclidean region

In the last section, we showed how the eMPLs expression for the first master integral for

the top-production triangle given in eq. (3.25) can be turned into an expression valid in

the Euclidean region. In this section, we show the result in terms of pure eMPLs, which is

valid in the Euclidean region 0 < a < 1/16 and is of uniform weight 4. The result is

I =
32ω1

q2(1 +
√

1− 16a)
[T0(a) + 3T−(a) + 5T+(a) +O(ε)] (A.22)

where the individual building blocks depend on r+, r− separately and are given by

Ta = − E4

(
0 −1 1 1
0 ∞ 0 0 ; 1

)
− E4

(
0 −1 1 1
0 ∞ 0 1 ; 1

)
− E4

(
0 −1 1 1
0 ∞ 1 0 ; 1

)
− E4

(
0 −1 1 1
0 ∞ 1 1 ; 1

)
+

log(a)
[
E4

(
0 −1 1
0 ∞ 0 ; 1

)
+ E4

(
0 −1 1
0 ∞ 1 ; 1

) ]
+

1

2
E4

(
0 −1
0 ∞ ; 1

)
[ζ2 − log2(a)] ,

(A.23)

T− = − 3

2
ζ2 E4(−1

∞ ; r−) + ζ2E4

(−1 0
∞ 0 ; r−

)
− 2E4(−1 −1

∞ ∞ ; r−) E4

(
0 −1
0 ∞ ; 1

)
+ E4

(−1 0 1 1
∞ 0 0,0 ; r−

)
+ E4

(−1 0 1 1
∞ 0 0 1 ; r−

)
− E4

(−1 0 1 1
∞ 0 1 0 ; r−

)
− E4

(−1 0 1 1
∞ 0 1 1 ; r−

)
+ E4

(−1 1 0 1
∞ 0 0 1 ; r−

)
− E4

(−1 1 0 1
∞ 1 0 0 ; r−

)
+ E4

(
1 −1 0 1
0 ∞ 0 1 ; r−

)
− E4

(
1 −1 0 1
1 ∞ 0 0 ; r−

)
− E4

(−1 0 1
∞ 0 1 ; r−

)
log(r−) + E4

(−1 0 1
∞ 0 0 ; r−

)
log(1− r−) ,

(A.24)

T+ =
iπ

4

[
E4

(
1 −1
0 ∞ ; r+

)
+ E4

(
1 −1
1 ∞ ; r+

)
− 4
(
E4

(
1 −1 0
0 ∞ 0 ; r+

)
+ E4

(
1 −1 0
1 ∞ 0 ; r+

) )]
− E4

(
1 −1 0 1
0 ∞ 1 0 ; r+

)
+ E4

(
1 −1 0 1
0 ∞ 0 1 ; r+

)
− E4

(
1 −1 0 1
1 ∞ 1 0 ; r+

)
+ E4

(
1 −1 0 1
1 ∞ 0 1 ; r+

)
.

(A.25)
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