

The ATLAS High Granularity Timing Detector

HGTD Motivation

- LHC will be upgraded in 2024-2026 to High Luminosity LHC (HL-LHC)
 - Instantaneous luminosities up to $L \simeq 7.5 \times 10^{34} cm^{-2} s^{-1}$ about 5 times the current
 - Pile up $<\mu>\simeq 200$ simultaneous interactions per bunch crossing
 - On average 1.5 vertex/mm along beam line att collision point

 In the forward region the tracker (new ATLAS tracker ITK) has less longitudinal resolution → degraded vertex resolution

HGTD Motivation

- A new layer of silicon detectors with precise timing, High Granularity Timing Detector (HGTD), in front of the liquid argon end-cap calorimeters improves performance by combining
 - HGTD precise timing
 - ITK position information

HGTD Requirements

- Two endcap disks at z = ±3.5 m
- 6.3m² active rea: 120mm<R<640mm
 ⇒ 2.4 < |η| < 4.0
- Time resolution better than 30 ps per track (50 ps per hit in a 2 layer geometry)
- Sensors on both sides of two cooling plates with varying overlap ⇒
 <nhits>=3 for R<320mm (80% overlap)

 $\langle n_{hits} \rangle = 2 \text{ for } R < 320 \text{ mm} (80\% \text{ overlap})$

- Requirement of occupancy < 10%
 ⇒ 1.3 mm × 1.3 mm pixels
- 15x30 pixel sensors
- Sensors bump bonded to readout ASIC (ALTIROC) (15x15 chip)
- Wire bonded to flex cable
- Intotal 3.59 M channels

ASIC wire bonding

*Not to scale

- Total fluence (n_{eq}) and dose to be sustained (new updated numbers compared to fig):
 - + R < 32 cm $\rightarrow~5.1{\times}10^{15}\,n_{eq}/cm^2$ and 4.7 MGy
 - + R > 32~cm \rightarrow $3.9 \times 10^{15}\,n_{eq}/cm^2$ and 1.9 MGy
- A safety factor 1.5 for n_{eq} (sensor) and 2.25 for dose (ASIC) and replacement of inner wheel < 32 cm) (~32% of sensors and ASICs) at mid run of HL-LHC are taken into account

HGTD sensors: LGADs

R&D program to provide sensors with required time resolution, radiation hardness and fine segmentation

- New doping materials, substrates and geometries
- Prototypes tested from CNM, HPK, BNL, FBK
- >1000 single pad sensors tested
- Several 5x5 and 15x15 sensors tested. Very uniform leakage current and breakdown voltage

Low Gain Avalanche Detectors (LGADs)

- n-on-p planar silicon layer with additional p-layer for moderate gain (10-50) (increases signal, limits noise)
- Time resolution < 30 ps before irradiation
- Thin (base line 50 μ m) => small t_{rise}

Contributions to timing resolution

$$\sigma_{timing}^2 = \sigma_{Landau}^2 + \sigma_{jitter}^2 + \sigma_{time \ walk}^2 + \sigma_{TDC}^2 + \sigma_{clock}^2$$

- Landau term: < 25 ps, reduced for thin lacksquaresensors (35-50 μ m) Jitter term $\sigma_{jitter} pprox rac{t_{rise}}{S/N}$ Edge Time walk, minimised by correcting < 25 ps Threshold Discriminator for time over threshold (or for beam tests using constant fraction Time discriminator (CFD)) Time given by the Time Walk CFD 50%, no time walk Digitisation granularity ~ 5ps
 - Clock distribution < 10 ps

Radiation damage on LGADs

- Sensors have been irradiated at with neutrons at IJS (Lubiana) and protons at PS-IRRAD (CERN):
 - From 1×10^{14} to 1×10^{16} n_{eq}/cm² (3.7×10¹⁵ n_{eq}/cm² need for HGTD)
- Reduction of gain partially compensated by increasing bias voltage (higher breakdown voltage)

Z. Galloway et al, arXiv:1707:04961 and Y. Zhao et al arXiv: 1803:02690

Test beam measurements

Hit efficiency and timing resolution has been studied with pion beams at CERN SPS North Area

- \sim 50 sensors tested so far
- Un-irradiated sensors CNM, HPK, BNL
- Irradiated sensors (neutron & proton) CNM and HPK
- 2×2 array sensors
- 2×2 array sensors with ALTIROC0_v2
- Arrays with different inter-pad gaps

Beam tests have also been performed at Fermilab and SLAC and in future also DESY

Hit efficiency

Before irradiation

After $6 \times 10^{14} n_{eq}/cm^2$

Timing resolution

A SiPM is used as time reference. Its 40 ps contribution is subtracted.

Before irradiation

After $6 \times 10^{14} n_{eq}/cm^2$

Results from test beam measurements

Signal efficiency in the interpad region

as function of X (mm) for 3 different voltage thresholds

Before irradiation

After $6 \times 10^{14} n_{eq}/cm^2$

ALTIROC Readout ASIC

ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)

- Broad band voltage pre-amplifier
 - Input transistor size chosen to minimize noise and power consumption
 - Provide TOA (9 bits, 20 ps bins) and ToT (7 bits, 40 ps bins)
 - Rise time ~0.5-1 ns (as sensor) to minimise jitter
 - Designed for 5 μ A sensor leakage current

Bunch by bunch luminosity measurement capability

- Sums hits in two time windows to evaluate luminosity and background per ASIC
- Only ASICS at R> 320 mm will use luminosity readout

R2= 15K or 25K

Id1 200 uA

R1= 4K

Vcasc

Vin

M3

Vout pa

ALTIROC Readout ASIC

Developed in phases:

- ALTIROC0: single pixel analog readout (pre-amp + discri)
 - test bench measurements satisfactory
 - Beam tests \rightarrow see next slides
- ALTIROC1: full single pixel (analog + TDC) readout in 5×5 array
 - Test bench measurements on-going (preliminary results show similar behaviour as ALTIROC0)
 - Irradiation and beam tests in Q1 2019
- ALTIROC2: final 15x15 version.
 - Submission expected end 2019

- ALTIROC0_v2 bump bonded to an un-irradiated CNM 2×2 LGAD array
 - TOA of signal corrected for time walk (using probe amplitude)
- Best achieved time resolution after correction: 35 ps

Summary and perspectives

- The HGTD will mitigate pile-up effects and improve performance in the ATLAS forward region
- Technical proposal was approved 2018
- After a fluence of 6×10¹⁴ n_{eq}/cm²
 - Efficiency in bulk is still ~100%
 - Time resolution of 40-50 ps is achieved Link to HGTD beam test paper
- Intense R&D program during 2019-2020
- New sensors are under tests, including 5x5 and 15x5 arrays
- Technical Design Report (TDR) under preparation (5 April)

Backup: HGTD Schedule

Backup

2x2 Pad Array

Backup: Pile-up rejection

 Pileup-jet rejection as a function of hard-scatter jet efficiency in forward region

 No HGTD (black) and HGTD with different σ(t)

With initial and final timing resolution ($\sigma(t) = 30$ ps), rejection improved by factor of 1.6-4

Backup: Pile-up rejection

Fixed pileup-jet eff of 2%, HS eff vs η

Backup

Time resolution worsens with radiation (higher dose at lower radius) Compensated by more hits/track at lower radius. (\geq 3 hits at R<320 mm, \geq 2 hits at > R)

Examples:

- Light-jet rejection versus *b*-jet efficiency within the HGTD acceptance \rightarrow
- At 70% WP, light-jet rejection improved by a factor of ~1.6

Particularly useful for physics with reducible bg from mis-tagged light jets!

- Light-jet rejection versus *b*-jet efficiency within the HGTD acceptance \rightarrow
- At 70% WP, light-jet rejection improved by a factor of ~1.6
- ▶ At high η rej. improved by factor \sim 3

Particularly useful for physics with reducible bg from mis-tagged light jets!

- Efficiency for electron isolation selection as a function of pileup vertex density
- No HGTD (black) and HGTD with different σ(t) scenarios
- HGTD removes the majority of the effects of pileup, recovers 15% for average HL-LHC vertex density
- ▶ $\sigma(t) < 30$ ps does not help much

Physics: Impact on tH (final state with $\geq 2 b$ -tagged jets)

 $|\eta|$ for most forward light-jet shown in the 3b region for tH followed by $H\to b\bar{b}$ and the backgrounds from $t\bar{t}$ and $t\bar{t}H$ production

• Probes sign of top-Yukawa coupling directly (left, if negative $\Rightarrow \sigma(tH) \times 10$), complementary to $t\bar{t}H$

- Sensitivity to tH increased by 11% using HGTD
- Primarily due to improved b-tagging