AIDA-2020-SLIDE-2019-003

AIDA-2020

Advanced European Infrastructures for Detectors at Accelerators

Presentation

CALICE/ILD SiW-ECAL a 26 Layer Model and 1st Tests of a Long Slab

Boudry, Vincent (LLR) et al

23 November 2018

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package **14: Infrastructure for advanced calorimeters**.

The electronic version of this AIDA-2020 Publication is available via the AIDA-2020 web site http://aida2020.web.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch or on the CERN Document Server at the following URL: http://cds.cern.ch/search?p=AIDA-2020-SLIDE-2019-003

Copyright © CERN for the benefit of the AIDA-2020 Consortium

CALICE/ILD SiW-ECAL a 26 Layer Model and 1st Tests of a Long Slab

M. Anduze, <u>V. Boudry</u>, J.C. Brient, O. Korostyshevskíy,

F. Magníette, J. Nanní, H. Vídeau

École polytechnique, Palaiseau

LCWS 2018 23.11.2018, Arlington (TX)

TNA support + WP14

Introduction

SiW-ECAL ~ 30% of ILD costs (ILD Models of SiW-ECAL: **Lol, DBD**) and most sensitive calorimeter (1/3 – 2500 mips, auto–trigger, high density)

- 1) How to reduce costs without impact (too much) performance?
- − R_{INNER} ECAL</sub> = 1842mm **~** 1462 mm: in simulations
- $30 \rightarrow 26$ layers
 - 8", 725µm wafers
- 2) Recent progress in feasibility studies:
- Base unit «ASU» ~ validated
 - almost validated (see Adrián's talk): on beam test data: uniformity, noise, auto-trigger perf. Response low E and high E to be assessed
 - Updated version \rightarrow FEV13 design by Taikan
- 1st prototype of a long slab (this presentation)

Copper sheet

M Frotin M Anduze (LLR

Cover

Redefinition of dimensions

2 designs to be looked at:

- a "baseline" (or "large") with inner ECal radius at RECal =1804mm, (model close to the DBD)
- a "small ILD" model R_{ECal} ~1500 mm (all related quantities adapted ↔ R_{outer}[Endcaps])
 - Plus a model with slightly reduced number of layers = 26 layers (wrt 30).

Under work version of **ECal Technical Design Document** (TDD, 96 pages) by Henri Videau (LLR), Marc Anduze (LLR) and Denis Grondin (LPSC) (+ ed. Daniel Jeans & Roman Poeschl) available on

https://llrbox.in2p3.fr/owncloud/index.php/s/eeVeAlyv8o27VRF

Small ILD with 26 layers \rightarrow §5 of TDD.

Dimension constructions (reminder)

Barrel length fixed at **4700mm** in all models, same as HCal or TPC

- 8 staves \supset 5 CF/W modules \supset 5 alveoli columns

-1 alveoli width = $\sim 2 \times$ wafers width + walls + clearance ~ 187.4 mm

Endcaps

- R_{OUTER} Barrel =

- $Z_{\text{front}}^{\text{EndCcaps}} = Z_{\text{outer}}^{\text{BarrelL}} + \text{overlap} (62 \text{ mm for Services} + \text{Security})$
- $R_{INNER}^{EndCaps}$ fixed at 400mm \Rightarrow ECal ring
- $R_{OUTER}^{EndCaps} = R_{INNER}^{EndCaps} + n$ alveoli (+ wall, clearance)

ECal thickness

DBD thickness: **185 mm**, "hopelessly aggressive" More realistic calculations

- 223.2 mm (Δ = +38.2 mm) for barrel - 223,6 mm (Δ =+38.6 mm) for endcaps

Vincent. Boudry einzpont Covo zoro, Anington pied Models & 1st Long Slab

Small ILD

Same recommendations as for baseline:

- recalculated $R_{INNER}^{HCAL, BARREL}$ as 1500 + 185 + 30 = 1715mm

Small ILD ECal dimensions:

- $R_{\text{INNER}} E^{\text{Cal, BARREL}} = R_{\text{INNER}} + C^{\text{AL, BARREL}} 30 \text{mm} 223.2 \text{ mm} = 1461.8 \text{mm}$
- Z_{FRONT}^{ECal, EndCaps} = 2411.8 mm (unchanged from baseline)
- R_{OUTER}^{ECal, EndCaps} = 1717.2 mm
 - 2 modules per quadrant of 4 (inner) and 3 (outer) alveoli
 - The overshoot of the end-cap to the barrel is then 32mm

Going to 26 Layers: performances

Going from 30 to 26 layers

- Reduction of cost; increase of Energy resolution
 - keep 24X₀ (84mm) of Tungsten
- Increasing the Si thickness to 725µm
- Energy resolution $\sigma(E)/E$:
 - for 26 layers w.r.t. 30: ▼ +8.5%
 - with 725µm w.r.t 500µm : ➤ -6.6% (-8.7% wrt to DBD 300µm)
- near compensation

Study needed on dead zones (larger GR...), separation, resolution and efficiency performances at low energy.

- eg: JER : $\sigma(E_1)/E_1$ +6% for 26 layers (500 µm) to be redone... Shown @ 6th ILD Optim meeting (16/07/2014) [link]

Vincent.Boudry@in2p3.fr LCWS'2018, Arlington | ILD Models & 1st Long Slac

26 layers: dimensions

ECal thickness:

- 26 layers = 18 'simple' layers with 2.47mm of W
 + 8 'double' layers with 5.6mm
 shared between structure and slabs (4.94mm of W)
 - \rightarrow 211.9 mm (wrt to 223.9 for 30 layer model)
- \rightarrow relaxed constraints on
 - clearance margin inside alveoli : 2×0.1mm→2×0.2mm
 - chip packaging : $0.8 \text{mm} \rightarrow 1.0 \text{mm}$
 - PCB thickness : 1.0mm \rightarrow **1.1mm**

Total: 223.2mm \rightarrow 222.2mm + 1mm clearance

Vincent.Boudry@in2p3.fr LCWS'2018, Arlington | ILD Mode

Going to 200mm Wafers...

From CMS HGCAL development & Hamamatsu contacts future is 200mm (8") ingots, 725µm thickness

Mechanical constraints $\rightarrow \sim 187$ mm alveoli, ~ 12 cm wafer

 \rightarrow 1.5 Wafers \otimes cell # mult. of 3 \otimes cell width ~5 mm \otimes paving with ~64ch ASICs \rightarrow 30 or 36 cells in width

121.19

294.05

60.59

Optimised ReadOut electronics

ASU: 1440 pads, 24 ASICs

Noise ~ C ~ width²/th. ~ cst, Signal ~ th \checkmark , S/N ~ ×1.5; depl. Voltage ~ th² (×2)

LCWS'2018, Arlington | ILD Models & 1st Long Slab Vincent.Boudry@in2p3.fr

wafers on 200mm ingot ; 63 % use of surface

Tiling with 200mm (8'') wafers

Vincent.Boudry@in2p3.fr LCWS'2018, Arlington | ILD Moc

1st "electric long slab"

M. Anduze, F. Magníette, J. Nanní, Realísatíon: G. Fayolle

Scale to support electronics

- Support of interface boards + 12 ASUs (DBD)
- 2+6+4 ASUs = ~3.2 m
- Total access to upper and lower parts
 - 320µm Baby wafers (4×4 pixels) on the botton
- Mechanical characteristics
 - Movable: table and to beam test
 - Rotatably along long axis (for beam test)
 Rigidity : ≤ ~1 mm per ASU
 - No electrical contacts scale / cards

Shielding

- vs Light and CEM

DESY-2018 beam test

2 weeks beg of July: full test of all prototypes:

- Electric long slab: 8 FEV11 + baby-wafers (320µm 2×2cm²):
- RC Filtering of HV between (every second) boards required
- Very clean response to "mip" (punch through e-)

common_calib_ls_ASU1_angle0_dif_1_1_1.raw

Mip analysis

O. Korostyshevskíy

MIP response vs position

mip MPV *cos(θ) vs ASU#

- OK for 4 1st ASU's
- − Small drop ~of signal ~2%/ASU for ≥ ASU#5
- $-\,$ Also hints similar drop on $\sigma_{\mbox{\tiny ped}}$

⇒ Voltage & Gain drop ? Power pulsed mode with ballast et end of slab (or just random build-up effect from chip variability ?)

Vincent.Boudry@in2p3.fr LCWS'2018, Arlington | ILD Models & 1s⁻

Conclusions & prospectives

- 3 models described in detail for the ILD SiW-ECAL: *baseline*, *small*, *small with 26 layers*:
 - 725µm thickness with 200mm (8") wafers ; 5.08 \rightarrow 6mm cell size
 - ~ identical photon resolution expected
 - 13% gain cost on Silicon surface, PCB, and 40% on electronics (and power consumption) wrt DBD
 - Improved S/N ratio & timing, less channeling @ 90°
- \otimes Feasibility improved:
 - Single ASU + 1st connexion: S/N ratio, Stability, Uniformity between elements; assessed CALICE technical prototype (11 working ASU as of now)
 - Wafer of 325μm, 650μm tested → 725 μm? Hamamatsu ✔ Others: LFoundry(SMIC), Infineon, Elma, On-Semi
 - Wafer production: learn from HGCAL, statistics from current wafer batch ?
 - Long SLAB: 1st readout over long chain: design R&D, power distribution, grounding; connexions between ASU's
 - ⇒ adjustment on HV & LV distribution, clock distribution needed ⇒ realistic (⊃ mech. constraints) design in 2019 ?

Back-up

Vincent.Boudry@in2p3.fr LCWS'2018, Arlington | ILD Models & 1st Long Slab

Slab plug

To be added ~15mm of A

LCWS'2018, Arlington | ILD Models & 1st Long Slab Vincent.Boudry@in2p3.fr

Sketch for a Historical Picture of the Progress of the ILD Silicon ECAL

Milestone	Date	Object	Details	REM
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, lim @ 2000 mips
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips
1 st prototype of a PCB	2010	FEV7	8 SK2	СОВ
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N ~ 14 (HG), no PP retriggers 50–75%
1 st run in PP	2013	FEV8-CIP		BGA, PP
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (High Gain) retrigger ~ 50%
1 st SLABs	2016	FEV10 & 11	7 units	
pre-calo	2017	FEV10 & 11	7 units	S/N ~ 20, 6–8 % masked
1 st technological ECAL ?	2018	SLABvFEV10 & 11 & 13 SK2a+ COB + Compact stack	SK2 & SK2a (⊃timing)	Improved S/N Timing

Vincent.Boudry@in2p3.fr LCWS'2018, Arlington | ILD Models & 1st Long Slab

Optimal cell-size (DBD)

