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Abstract

The dynamical scaling behavior of hydrodynamic and non-hydrodynamic moments of the distribution function is stud-
ied using third-order Chapman-Enskog hydrodynamics and anisotropic hydrodynamics for systems undergoing Bjorken
and Gubser expansions, where exact solutions of the Boltzmann equation in Relaxation Time Approximation (RTA)
are available for comparison. While dimensionless quantities like normalized shear, pressure anisotropy and normalized
entropy show at late times universal scaling relations with small (large) Knudsen number for Bjorken (Gubser) flows, di-
mensionful quantities like the entropy per unit rapidity do not. Although the two hydrodynamic approximation schemes
describe the exact attractors for normalized shear with high accuracy, their description for the normalized entropy is less
precise. We attribute this to non-negligible couplings to non-hydrodynamic modes in the entropy evolution.

Keywords: relativistic heavy-ion collisions, quark-gluon plasma, anisotropic hydrodynamics, viscous fluid dynamics

1. Introduction

Relativistic dissipative hydrodynamics has been remarkably successful in modeling the space-time evo-
lution of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. However, the apparent
success of hydrodynamics even in small systems [1] and when space-time gradients are large has revived
interest in testing the limits of applicability of the theory. Hydrodynamics is an effective theory of many-
body systems in which microscopic interactions are averaged out, and its effective degrees of freedom are a
small number of conserved charge currents coupled to dissipative fluxes. To gauge whether hydrodynamics
adequately models the actual underlying dynamics one must compare the effective macroscopic description
with a full solution of the microscopic dynamics. We here consider systems whose microscopic evolution
can be described by relativistic kinetic theory. We study the evolution of systems described by the rela-
tivistic Boltzmann equation with a relaxation-type collision term (RTA), parametrized by a relaxation time
τr = 5(η/s)/T where T is the temperature and η/s the specific shear viscosity of the corresponding hy-
drodynamic fluid. For highly symmetric flow patterns introduced by Bjorken [2] and Gubser [3] that share
qualitative features with those encountered in heavy-ion collisions, this equation can be solved exactly [4, 5].

As summarized in [6] (to which we refer for additional references), different types of macroscopic
hydrodynamic approximations of the Boltzmann equation can be obtained by splitting the single particle
phase-space distribution function f (x, p) into a leading-order contribution f0 parametrized by hydrodynamic
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variables and a (small) deviation δ f describing (residual) dissipative corrections, and then expanding δ f ei-
ther in gradients of the hydrodynamic parameters (Chapman-Enskog expansion, see e.g. [7–10] ) or in
momentum moments (moment expansion, see e.g. [11, 12]). The expansion is truncated at some order, and
the Boltzmann equation is used for the truncated δ f to derive approximate relaxation-type equations of mo-
tion for the macroscopic dissipative flows, expressed as momentum moments of δ f . After simplifying the
resulting hydrodynamic equations for Bjorken and Gubser symmetries their solutions can the be compared
with the hydrodynamic moments of the exact solution of the Boltzmann equation. Many such comparisons
have been reported recently; we here focus on third-order Chapman-Enskog (CE) expansion [9, 10] and
second-order anisotropic hydrodynamics (vaHydro) with PL-matching [13–16]. Additional results and ref-
erences to earlier similar comparisons using different hydrodynamic approximations can be found in [6, 17].

2. Hydrodynamic evolution equations

For massless systems, both Bjorken and Gubser symmetries restrict the dissipative flows to a single shear
stress component. We use Milne coordinates xµ = (τ, x, y, η) for Bjorken flow [2] while for Gubser flow
we work with de Sitter coordinates [3] x̂µ = (ρ, θ, φ, η) on a curved spacetime, formed by Weyl rescaling
of the flat Milne metric by τ−2. The coordinates are related by ρ = − sinh−1

[
(1−q2τ2+q2r2)/(2qτ)

]
and

θ = tan−1
[
(2qr)/(1+q2τ2−q2r2)

]
where 1/q is an arbitrary length scale. Quantities in de Sitter coordinates

are denoted by a hat and made unitless by scaling with appropriate powers of τ. For the independent shear
stress component we take π ≡ −τ2πηη in the Bjorken case and π̂ ≡ π̂ηη for Gubser flow.

1. Bjorken flow: A Chapman-Enskog expansion around local thermal equilibrium up to third order
in flow velocity gradients was performed for a conformal Boltzmann gas in [9]. For Bjorken flow the
corresponding equations for energy conservation and the relaxation of the shear stress reduce to [9]

dε
dτ

= −
1
τ

(
4
3
ε − π

)
,

dπ
dτ

= −
π

τπ
+

1
τ

(
4
3
βπ − λπ − χ

π2

βπ

)
, (1)

with transport coefficients τπ = τr, λ = 38/21, χ = 72/245, and βπ = 4P/5 where P = ε/3 is the pressure.
The local rest frame (LRF) entropy density has a non-equilibrium contribution, s = seq −

3β
8βπ
π2 −

15β
168β2

π
π3

where β = 1/T is the inverse temperature [10]. The LRF entropy current vanishes due to symmetry in
Bjorken flow (but not in general [10]).

In anisotropic hydrodynamics one expands around an ellipsoidally deformed local momentum dis-
tribution, f (x, p) ≡ fa(x, p) + δ f̃ (x, p), where fa is the Romatschke-Strickland (RS) distribution [18],
fa = exp

[
−βRS

√
pµpνΩµν

]
, with Ωµν(x) = uµ(x) uν(x) + ξ(x) lµ(x) lµ(x). The anisotropy parameter ξ is

obtained by Landau matching to the longitudinal pressure PL and, for Bjorken and Gubser symmetries, can
be uniquely related to the shear stress π resp. π̂ [16]. For Bjorken flow one then finds instead of (1) the
following modified evolution equation for the shear stress π:

dπ
dτ

= −
π

τπ
+

1
τ

(
25
12
βπ − λ

′π − IRS
240(π)

)
, (2)

where λ′ = 8/3 and IRS
240 is a thermodynamic integral over the RS distribution fa [15], with ξ expressed in

terms of π [16]. (The energy conservation law in (1) remains unchanged, of course.) The leading contribu-
tion sa to the entropy density is found to be sa(τ) = 4/

(
π2β3

RS

√
1+ξ

)
; the residual contribution to s from δ f̃

vanishes in the 14-moment approximation [17].
2. Gubser flow: For Gubser flow the energy conservation and shear relaxation equations from the

third-order Chapman-Enskog expansion reduce to [17]

dε̂
dρ

= −

(
8
3
ε̂ − π̂

)
tanh ρ,

dπ̂
dρ

= −
π̂

τ̂π
+ tanh ρ

(
4
3
β̂π − λ̂π̂ − χ̂

π̂2

β̂π

)
, (3)
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with τ̂π = τ̂r, λ̂= 46/21, χ̂= 72/245, and β̂π = 4P̂/5. The LRF entropy density is given by ŝ = ŝeq −
3 β̂
8 β̂π

π̂2 +

15 β̂
168 β̂2

π
π̂3, and the LRF entropy flux again vanishes by symmetry. – For anisotropic hydrodynamics the energy

conservation law is the same whereas the shear relaxation equation in (3) is modified to [16]

dπ̂
dρ

= −
π̂

τ̂π
+ tanh ρ

(
4
3
β̂π − λ̂aπ̂ − ÎRS

240(π̂)
)
. (4)

The integral ÎRS
240(π̂) is defined in [16]. The expression for the entropy density is the same as for Bjorken flow

above, with βRS replaced by the rescaled β̂RS.

3. Results: Time evolutions of shear stress and entropy in Bjorken and Gubser flows

We now show comparisons of the time evolutions of the shear stress and entropy computed from the
hydrodynamic equations in the preceding section with their exact evolutions from the exact solutions of
the Boltzmann equation for Bjorken [4] and Gubser flows [5] mentioned in the Introduction. In Figs. 1,
2, the upper (lower) rows show results for Bjorken (Gubser) flow. We use rescaled time variables w̃ ≡
τT (τ)/(4πη/s) = Kn−1 (where Kn = θ τr is the Knudsen number) for Bjorken and w̃ ≡ (4πη/s)(2 tanh ρ)/T̂ =

Kn for Gubser flow. For Bjorken flow the Knudsen number decreases at late times and the system ap-
proaches local thermal equilibrium: π/(ε+P) →

(
π/(ε+P)

)
NS = 1/(3πw̃). For Gubser flow, the Knudsen

number increases exponentially at late times, i.e. the system approaches free-streaming. Together these
two systems allow to test the validity of hydrodynamic approximations in two diametrically opposite limits.
The surprising observation from Fig. 1 is that anisotropic hydrodynamics describe the exact evolution of
the energy density [17] and shear stress (or, equivalently, the pressure anisotropy PL/PT ) extremely well in
both limits, i.e. even at early times in Bjorken flow (when the Knudsen number Kn and the inverse Reynolds
number Re−1 = π/P are large) and at late times for Gubser flow (when the system approaches free-streaming
and microscopic interactions cease). The 3rd-order Chapman-Enskog expansion performs almost equally
well for Bjorken flow but for Gubser flow it fails to reproduce the correct asymptotic free-streaming value

Hydrodynamic attractors: shear stress
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Fig. 1. Evolution
with scaling variable
w̃ (see text) of the
normalized shear
stress π/(ε+P) and the
pressure anisotropy
PL/PT in Bjorken
(panels a and b) and
Gubser flows (panels c
and d), for three values
of the specific shear
viscosity 4πη/s = 1, 3,
and 10. For Bjorken
flow we used thermal
equilibrium initial
conditions of tempera-
ture T0 = 300 MeV at
τ0 = 0.25 fm/c. Gubser
flow was initialized in
thermal equilibrium
with rescaled temper-
ature T̂0 = 0.002 at
ρ0 =−10.
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(a)

(b)

Fig. 2. Evolution with
scaling variable w̃ (see
text) of the entropy
content and normal-
ized entropy density
in Bjorken (panels a
and b) and Gubser
flows (panels c and d).
Same equilibrium ini-
tial conditions as in
Fig. 1.

π̂/(ε̂+P̂) = 0.5 at large de Sitter times. Note that at large de Sitter times neither the exact solution nor the two
hydrodynamic approximations follow the Navier-Stokes solution which diverges as

(
π/(ε+P)

)
NS = w̃/(6π).

In Fig. 2 we study the evolution of local entropy content and normalised entropy density. For isentropic
expansion the quantities sτ in Bjorken and ŝ cosh2 ρ in Gubser flow are constants of motion; in viscous
evolution they increase. For Bjorken flow the entropy eventually saturates but for Gubser flow it continues
to grow as the system moves further and further away from local equilibrium. At late times the normalised
entropy density approaches a common attractor, just like the normalized shear stress and pressure anisotropy
do in Fig. 1, albeit at somewhat larger values of the scaling variable w̃. However, for the entropy the late-time
attractors of the hydrodynamic approximations differ from that of the exact solution, more so for 3rd-order
CE than for anisotropic hydrodynamics.
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