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Abstract

We analyse the Weak Gravity Conjecture for chiral four-dimensional F-theory compac-
tifications with N = 1 supersymmetry. Extending our previous work on nearly tensionless
heterotic strings in six dimensions, we show that under certain assumptions a tower of
asymptotically massless states arises in the limit of vanishing coupling of a U(1) gauge
symmetry coupled to gravity. This tower contains super-extremal states whose charge-to-
mass ratios are larger than those of certain extremal dilatonic Reissner-Nordström black
holes, precisely as required by the Weak Gravity Conjecture. Unlike in six dimensions,
the tower of super-extremal states does not always populate a charge sub-lattice.

The main tool for our analysis is the elliptic genus of the emergent heterotic string in
the chiral N = 1 supersymmetric effective theories. This also governs situations where the
heterotic string is non-perturbative. We show how it can be computed in terms of BPS
invariants on elliptic four-folds, by making use of various dualities and mirror symmetry.
Compared to six dimensions, the geometry of the relevant elliptically fibered four-folds
is substantially richer than that of the three-folds, and we classify the possibilities for
obtaining critical, nearly tensionless heterotic strings. We find that the (quasi-)modular
properties of the elliptic genus crucially depend on the choice of flux background. Our
general results are illustrated in a detailed example.
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1 Introduction

It is one of the celebrated properties of string theory that it relates deep properties of quantum
gravity and field theory in dimensions lower than ten to the geometry of the space on which
the theory is compactified. Recently, various general conjectures about the structure of any
consistent theory of quantum gravity have attracted considerable interest of string theorists
and non-string theorists alike. String compactifications offer an outstanding opportunity to test
these conjectures and to uncover the mathematical structures of the compactification space to
which they point.

Among the earliest such conjectures is the Weak Gravity Conjecture (WGC) [1], which
asserts that in any gauge theory coupled to quantum gravity there should exist some set of
particles whose charge-to-mass ratio exceeds that of an extremal black hole. In various stronger
forms, the set of such particles must be an infinite tower of states, possibly even populating a
(sub-)lattice of the charge lattice [2–5]. The WGC is related to other conjectures, such as the
Swampland Distance Conjecture [6], further refined and investigated in [5, 7–13], in that the
infinite tower of particles in question becomes light at infinite distance in moduli space where
the gauge coupling asymptotes to zero [11,13–16]. In turn, this can be viewed as a microscopic
obstruction against the coexistence of a global symmetry [17–19] with quantum gravity. Related
versions of the WGC have potentially important consequences for large-field inflation as studied
e.g. in [12, 20–43] and many other aspects of high energy physics including [39,44–51].

Various general arguments have been put forward [5,52–60] to prove the WGC beyond the
original heuristic idea that extremal black holes should be able to decay. Direct evidence in
string compactifications with more than eight supercharges has been given in [1, 4].

In [13,14] we have started to quantitatively verify the WGC from the perspective of string
compactifications on non-trivial backgrounds with eight supercharges. In six-dimensional com-
pactifications of F-theory, the WGC can be proven to hold near the asymptotic weak coupling
point, with the crucial help of modularity of the underlying theory [13]. The tower of states
satisfying the conjecture indeed contains a sublattice of the charge lattice, as conjectured in [4].
As additional input from string theory, the rank of the sublattice is determined geometrically
in terms of the height-pairing of a rational section of an elliptic fibration. The states arise as
excitations of a solitonic string in F-theory, which becomes tensionless near the weak coup-
ling point. In that limit, the string is dual to the critical, weakly coupled heterotic string
compactified to six dimensions. The tower of excitations relevant for proving the WGC lies
in a subsector of the spectrum, which is encoded in an appropriately defined elliptic genus of
the string. This elliptic genus is in general a ratio of quasi-modular weak Jacobi forms, and
extends the classic perturbative results of [61] that are based on conformal field theory. Its
(quasi-)modular properties are the key to proving the WGC: A theta-function decomposition
yields directly the charge-to-mass ratio for a subset of the string excitations, which is in perfect
agreement with the charge-to-mass ratio of extremal dilatonic [3, 14] charged black holes. The
latter point also reflects the importance of taking into account the effect of scalar fields [8].

One aim in this paper is to extend our previous work to four-dimensional compactifications
with N = 1 supersymmetry. While at first similar, the four-dimensional theories turn out to
be substantially different compared to the six-dimensional ones, and this is why it is worth-
while to analyze them. A discussion of swampland conjectures in four-dimensional, N = 1
supersymmetric compactifications has recently been given, with different focus, in [62].

Specifically, we will consider compactifications of F-theory on elliptically fibered Calabi-
Yau four-folds, Y4, and identify solitonic strings that are obtained from D3-branes wrapping
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certain curves C0 in their base, B3. As we will show, such strings are guaranteed to become
asymptotically tensionless in the limit where the gauge coupling of a U(1) gauge group vanishes
(while the Planck mass is kept fixed). Under certain conditions, the curves C0 are rational with
trivial normal bundle; as a result, the solitonic strings correspond to critical heterotic strings,
now compactified to four dimensions. One of our goals is to show that a subsector of their
excitations, namely the one which is counted by the elliptic genus, indeed satisfies the Weak
Gravity Conjecture.

In view of the special role played by modularity in six dimensions, our first task is therefore
to analyze the modular properties of the elliptic genus of this kind of four-dimensional, critical
heterotic strings. Concretely, as compared to six dimensions, the four-dimensional compacti-
fications we consider have the following special features:

1. A non-trivial background flux is necessary to obtain a chiral four-dimensional, N = 1
supersymmetric effective theory with non-vanishing elliptic genus. The possible fluxes
are constrained by the requirement that the theory can be uplifted from two to four
dimensions, and also by certain quantization and supersymmetry conditions.

2. The elliptic genus is proportional to TrQ, and so it can be non-vanishing only in theories
with an “anomalous” U(1) gauge group. For perturbative heterotic strings based on
conformal field theory, it must be a Jacobi modular form, ϕw,m, of weight w = −1 and
of some integral index m ≥ 2 (which depends on the model). For a more general, non-
perturbative effective string arising from F-theory, the modular properties of the elliptic
genus crucially depend on the flux, potentially rendering it quasi-modular or worse.

3. The fluxes induce a D-term potential, which may obstruct the weak coupling limit. A
special subset of those fluxes which do not lead to such an obstruction are the ones
which lead to a modular or quasi-modular elliptic genus. Viewed from a heterotic duality
frame, this means that the D-term potential is generated at one-loop only and hence
automatically vanishes in the weak coupling limit. Moreover, if the D-term is independent
of NS5-brane moduli [63, 64], the heterotic string becomes perturbative and hence its
elliptic genus is fully modular as opposed to only quasi-modular. A tree-level involvement
of the Kähler moduli in the D-term, by contrast, leads to severe distortions of modularity.

4. An important property of odd weight Jacobi forms is that they are anti-symmetric in
the fugacity parameter (i.e., the U(1) field strength). As a consequence, their theta-
expansion leads to certain gaps in the charge spectrum. Thus, for the special subset of
(quasi-)modular fluxes, the super-extremal states do not form a charge sublattice, at least
as far as their index is concerned, while they still form an infinite tower. On the other
hand, for generic non-modular fluxes, for which the elliptic genus is not a weak Jacobi
form, we expect these gaps to disappear, and we have verified this in examples. Despite
this fact, the super-extremal states generically continue not to form a charge sublattice
(though there can be exceptions).

The actual computation of the elliptic genus proceeds by exploiting the duality between F-
theory on a circle and M-theory. This is similar to the logic for six-dimensional compactifications
of F-theory [65–67]. Indeed also in four dimensions the (non-BPS) excitations of the string
relate to BPS particles that appear when the theory is reduced on S1. This theory in three
dimensions is dual to M-theory compactified on Y4, and here the BPS particles arise from M2-
branes wrapping 2-cycles in the four-fold Y4. Counting (non-BPS) string excitations in four
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dimensions is therefore equivalent to counting the BPS invariants of these 2-cycles in three
dimensions. Note that these invariants do crucially depend on the background four-flux, which
is the main new feature in going from six to four dimensions. This computation is performed
with the help of mirror symmetry, by considering Type IIA string theory on Y4 in the presence
of fluxes, and determining the flux-induced free energy of the two-dimensional effective theory.
The BPS invariants can then be inferred from the instanton expansion of this free energy.

While the first part of this article is concerned with investigating the modular properties of
the elliptic genus of a heterotic string that arises from F-theory, we will subsequently make the
connection between this string and the Weak Gravity Conjecture in the four-dimensional N = 1
supersymmetric field theory. Despite similarities to the six-dimensional analysis in [13, 14], we
will find a number of important differences:

1. There are two qualitatively different ways to take the weak coupling limit of a gauge theory
in four-dimensional F-theory in the presence of gravity. In the first type, a heterotic string
becomes asymptotically tensionless and weakly coupled, similar to the six-dimensional
situation. We are able to prove that it contains an infinite tower of states which satisfy
the super-extremality condition with respect to certain charged dilatonic black holes.

2. The second type of limit is guaranteed to contain a classically asymptotically tensionless
string, which in general need not be a heterotic string because it arises from a D3-brane
on a curve which can have a positive normal bundle. This phenomenon has no analogue
in six dimensions. Analysing this type of string is harder, because it is a priori not clear
if it is weakly coupled. Nevertheless, at the level of classical geometry, the tensionless
string leads to a breakdown of the effective field theory as we approach the limit at
infinite distance where the gauge coupling vanishes. Since this is what is required by the
swampland conjectures, it is therefore natural to speculate that this behaviour persists
upon taking into account quantum corrections to the volume of the wrapped curve.

3. The U(1) gauge field acquires a Stückelberg mass via the Green-Schwarz anomaly cancel-
ling term, SGS ∼

∫
B ∧ F , which is related by supersymmetry to the D-term [68]. Both

terms necessarily appear at one-loop order, if the elliptic genus is (quasi-)modular and
non-zero. In this case the Stückelberg mass is parametrically smaller than the Kaluza-
Klein scale in the asymptotic weak coupling limit, and for the purpose of discussing the
Weak Gravity Conjecture, we can consider the U(1) gauge field as effectively being mass-
less. On the other hand, for generic non-modular fluxes, no such suppression occurs, and
the Stückelberg mass and D-terms may appear already at tree level. The presence of an
unsuppressed Stückelberg mass for the U(1) gauge field makes the interpretation of the
Weak Gravity Conjecture bound particularly interesting.

This article is structured as follows: In Section 2.1 we give an overview of fluxes and mirror
symmetry pertinent to this discussion, followed by a recapitulation of the modular properties
of the four-dimensional elliptic genus in Section 2.2. In Section 3, we describe in more detail
the solitonic strings that arise in four-dimensional F-theory, which are dual to critical heterotic
strings. In particular, we will motivate the relation between their elliptic genera and the flux-
dependent Gromov-Witten invariants. In Section 4, we discuss the constraints on U(1) fluxes
in order for the elliptic genus to be modular or quasi-modular. These conditions are first
analysed from the F-theory perspective and then translated to the heterotic duality frame. We
present a detailed example encompassing these aspects of fluxes versus modularity in Section
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5. The relation to the Weak Gravity Conjecture is analysed in Section 6: After showing that –
modulo the caveats above – the weak coupling limit gives rise to an asymptotically tensionless,
critical heterotic string, we use the (quasi-)modularity properties of its elliptic genus to prove
the Weak Gravity Conjecture whenever a limit of this type is available. We then analyze the
parametric behaviour of the Stückbelberg mass for the U(1) gauge field for different types
of gauge fluxes. In the interest of readability, many technical details and further illustrative
examples are relegated to appendices. We conclude with a discussion of open questions in
Section 7.

2 From mirror symmetry to the elliptic genus

We consider F-theory compactified on an elliptically fibered Calabi-Yau 4-fold Y4, whose base
space we denote by B3. As is well-known, this leads to a theory in four dimensions with N = 1
supersymmetry; some aspects of this theory that are most relevant to our discussion will be re-
viewed in Section 3.1. Upon an additional compactification on a circle, the theory becomes dual
to M-theory compactified on the same Y4. A further circle compactification relates this to Type
IIA string theory compactified on Y4, which yields N = (2, 2) supersymmetry in two dimensions:

F-theory on

R1,1 × S1
A × S1

B × Y4

←→
M-theory on

R1,1 × S1
B × Y4

←→ Type IIA theory on

R1,1 × Y4

Our primary goal is to compute the elliptic genus of a certain solitonic string in the four-
dimensional F-theory compactification. The string arises from a D3-brane wrapping a distin-
guished curve in the base space B3, and can be interpreted as a critical heterotic string in four
dimensions. More details on the solitonic string and its interpretation as a heterotic string will
be given in Section 3.2. The elliptic genus represents a certain index of (non-BPS) excitations
of this four-dimensional string. Via the chain of dualities depicted above, the index-like mul-
tiplicities of these (non-BPS) string excitations can be mapped to certain BPS invariants of
the two-dimensional theory shown on the right. These can in turn be computed via mirror
symmetry of the Type IIA string compactification [69].

In the next section, we will informally introduce the objects that are relevant for this
application of two-dimensional mirror symmetry. Subsequently we will introduce the elliptic
genus in a similar vein.

2.1 Mirror symmetry with fluxes and the free energy

As is well-known [70–73], in order to fully define the four-dimensional F-theory (or two-
dimensional Type IIA) compactification on Y4, we must specify a background four-form flux,
G ∈ H4(Y4), in addition to the geometry of the elliptic fibration. In the sequel it is always
assumed that such a flux has been activated. Many properties of the effective theory will de-
pend on the choice of flux, in particular whether the theory is chiral and/or supersymmertry is
broken. The structure of H4(Y4) is quite intricate, and in particular the piece that is relevant
to us splits into a horizontal and a vertical part [69],1

H2,2(Y4) = H2,2
hor(Y4)⊕H2,2

vert(Y4) , (2.1)

1There may be a further part that is neither horizontal nor vertical [74], but this is not important for our
purposes.
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which exchange under mirror symmetry. A given horizontal flux G
(i)
hor ∈ H

2,2
hor(Y4), i = 1, ..., h2,2

hor,
generates a superpotential [73]

F (i)(α) =

∫
G

(i)
hor ∧ Ω4,0(α) (2.2)

both from the perspective of the four-dimensional F-theory and the two-dimensional Type IIA
theory. As indicated the superpotential is a function of the complex structure moduli, α, of
Y4, and the generation of such flux-induced potentials has been extensively discussed in the
literature (see e.g. [71–86]).

In this paper we will be interested in different fluxes, namely in vertical fluxes

G
(j)
vert ∈ H

2,2
vert(Y4), j = 1, ..., h2,2

vert . (2.3)

More precisely, we will focus on vertical fluxes that are associated with extra U(1) factors in
the four-dimensional F-theory, and accordingly we split

H2,2
vert(Y4) = H2,2

vert,0(Y4)⊕ H̃2,2
vert,U(1)(Y4) . (2.4)

While both types of vertical fluxes can be switched on for compactification of Type IIA string
theory on Y4, only the second component of H2,2

vert(Y4) can be lifted to four-dimensional F-
theory, where it leads to a chiral spectrum and an anomalous U(1) gauge symmetry. This will
be reviewed in more detail in Section 3.1. Moreover we can always choose an integral basis of
H2,2

vert(Y4) such that the intersection metric takes the following symmetric, block diagonal form

η =

 ∗
∗

∗

 , (2.5)

which matches the splitting (2.4). That is, H̃2,2
vert,U(1)(Y4) is equipped with a non-vanishing

self-intersection form, while H2,2
vert,0(Y4) splits into further pieces that have an off-diagonal inter-

section form. The significance of this basis will be that it corresponds to an eigenbasis under
modular transformations. This was first observed in [87, 88] for fluxes in H2,2

vert,0(Y4), while the

use of fluxes in H̃2,2
vert,U(1)(Y4) has not been considered in the context of mirror symmetry before.

As indicated at the beginning of this section, one of the goals in this paper is to investigate
the elliptic genus of a heterotic string in a chiral four-dimensional, N = 1 supersymmetric
F-theory compactification in the presence of U(1) fluxes

Gj ≡ G
(j)
vert,U(1) ∈ H̃

2,2
vert,U(1)(Y4) . (2.6)

The multiplicities of string excitations that contribute to the elliptic genus are encoded in a
family of free energies, FGj(t), which are labelled by these fluxes. In terms of the flat Kähler
moduli and their exponentials

ta, a = 1, .., h1,1(Y4) , qa ≡ e2πita , (2.7)

any such flux-induced free energy has the following generic instanton expansion:

F (j)(t) := FGj(t) =
∑
~β>0

N
(j)
~β

Li2(q
~β) , j = 1, ..., h̃2,2

vert,U(1) . (2.8)
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Here N
(j)
~β

denote the four-fold generalization [89] of the integral Gopakumar-Vafa [90,91] invari-

ants, and the sum is over all effective classes, ~β = βaCa, where Ca denotes some basis of H2(Y4).

Furthermore q
~β ≡ qβ

1

1 ...qβ
h1,1

h1,1 encodes the multi-degree of the respective curve wrappings. In
(2.8) we have omitted possible classical terms which are polynomial in ta. The fundamental
correlation functions of the two-dimensional N = (2, 2) supersymmetric theory are then given
by [71,72]

Cjab(t) = ∂ta∂tbF (j)(t). (2.9)

Importantly, the free energy F (j)(t) is the the A-model mirror of the flux superpotential (2.2),
and can hence be computed by use of mirror symmetry, now applied to Type II strings compac-
tified on Calabi-Yau four-folds [69]. For the U(1) fluxes Gj we consider, the primary physical
interpretation of the free energy (2.8) is therefore as a superpotential of the two-dimensional
Type IIA string compactification on the mirror, X4, of Y4, and not as a superpotential in four
dimensions. The four-dimensional precursors, or F-theory uplifts, of the potentials F (j)(t) are
the moduli independent Green-Schwarz anomaly cancelling terms, B ∧ F (j), and their super-
symmetric partners, the Fayet-Iliopoulos D-terms, D(j). This is why such two-dimensional
prepotentials were dubbed Fayet-Iliopoulos potentials in [75].

The relevance of F (j)(t) in the context of obtaining the elliptic genus is as follows: The
family of free energies F (j)(t), labelled by U(1) fluxes Gj, is the two-dimensional analog of
the familiar free energy, or prepotential, F(t) of four-dimensional compatifications with N = 2
supersymmetry. All these free energies represent BPS saturated threshold corrections (see e.g.
[92]) whose dependence on continuous moduli arises from T 2 compactifications of chiral theories
in two dimensions higher. In the present context the free energies play the role of partition
functions of nearly tensionless heterotic strings that emerge in certain infinite distance limits
in the moduli space of F-theory compactifications. These are exactly the solitonic heterotic
strings referred to at the beginning of this section.

For six-dimensional heterotic strings which arise in F-theory compactifications, this has
been discussed in ref. [13, 14]. When these strings are wrapped on S1 or T 2, they yield BPS
particles in five or four dimensions, and their appropriately defined partition function Z(t) can
be computed via mirror symmetry in terms of the BPS invariants encoded in F(t) [65–67,93].
By reinterpreting the modular parameter of T 2 in terms the toroidal world-sheet of a string,
this partition function gains a dual interpretation as the elliptic genus of a six-dimensional
heterotic string compactification. Note that in the chiral six-dimensional theory, there is neither
a prepotential F(t), nor a concept of BPS particles, and thus the elliptic genus does not encode
BPS quantities, but rather a certain sub-spectrum of non-BPS particles. This has been analyzed
in [13,14] in the context of Weak Gravity Conjectures.

Our goal is to apply an analgous logic in two dimensions lower, where we deal with the free
energies F (j)(t) in two dimensions and their F-theory uplifts to chiral, anomalous U(1) theories
in four dimensions. We will find an analogous relation between the invariants encoded in the
flux-induced free energies F (j)(t) and partition functions of certain emergent nearly tensionless
heterotic strings, which are given by elliptic genera.

2.2 General properties of the 4d elliptic genus

Let us now elucidate the relation between the free energies F (j)(t) and the elliptic genus of
the four-dimensional heterotic string arising in F-theory in more detail. The elliptic genus is
defined by taking the string world-sheet to be a torus T 2 and performing the weighted trace
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over the Ramond sector of its excitations:

Z(τ, z) = TrR(−1)FFqHL q̄HRe2πizQ . (2.10)

Here q = e2πiτ and τ is the modular parameter of the world-sheet torus T 2, while z is an
elliptic parameter which takes account of the refinement by weighting the excitations with
their U(1) charges; moreover Q denotes the generator of this symmetry. The elliptic genus has
an expansion

Z(τ, z) = qE0

∑
n≥0,r∈Z

N(n, r)qnξr , (2.11)

where ξ = e2πiz. The prefactor, qE0 , reflects the zero-point energy [94, 95] and depends on the
particular geometry.

Recall that one of the most important properties of the elliptic genus is its behavior under
modular transformations. Specifically, it is known [61,96] that for perturbative chiral heterotic
strings in d = 2p + 2 dimensions, which are based on conformal field theory, the elliptic genus
must be a meromorphic modular form of weight w = −p, and E0 = −1.

On the other hand, if we consider a heterotic string as a solitonic string within F-theory,
it is a priori not clear to what extent this property should hold if the heterotic string is non-
perturbative. We will discuss this issue in the sequel, in particular in Section 4.2.

For the current section, we assume that the elliptic genus as defined in (2.10) has the usual
modular properties as they apply to the perturbative heterotic string. This implies that in
the presence of some U(1) background gauge field,2 it turns into a meromorphic Jacobi form
ϕw,m(τ, z) of weight w = −p and some fugacity index m. Recall [97,98] that such Jacobi forms
behave under the modular transformations as shown in eq. (A.1). The fugacity parameter z
plays the role of the U(1) field strength, and the associated fugacity index, m, is model de-
pendent. By standard arguments [94, 99–101], it can be identified with the parameter m that
enters the ’t Hooft anomaly polynomial I4(G) of the string world-sheet theory, which will be
given in eq. (3.24). This implies that m is always a positive integer in the present context.

For a heterotic string in four dimensions, the elliptic genus must thus have weight w = −1.
The (potential) pole due to q−1 indicates that Z(τ, z) is (possibly) a meromorphic Jacobi
form, and modularity suggests that Z(τ, z) should contain a factor η−24(τ), where η(τ) is the
Dedekind eta-function; physically this reflects, of course, the oscillator partition function in the
left-moving sector. Since η2(τ) transforms with weight w = 1 under the modular group, one
concludes that

Z(τ, z) = η−24(τ)Φ−11,m(τ, z) , (2.12)

where Φ−11,m(τ, z) is some unspecified weak Jacobi form of indicated weight and index. This
means that it must be expressable as a polynomial of the given weight and index in the gener-
ators of the ring of weak Jacobi forms, which (for integer m) we may take to be [97]

R =
{
E4(τ), E6(τ), ϕ−1,2(τ, z), ϕ−2,1(τ, z), ϕ0,1(τ, z)

}
. (2.13)

Here E4, E6 are the familiar Eisenstein series and ϕw,m certain weak Jacobi forms of weight w
and index m that are defined in Appendix A.

2For more general, possibly non-abelian gauge fields one encounters certain Weyl invariant generalizations
but these are not of present interest.
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Note that Jacobi forms Φ±w,m of even or odd weight are symmetric or antisymmetric in z,
respectively. This is mirrored by their theta-expansion [97,102], which can be written as

Φ±w,m(τ, z) =
∑

`∈Zmodm

h`(τ)Θ±m,`(τ, z) , (2.14)

Θ±m,`(τ, z) := Θm,`(τ, z)±Θm,−`(τ, z) ,

Θm,`(τ, z) :=
∑
k∈Z

q(`+2mk)2/4mξ`+2mk .

Here the coefficients, h`(τ), are unspecified vector-valued modular forms of weight w − 1/2,
whose precise form is not important to us.

The four-dimensional elliptic genus is therefore proportional to z times an even function
of z. This reflects the fact that it vanishes if there is no anomalous U(1) gauge symmetry
present. Since the ring of weak Jacobi forms, as shown in (2.13), has only one generator of odd
weight and integer index, it follows that Φ−11,m = ϕ−1,2Φ+

12,m−2. Moreover, the constant term of
Φ−11,m(τ, z) vanishes by anti-symmetry. This suggests the latter to be a cusp form, and indeed
one can prove ([97], p. 110), that this is necessarily the case at least for m < 9. Under this
condition the Dedekind η function cancels out so that we can simplify (2.12) as

Z(τ, z) = ϕ−1,2(τ, z) Φ+
0,m−2(τ, z) . (2.15)

It follows that for m = 1 the elliptic genus vanishes identically and for m = 2 it is unique, up
to normalization.

A related consequence of the theta expansion (2.14) of an odd weight Jacobi form is that
all dependence on ξ is in terms of (ξr − ξ−r), and moreover that all powers for r = km cancel
for k ∈ Z. Therefore there are gaps in the charge spectrum, at least as far as its contribution
to the elliptic genus is concerned. This property of the elliptic genus will be derived in more
detail in Section 6.3.

One of our main tasks in this paper is to determine the elliptic genus (2.10) of certain
four-dimensional, chiral N = 1 supersymmetric heterotic strings geometrically from F-theory
via mirror symmetry. As will be explained in more detail in Section 3, this essentially boils
down to equating (2.11) with certain flux-induced free energies (2.8). In this way the modular
properties of the elliptic genus are inherited from the geometry of the elliptic fibration of the
compactification manifold, Y4.

This by itself is analogous to what has been done in six dimensions [65–67], where the
modular geometry of elliptic three-folds [103–105] becomes important. However, we will see
that the situation is much more complicated than in six dimensions. Indeed a crucial new
ingredient is the choice of fluxes, which control the chiral spectrum, supersymmetry breaking,
and non-perturbative sectors. As it will turn out, only in favorable circumstances (e.g., for the
perturbative heterotic string) will we obtain potentials with ‘good’ modular modular properties.
See Section 4 for details.

At this point we may ask in which way Jacobi forms of weight w = −1 can possibly pop
out from elliptic four-fold geometries. Modular properties of correlators on elliptic four-folds
have been initially discussed in ref. [87] and extended in ref. [88]. The upshot there was that
four-point correlators are modular forms of weight −2. Now four-point correlators are not
fundamental but rather factorize into the three-point functions (2.9) as [71,72]

Cabcd(τ) = Cjab(τ)(η−1)jkCkcd(τ) = Cjac(τ)(η−1)jkCkbd(τ) , (2.16)
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where η denotes the intersection form (2.5) on H2,2
vert(Y4). Obviously a weight −2 modular form

can be obtained by pairing a weight 0 with a weight −2 form. This is what happens for the
example discussed in ref. [88], where it was shown how a modular eigenbasis of H2,2

vert,0(Y4) can
be chosen such as to realize the off-diagonal part of the intersection form (2.5).

On the other hand, we have argued that in chiral four-dimensional theores the elliptic genus
must have weight equal to −1, so we need to pair two copies if we want to obtain a total
modular weight −2. This implies that the relevant part of the 4-cohomology must have a
non-vanishing intersection pairing between weight −1 modular forms, which corresponds to the
block-diagonal part in η as shown in (2.5). As we will see below, this is a feature of precisely

the fluxes in H̃2,2
vert,U(1)(Y4) that we consider.

3 Elliptic genera from four-folds with flux

We now explain in more detail the relation between the elliptic genus of a four-dimensional
solitonic heterotic string in F-theory, and the BPS invariants of the underlying elliptic four-
fold Y4 equipped with some chirality generating U(1) flux. We set the stage in section 3.1 by
reviewing elements of F-theory of Y4 pertinent to this discussion. The expert reader may wish
to jump directly to section 3.2, where we introduce the heterotic string we are interested in.
The relation between the index-like multiplicities of its excitations and flux-dependent BPS
invariants will be explained in section 3.3. This discussion will include a new interpretation
to the chiral index of massless charged matter in F-theory in terms of certain Gromov-Witten
invariants on Y4.

3.1 Geometric setup and U(1) fluxes

A four-dimensional, N = 1 supersymmetric F-theory compactification can be thought of as
non-perturbative Type IIB string theory compactified on a positively curved Kähler 3-fold, B3,
in the presence of 7-branes. This data is encoded in the geometry of a Calabi-Yau four-fold Y4

which admits an elliptic fibration

π : Eτ → Y4

↓
B3 , (3.1)

and which serves as the compactification space of a formal twelve-dimensional F-theory. A
well-known duality relates the four-dimensional F-theory compactification on Y4 to a three-
dimensional theory with N = 2 supersymmetry, which is obtained by compactifying eleven-
dimensional M-theory on the same Y4:

F-theory on R1,2 × S1
A × Y4 ←→ M-theory on R1,2 × Y4 . (3.2)

The three-dimensional M-theory reduction is related upon further circle compactification to
Type IIA theory on Y4, which is the natural framework for studying mirror symmetry as
outlined in the previous section.

Of special importance to us are the abelian gauge symmetries that appear in the three-
dimensional M-theory action, and their counterpart in the dual F-theory.3 Given any element

3Many more details can be found e.g in the recent reviews [106, 107], to which we also refer for the original
references.
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w ∈ H1,1(Y4) we can expand the eleven-dimensional M-theory 3-form C3 as

C3 = A3d ∧ w + . . . . (3.3)

This yields a three-dimensional gauge potential A3d, and we will encounter three types of such
gauge symmetries. The first is the Kaluza-Klein U(1)KK symmetry in the three-dimensional
M-theory effective action which arises by reduction of the four-dimensional F-theory along S1

A.
Every elliptic fibration has a zero-section S0, which defines a divisor in H1,1(Y4), and the gauge
potential Ã3d obtained from it via

C3 = Ã3d ∧ S̃0 + . . . , S̃0 = S0 +
1

2
π−1K̄ , (3.4)

describes exactly this KK U(1) [108]. Here K̄ is the anti-canonical class of B3. This symmetry
becomes part of the four-dimensional metric in F-theory.

Second, taking w = π−1(Db
k), where Db

k form a basis of H1,1(B3), gives rise to a set of gauge
potentials Ak3d which map to 2-form gauge potentials in F-theory: The gauge fields Ak3d arise
from the expansion of the Type IIB 4-form C4 = Ck

2 ∧Db
k , by reducing the 2-forms Ck

2 on S1
A.

Third, there can be additional abelian gauge symmetries in the four-dimensional F-theory,
which are encoded in extra sections of Y4 besides the zero section S0.4 For ease of presentation
we focus on situations with a single such extra abelian gauge group, associated with some
rational section S. This can easily be generalized to more complicated configurations. A basis
of the cohomology group H1,1(Y4) is then spanned by the independent sections S0, S and the
pullback divisors π−1Db

k ,
H1,1(Y4) = 〈S0, S, π

−1Db
k〉 . (3.5)

The extra abelian gauge potential is obtained by expanding the 3-form as C3 = AS3d∧σ(S)+ . . ..
Here, the Shioda map σ(S) associates to the section S the following linear combination of
divisors5

σ(S) = S − S0 − π−1π∗(S ◦ S0) ∈ H1,1(Y4) . (3.6)

The specific properties of the divisor σ(S) imply that AS3d uplifts, under F/M-theory duality,
to an abelian gauge potential in the four-dimensional effective action. It can be interpreted as
a U(1) gauge symmetry that arises from a 7-brane which wraps a 4-cycle in B3. The properties
responsible for this are the transversality conditions

σ(S) ◦C = 0 , σ(S) ◦ Eτ = 0 , (3.7)

where the first condition holds for every curve C in the base. An equivalent way of putting
this is that

σ(S) ◦ S0 ◦ π−1Db
i ◦ π−1Db

j = 0 , σ(S) ◦ π−1Db
i ◦ π−1Db

j ◦ π−1Db
k = 0 . (3.8)

In presence of an extra section (assuming that all fibral singularities have been resolved)
the fiber Eτ typically splits into two fibral components over various curves on the base B3.
Depending on the details of the fibration, different splitting patterns may occur over different
curves Cr on B3,

π−1(p)→ Cf
r + Cf′

r , p ∈ Cr ⊂ B3 , (3.9)

4In addition, non-abelian gauge groups can be broken to their Cartan U(1)’s by gauge fluxes, but we do not
consider these here.

5We distinguish the intersection pairings within the rings H∗,∗(Y4) and H∗,∗(B3) by denoting them by the
two symbols, ◦ and · , respectively. Integration of a top form over the space is understood.
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with the property that6

σ(S) ◦ Cf
r = r , S0 ◦ Cf

r = 0 ;
σ(S) ◦ Cf′

r = −r , S0 ◦ Cf′
r = 1 .

(3.10)

The second line follows in fact from the first and the transversality condition 0 = σ(S) ·Eτ =
σ(S) · (Cf

r + Cf′
r ). Note that in homology, Cf

r = r Cf
r=1.

Therefore, M2-branes wrapping holomorphic curves in the class

Γ0(n, r) := nEτ + r Cf
r=1 (3.11)

give rise to chiral multiplets in the three-dimensional effective action, with U(1) charge q = r
and U(1)KK charge n. They become massless in the F-theory limit where the fiber volume
shrinks to zero. These states represent the familiar KK tower that arises from a massless
charged particle in the four-dimensional F-theory effective action, upon circle reduction to
M-theory.

An important geometrical quantity in studying the U(1) gauge theory is the height-pairing

b = −π∗(σ(S) ◦ σ(S)) , (3.12)

which is a divisor on B3. In particular, the U(1) gauge coupling is related to the Kähler volume
of b. Indeed the four-dimensional effective action contains the terms

S =
M2

Pl

2

∫ √
−g R +

1

4g2
YM

∫
FµνF

µν , (3.13)

where

M2
Pl = 4π vol(B3) ,

1

g2
YM

=
1

2π
vol(S) , S = b . (3.14)

This is in conventions where the Type IIB string length is fixed and given by `s = 2π
√
α ≡ 1.

Gauge fluxes associated with U(1) gauge groups have a convenient description in M-theory
language in terms of 4-form fluxes G ∈ H̃2,2

vert,U(1)(Y4) as

G = F ◦ σ(S) , F = π−1(F b) , (3.15)

for some 2-form F b ∈ H1,1(B3). By definition these fluxes lie in the subspace H̃2,2
vert,U(1)(Y4) of

H2,2
vert(Y4) which was introduced in (2.4). As a result of (3.8), they satisfy the orthogonality

conditions
G ◦ S0 ◦ π−1Db

i = 0 , G ◦ π−1Db
i ◦ π−1Db

j = 0 . (3.16)

Since the 4-forms of type S0 ◦ π−1Db
i and π−1Db

i ◦ π−1Db
j span H2,2

vert,0(Y4), this leads to an
intersection metric η of the form eq. (2.5).

Vertical gauge fluxes of this sort affect the effective action in several important and inter-
related ways: First, they are responsible for the appearance of net chirality in the spectrum
of massless charged four-dimensional N = 1 chiral multiplets. Fibering the curve Cf

r over Cr
gives rise to a matter surface Sr, whose class likewise lies in H̃2,2

vert,U(1) and which therefore has

6The split into fiber components with these properties is always guaranteed at the level of cycles.
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a non-zero intersection product with the U(1) flux G. The chiral index of massless matter of
charge r in the F-theory action is thus given by the overlap [82–84,109,110]

χr =

∫
Sr

G = r

∫
Cr

F b . (3.17)

As a new observation, we will identify in Section 3.3 this quantity as nothing else than the
lowest degree, genus-zero Gromov-Witten invariants of the fibral curve, in the presence of the
flux G; see eq. (3.44).

Due to the induced net chirality, the abelian gauge symmetry generically exhibits both an
abelian cubic and a mixed abelian-gravitational anomaly at one loop order, which in turn are
cancelled by the Green-Schwarz mechanism. The anomaly cancellation relations involve the
height-pairing and take the form [111]∑

r

χr r
3 = 3G ◦ π−1(b) ◦ π−1(b) , (3.18)∑

r

χr r = 6G ◦ π−1(b) ◦ π−1(K̄) .

Relatedly, the G flux potentially induces a D-term in the effective action proportional to

ζ = J · F b · b , (3.19)

and this has to vanish in a supersymmetric vacuum with unbroken U(1) gauge symmetry. More
precisely, a solution to ζ = 0 for non-zero base Kähler moduli must exist in the closure of the
Kähler cone of the base B3. As a result of the D-term potential, the gauge field acquires
a Stückelberg mass, at a scale below which the symmetry is realized as an effective global
symmetry in the effective action. It may be further broken to a discrete subgroup, Zk, by
D3-brane instanton effects [112–114]. We will return to discussing Stückelberg mass terns for
the U(1) gauge fields later in Section 6.4.

Note that in a globally consistent vacuum the flux background must satisfy the Freed-Witten
quantization condition [70]

G+
1

2
c2(Y4) ∈ H4(Y4,Z) , (3.20)

and furthermore it is constrained by the D3-brane tadpole condition

1

2
G ◦G+ nD3 =

1

24
χ(Y4) . (3.21)

Here nD3 is the number of spacetime-filling D3-branes in F-theory and χ(Y4) denotes the Euler
characteristic of Y4. Requiring that no anti-D3-branes are present translates into demanding
that nD3 ≥ 0.

3.2 Quasi-perturbative heterotic strings from wrapped D3-branes

Our goal is to compute the elliptic genus of a specific, well-controlled solitonic string in the
extended dimensions R1,3. In F-theory, this string is obtained by wrapping a D3-brane along a
holomorphic curve Cβ inside the base B3. Such a curve defines a “base curve” class

Cβ = S0 ◦ π−1(Cβ) ⊂ Y4 . (3.22)
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While string-like BPS objects do not exist in a four-dimensional theory with only N = 1
supersymmetry, the effective theory on the string world-sheet can nonetheless be described by
a chiral 2d N = (0, 2) supersymmetric theory. For a single wrapped D3-brane, this world-sheet
theory is found [115] by dimensionally reducing the abelian N = 4 gauge theory theory along
the D3-brane on Cβ with the help of a topological duality twist [116] along Cβ.

The zero mode structure of the effective string has been analyzed in detail in [115] and is
summarized in Table 3.1. All N = (0, 2) supersymmetry multiplets except the ones in the last
row originate in the N = 4 gauge multiplet along the D3-brane. Their fermionic fields transform
as spinors with respect to the structure group SO(2)T of the normal bundle in the two extended
directions transverse to the string in R1,3. The Fermi multiplets λ− in the last row represent
the zero-mode excitations of fundamental 3-7 strings localised at the pointlike intersection of
Cβ with the 7-branes in the F-theory background. These zero modes are SO(2)T singlets, but
charged under the 7-brane gauge group G, which in our case is taken to be G = U(1). The
7-brane gauge symmetry hence acts as a global or flavour symmetry from the perspective of
the string world-sheet.

An important quantity of the string is the ’t Hooft anomaly polynomial, I4. It encodes the
structure of the two-dimensional anomalies of the global symmetries SO(2)T and G = U(1),
under which the world-sheet fields are charged. It takes the form [115]

I4 = −1

2
trF 2

T

(
−1

4
K̄ · Cβ

)
− 1

4
p1(R)

(
K̄ · Cβ

)
+ I4(G) , (3.23)

where the second term encodes the gravitational anomaly along the string and I4(G) refers to
the ’t Hooft anomaly for the global G = U(1) group inherited from the 7-brane gauge symmetry.
Extrapolating the results [117] for analogous world-sheet theories from D3-branes wrapped on
curves in Calabi-Yau 5-folds, the U(1) anomaly polynomial must take the form

I4(G) = −1

2
m trF 2

U(1) , (3.24)

with

m =
1

2
b · Cβ = −1

2
π∗(σ(S) ◦ σ(S)) · Cβ . (3.25)

Moreover, the gravitational anomaly is related to the net zero-point energy given by

E0 = −1

2
Cβ · K̄ , (3.26)

which arises from Casimir forces on the string [94,95].
Our prime interest in this work is in a special type of solitonic strings, namely ones which

can be interpreted in terms of weakly coupled, critical heterotic strings compactified to four
dimensions. At the level of world-sheet fields, any such string must have the familiar 8 right-
moving scalars plus fermionic partners, 8 left-moving scalars with no fermionic partners and in
addition 16 left-moving fermions. In view of Table 3.1, this spectrum can only be obtained for
Cβ a rational curve with Cβ · K̄ = 2 and normal bundle either NCβ = OCβ(1) ⊕ OCβ(−1) or
NCβ = OCβ(0)⊕OCβ(0).

For the solitonic string that arises from a D3-brane wrapped on Cβ to be a critical string,
it must contain the massless graviton in its spectrum - at least in the asymptotically weakly
coupled limit: In this regime it defines the duality frame of the fundamental heterotic string.
This condition rules out a curve Cβ with normal bundle NCβ = OCβ(1)⊕OCβ(−1): Such a Cβ
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Fermions Bosons (0,2) Multiplet Multiplicity Multiplicity Cβ = C0

µ+ ϕ Chiral h0(Cβ, NCβ/B3) 2

ψ̃+ σ Chiral g − 1 + K̄ · Cβ 1
γ+ τ Chiral h0(Cβ) = 1 1
ρ− — Fermi h0(C,NCβ/B3)− K̄ · Cβ 0
β− — Fermi h1(Cβ) = g 0

λ− — Fermi 8K̄ · Cβ 16

Table 3.1: 2d (0, 2) multiplets in the effective theory on R1,1 × Cβ, where Cβ is a curve of
genus g with normal bundle NCβ/B3 inside the base B3 of Y4 (this is based on table 5 in [115]).
The subscripts of the fermions denote the chirality along the string world-sheet.

is rigid at least along a divisor on B3, as indicated by the negative degree of one of the normal
bundle summands. The string modes are therefore not free to move in the entire bulk of the
compactification, unlike what is required for a string that has the graviton in its spectrum.

This leaves, as the only possibility, a holomorphic curve C0 with

NC0/B3 = OC0 ⊕OC0 , C0 · K̄ = 2 . (3.27)

We furthermore demand that it be possible to obtain a parametrically weakly coupled and
tensionless critical string, by taking the limit

vol(C0)→ 0 for vol(B3) finite . (3.28)

These requirements are motivated by the fact that the asymptotically weakly coupled limit for
a critical heterotic string coincides with the limit of vanishing tension in the Einstein frame,
while at the same time criticality requires gravity not to be decoupled.7 The condition (3.27)
is met, for instance, by any curve with the properties

C0 = J0 · J0 , with J2
0 · K̄ > 0 , J3

0 = 0 , (3.29)

where J0 is a generator of the Kähler cone of B3. The limit (3.28) can furthermore be taken, for
such curves, in a certain region in moduli space. A class of examples of this type is where B3

is a P1-fibration over a surface B2 or a blowup thereof, as considered in conventional F-theory
- heterotic duality: Here C0 is simply the P1 fiber. This will be detailed in Section 6 in the
context of the Weak Gravity Conjecture.

Note, however, that the four-dimensional compactification involves U(1) flux data, and the
D-term constraints from the flux may obstruct taking the limit (3.28). The conditions on the
flux to allow for such a limit will be discussed in Section 4.2.

To avoid confusion, let us stress that even if the weakly coupled limit (3.28) is possible, this
does not yet mean that the heterotic string is fully perturbative: Non-perturbative effects, in
particular NS5-branes, can and in general do contribute to the string dynamics, even at the
level of the elliptic genus.

7More precisely, in the heterotic four-dimensional Einstein frame, the fundamental string tension is given
by Thet = 2π

`2het
e2Φ , where the dependence on the ten-dimensional dilaton Φ arises from the Weyl rescaling from

string to Einstein frame (cf. the discussion around eq. (6.38)). Hence the tensionless limit requires us to take
e2Φ → 0, while at the same time the volume of the heterotic compactification space Z3 is fixed to keep MPl

finite. As a result, the four-dimensional dilaton Shet = e−2Φvol(Z3)/`6het →∞ diverges in the tensionless limit
(3.28).
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• We call a heterotic string which allows for a limit (3.28) quasi-perturbative, to the extent
that we can take the limit where Shet →∞ (at least away from possible non-perturbative
defects such as NS5-branes).

• If at the same time the dynamics of the string, as far as its contribution to the elliptic
genus is concerned, does not involve any NS5-branes or other non-perturbative elements,
we call the string perturbative.

3.3 Elliptic genus and Gromov-Witten invariants of four-folds

Let us now assume that the forementioned conditions for the emergence of a critical, perturb-
ative (or quasi-perturbative) four-dimensional heterotic string are fulfilled. In this case we can
easily compute the elliptic genus (2.10). The degeneracies N(n, r) that appear in the expansion
(2.11) count the number of left-moving excitations weighted with signs as in (2.10), at level n
and with U(1) charge r. These can be level-matched against oscillator excitations of the right-
moving Ramond ground state, to yield physical, albeit non-BPS states at the given excitation
and charge levels.

As we now discuss, these degeneracies of non-BPS states in four dimensions coincide with
certain BPS degeneracies of the three dimensional theory obtained by S1

A reduction; these
correspond, via the M/F duality sketched in eq. (3.2), to Gopakumar-Vafa invariants of the
compactification of M-theory on Y4. The logic is analogous to the reasoning underlying the
duality between elliptic genera of 6d strings and BPS invariants of M-theory compactified on
elliptically fibered three-folds to five dimensions [65–67]. However, for the time being we are
careful to apply it only to the well-controlled quasi-perturbative critical heterotic strings as
defined above.

More precisely, wrapping the solitonic string k times around S1
A produces a tower of particles

in d = 3. Even though both the string and its excitations are not BPS saturated in the d = 4,
N = 1 supersymmetric theory, the wrapped string gives rise to BPS states in the d = 3
theory with N = 2 supersymmetry. Since the string is charged with respect to a 2-form in the
d = 4 theory, all particles in the tower carry some charge k with respect to the abelian gauge
symmetry to which the 2-form symmetry is reduced after reduction on S1

A. As long as we are
dealing with a weakly coupled critical heterotic string, the usual quantization rules can safely
be applied, similar to the 6d/5d context [65]. In particular, the left-moving excitation number
of the wrapped string is related to the wrapping number n and KK momentum number w along
the S1

A as
n = w k . (3.30)

For the singly wrapped string with k = 1, the left-moving excitation number of the wrapped
string hence equals the KK momentum along the S1

A. Even though this is a priori a statement
about the excitations of the wrapped string, the number of purely left-moving excitations at
level n is unchanged in the unwrapped situation. The problem of counting the left-moving
excitations at level n and charge r in four dimensions is therefore reduced to counting BPS
particles in three dimensions, with KK momentum w = n, U(1) charge q = r, and with charge
k = 1 with respect to the gauge field inherited from the 2-form tensor in four dimensions. In
light of the discussion of Section 3.1, such particles are due to M2-branes wrapping the curve
class

ΓC0(n, r) = C0 + nEτ + r Cf
r=1 ⊂ Y4 , (3.31)
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where Eτ is the class of the generic fiber on the 4-fold Y4, while Cf
r=1 is the fibral curve class of

U(1) charge r = 1. An M2-brane along this curve carries a total KK charge of

S̃0 ◦ ΓC0(n, r) = n− 1 = n+ E0 . (3.32)

Here we are using the U(1)KK generator S̃0 as given in (3.4) along with the fact S0 ◦ C0 =
S0 ◦S0 ◦π−1(C0) = −K̄ ·C0. The shift by the zero-point energy E0 is the same as the prefactor
of the elliptic genus (2.11), and is as given in (3.26).

By the above reasoning, the degeneracies N(n, r) defined via the index (2.10), (2.11) coincide
with the generalization to four-folds [89] of the familiar, integral Gopakumar-Vafa invariants
[90, 91]. They count the BPS invariants of M2-branes wrapped on holomorphic curves in
the presence of 4-form flux. For singly wrapped curves, these generalized Gopakumar-Vafa
invariants are identical to the respective Gromov-Witten invariants. Therefore, while focusing
on k = 1, our task is to compute the genus-zero Gromov-Witten invariants NC0;G(n, r) of the
curve (3.31) in the presence of U(1) four-flux, G. In terms of these, the degeneracies of the
elliptic genus are then simply

N(n, r) = NC0;G(n, r) . (3.33)

The actual computation proceeds via mirror symmetry, as indicated in Section 2.1. A further
circle reduction on S1

B brings us from the three-dimensional M-theory to the two-dimensional
Type IIA theory in which this mirror symmetry computation is set. More explicitly, let us
define an integral basis of H̃2,2

vert,U(1) and expand the four-flux into it:

G =
∑

cj Gj ,
{
Gj : integral basis of H̃2,2

vert,U(1)

}
. (3.34)

We can then expand the genus-zero free energy FG into the corresponding flux components as
given in (2.8). Corresponding to eq. (3.31) we now distinguish the various Kähler parameters
by defining

q = e2πiτ , ξ = e2πiz (3.35)

as the expontentials of the Kähler parameter τ of Eτ and of the Kähler parameter z of the
fibral curve Cf

r=1 on Y4, respectively. We denote the remaining Kähler parameters associated
with generic curves Cβ ∈ H2(B3,Z) by tβ, and their exponentials by Qβ = e2πitβ . Since we will
be interested in an at most linear order in the Qβ, we write the expansion of the genus-zero
free energy (again omitting classical terms) as follows:

FG(t) =
∑

cj F (j)(t) , (3.36)

F (j)(t) =:
∑

Cβ∈H2(B3,Z)

F (j)
Cβ

(τ, z)Qβ +O(Qβ
2) . (3.37)

The Gromov-Witten invariants we are interested in,

NC0;G(n, r) =
∑

cj N
(j)
C0

(n, r) , (3.38)

are then obtained by linearly combining the integral expansion parameters of

F (j)
C0

(τ, z) =
∑

n≥0,r∈Z

N
(j)
C0

(n, r)qnξr . (3.39)
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All this is summarized by identifying the elliptic genus of the nearly tensionless heterotic string
associated with the shrinking curve C0, in the presence of flux G, as follows:

ZC0;G(τ, z) = q−1FC0;G(τ, z) := q−1
∑

cj F (j)
C0

(τ, z) . (3.40)

This expression for the elliptic genus is determined entirely by the F-theory compactification
geometry and the choice of flux, and as written no reference is being made as to whether the
emerging heterotic string is perturbative or not. Thus one may be tempted to view it as the
definition of a non-perturbative version of the elliptic genus. This would be similar to the
six-dimensional theories [65–67, 93], where this reasoning has proved to be a valid strategy.
In particular, it leads to a (quasi-)modular elliptic genus for the string associated with any
heterotic curve C0 with comparable properties [13].

In four dimensions, as we will see in the next section, certain extra conditions need to be
satisfied by the choice of flux in order for ZC0;G(τ, z) to have distinguished properties under
modular transformations.

Before delving into this discussion, we conclude this section by pointing out an interesting
interpretation of the genus-zero Gromov-Witten invariants in the context of F-theory. This will
also lead to a powerful check of the above assertions. A geometric definition of the Gromov-
Witten invariants on a Calabi-Yau 4-fold Y4 proceeds in terms of the moduli space Mg,s of
stable holomorphic maps from a curve class Cβ ∈ H2(Y4,Z) to Y4, of genus g and with s marked
points. The mathematical concepts underlying this definition can be found in [118] and are
further discussed and applied e.g. in [87–89]. In particular, the so-called virtual dimension of
Mg,s is

dim virMg,s = (1− g) + s . (3.41)

For g = 0 and s = 1, dim virMg,s = 2, and these are the relevant values for us. The genus-zero
Gromov-Witten invariants for some Cβ ∈ H2(Y4,Z) with respect to some flux G ∈ H4(Y4) are
then defined as the pullback

NCβ ;G :=

∫
µ

ev∗G , (3.42)

where µ is the class in the moduli space M0,1 associated with Cβ (with one point fixed), and
ev∗G is the pullback of the 4-form class G onto µ.

As a simple illustration, consider the fibral curve class Γ0(n, r) = nEτ + rCf
r=1 defined in

(3.11), and recall that M2-branes wrapping this class in M-theory produce a KK tower of
charged matter fields. These are associated with chiral N = 1 multiplets in four dimensions.
Since the curve class Cf

r=1 is a component of the fiber over the curve Cr=1 ⊂ B3, it can move
freely over this curve. The moduli space of the curve Γ0(n, r) can therefore be identified with
the curve Cr=1 in the base. To obtain the moduli space M0,1, we must fix one point on
Γ0(n, r). Since the moduli space of a point on a curve is the curve itself, we end up with a
2-complex dimensional moduli space. Its embedding into Y4 can be identified with the surface
Sn,r obtained by fibering Γ0(n, r) over Cr=1. Then the genus-zero Gromov-Witten invariants
(3.42) for Γ0(n, r) reduce to the integral of the 4-form flux G over this surface,

NΓ0(n,r);G =

∫
Sn,r

G . (3.43)

As a consequence of the transversality condition (3.16), this integral is independent of n. In
particular, the chiral index of charged matter fields in four dimensions, (3.17), is nothing but

18



the genus-zero Gromov-Witten invariant of Γ0(n, r), evaluated for any n > 0,

χr = NΓ0(n,r);G . (3.44)

Apart from providing a beautiful mathematical interpretation of the expression for the chiral
index, this allows for a non-trivial consistency check of the relation (3.40). It is based on the
following observation: Consider a situation in which a D3 brane wrapped around C0 indeed
corresponds to a critical heterotic string, and assume that there is only one such curve class
C0. The chiral index of the massless charged matter fields in F-theory must then agree with
the n = 1, charge r degeneracies of the elliptic genus Z(q, τ), i.e., with the numbers NC0;G(1, r).
This is because the latter count the index of massless charged excitations in the dual heterotic
theory, and the two must match by duality. This gives the prediction

NΓ0(n,r);G = NΓ0(1,r);G ≡ NC0;G(1, r) . (3.45)

We will confirm this relation in the example studied in Section 5.

4 Constraints on four-form fluxes for (quasi-)modularity

Even if a curve C0 with the properties (3.27) exists that moreover allows for a weak coupling
limit (3.28) at the level of geometry, additional constraints must be imposed on the U(1) flux
background in order that the elliptic genus is a modular or quasi-modular Jacobi form, as
already announced in Section 2.2.

More precisely, we say that the elliptic genus is modular if it is of the form (2.12) or (2.15),
where Φw,m(τ, z) is a meromorphic or weak Jacobi form of weight w and index m, respectively.
This in turn implies that it can be written as a polynomial in the generators given in eq. (2.13).
We say it is quasi-modular if the quasi-modular Eisenstein series E2(τ) needs to be included as
well.

All other cases will be referred to as non-modular, even though the elliptic genus may still
possess more subtle non-trivial transformation properties under the modular group. Indeed,
we do observe hints for this to be case. A major difference between (quasi-)modular and more
general elliptic genera is the appearance of certain gaps in the charge spectrum, as far as its
contribution to the index is concerned. The origin of these gaps, which are not observed in the
non-modular case, has been explained on general grounds in section 2.2.

In this section we motivate the constraints on the flux G ∈ H̃2,2
vert,U(1)(Y4) for obtaining

modularity or quasi-modularity of the elliptic genus. The quasi-modular property will be seen
to be intimately tied to the presence of certain non-perturbative branes in the dual heterotic
geometry. The upshot of this discussion is the criterion stated in section 4.2.3.

To understand the origin of this criterion, we first have to recall some aspects of the duality
between four-dimensional, N = 1 supersymmetric compactifications of F-theory and the het-
erotic string, and especially the role of the NS5-brane in the Green-Schwarz mechanism [63,64].
The reader familiar with this material is invited to jump directly to section 4.2.

4.1 Aspects of F-theory - heterotic duality in four dimensions

Our starting point is the standard duality between F-theory compactified on the elliptic fibra-
tion Y4 over the base B3, and the heterotic string compactified on an elliptic Calabi-Yau 3-fold
Z3, where B3 and Z3 are related as follows:
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p : C0 → B3

↓
B2

←→ ρ : Eτ ′ → Z3

↓
B2

The structure of the elliptic fibration ρ of Z3 is inherited from the elliptic fibration π of Y4

as defined in eq. (3.1). In particular, if Y4 contains extra rational sections Si in addition to the
zero section S0, then the same is true for the heterotic fibration Z3 [119] (see also [120]). We
will denote the zero-section and the extra rational sections on the heterotic side by S ′0 and S ′i,
respectively, or collectively by S ′I .

If the rational fibration p of B3 and the elliptic fibration π of Y4 are compatible, Y4 is in
itself also an elliptic K3-fibration over B2. Let us first describe this special situation.

At a microscopic level, the duality relates the solitonic string obtained by wrapping a D3-
brane along the fiber C0 = P1

f to the fundamental heterotic string. This fits with the fact
that the rational fiber C0 satisfies the property (3.27). Similarly, a D3-brane instanton along
a divisor p−1(C), where C is a curve on B2, dualises to a fundamental heterotic world-sheet
instanton wrapped on C in the base of Z3.

In addition to the geometric data, both the F-theory and the heterotic duality frames
contain gauge backgrounds as crucial ingredients. The gauge background on the F-theory side
has already been specified in Section 3.1 for the type of models studied in this article. On the
heterotic side, the gauge background is encoded in a polystable vector bundle

W = W (1) ⊕W (2) , (4.1)

whose structure group H(1) × H(2) is embedded into the 10d heterotic gauge group E8 × E8.
The four-dimensional gauge group, G = G(1) × G(2), emerges as the commutant of H(1) ×H(2)

inside E8×E8. Each of the two vector bundles W (i) may in turn be a polystable sum of vector
bundles

W (i) = ⊕V (i)
j . (4.2)

If c1(V
(i)
j ) 6= 0, the actual gauge group contains an extra factor of U(1)

(i)
j . On the F-theory

side, abelian gauge groups are associated with rational sections and map to certain linear
combinations of such heterotic U(1)

(i)
j .

The spacetime-filling D3-branes that are required to cancel the tadpoles in F-theory trans-
late into spacetime-filling heterotic NS5-branes, partially wrapping certain holomorphic curves
γa on Z3. The class of the curves γa on Z3 is constrained by the Bianchi identity

ch2(W ) + c2(TZ3) =
∑
a

Naγa , (4.3)

where Na denote the number of 5-branes in the stacks on γa. The identity (4.3) is the heterotic
dual of the D3-brane tadpole cancellation condition (3.21). In models of the type described so
far, where the F-theory fibration Y4 is also elliptically K3-fibered, the only NS5-branes present
on the heterotic side wrap the elliptic fiber, i.e. γa = Eτ ′ . This constrains the gauge bundle
W accordingly. More general configurations will be described below. In the presence of NS5-
branes, the heterotic compactification is best thought of as M-theory on Z3×S1/Z2 [121]. The
NS5-branes then correspond to M5-branes located at points along the interval S1/Z2 while
wrapped around γa.

Heterotic NS5-branes participate in the anomaly cancellation mechanism of the abelian
gauge symmetries U(1)

(i)
j . This is due to the appearance of two types of Green-Schwarz terms
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in the effective action, as found in [63] and [64] for compactifications to six and four dimensions,
respectively. In the context of four-dimensional models, these terms result by dimensional
reduction of two interaction terms in the presence of NS5-branes wrapped on γa [64]:

S
(1)
GS = A(1)

∑
a

Na

∫
γa

B ∧ (trF 2
1 + trF 2

2 − trR2) , (4.4)

S
(2)
GS = A(2)

∑
a

Na

∫
γa

Ba ∧ (trF 2
1 − trF 2

2 ) . (4.5)

Here B denotes the universal heterotic 2-form, Ba refers to the chiral tensor field on each 5-brane
stack, and F1, F2 are the field strengths of the two E8 factors of the heterotic gauge group.
The numerical constants A(1) and A(2) play no important role for us. The additional anomaly
cancelling terms contribute Stückelberg mass terms of the form

∫
R1,3 B ∧ Fi or

∫
R1,3 Ba ∧ Fi

in the four-dimensional effective action, however obviously only so for abelian gauge groups.
Furthermore they appear only if the internal part of the gauge field has a non-zero overlap with
the curve γa that is wrapped by the NS5-brane.

Starting from such a configuration, we can consider blowing up a curve Γa on B2 ⊂ B3 into
a divisor Ea of the blown-up space B̂3. This means that there exists a contraction map from
B̂3 onto B3

f : B̂3 → B3 , (4.6)

which is an isomorphism away from Γa, with the additional property that

f−1(Γa) = Ea . (4.7)

This process destroys the global compatibility of the rational fibration of B3 and of the elliptic
fibration of Y4. As has been studied in detail in [122], the effect on the dual heterotic side is to
leave the Calabi-Yau geometry Z3 unchanged, but to include additional NS5-branes along the
curve Γa on B2.

More precisely, the inverse image of each point Q on Γa is a rational curve Ca,

f−1(Q) = Ca , Q ∈ Γa , (4.8)

which we call the fiber of the (exceptional) blow up divisor Ea on B̂3. On B̂3, the rational curve8

C0 is still fibered over every point of B2 away from the blow-up locus, where it splits into two
components, Ca and C ′a. The solitonic heterotic string obtained by wrapping a D3-brane along
C0 on B̂3 hence splits into two other types of strings as it sweeps out its moduli space, namely
strings obtained from wrapping the D3-brane on either Ca or C ′a. Neither of these can be a
critical heterotic string. Rather, from the properties of Ca and C ′a it follows that they must
be non-critical strings, and in the dual heterotic geometry this signals the presence of NS5-
branes that wrap the curve Γa. That is, they can be interpreted as solitonic strings coupling
to the chiral tensor fields Ba on the NS5-branes, or, in Horava-Witten language, as M2-branes
stretched between the M5-brane and each of the two E8 planes. This is closely related to the
six-dimensional phenomenon of fusion, ‘E + E = H,’ where a heterotic string splits into two
copies of non-critical E-strings [123]. Specifically, the Kähler volume of the blow-up fiber Ca
on B̂3 maps to the position modulus λa of these NS5-branes along the Horava-Witten interval.

8Strictly speaking, we should refer to the rational curve on B̂3 as f−1(C0), and similarly for all other curves
on B̂3 which are inherited from B3, but we omit this for notational simplicity.
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Above we have focused on a special set of geometries for B3, P1-fibrations and their blowups
over curves in the base of B3. This is sufficient to develop some intuition on which conditions
we must impose on the gauge background such that the elliptic genus is (quasi-)modular. These
conditions will momentarily be formulated in full generality. Nonetheless it is interesting to
remark that while in six dimensions, the geometries of the type studied in this section exhaust
the list of possible F-theory bases (except for P2), the space of Kähler three-fold bases B3 for
four dimensional F-theory compactifications is considerably richer. This is true even at the
level of blowups: In addition to blowing up a curve on the base of B3, one can blow up the
rational fiber itself. This option does not exist for a rationally fibered surface. In Appendix C
we will exemplify this construction.

4.2 Conditions for (quasi-)modularity

We are now in a position to determine the criteria on the F-theory U(1) flux, G ∈ H̃2,2
vert,U(1)(Y4),

to yield a modular, or quasi-modular, elliptic genus for a heterotic string that arises from a
D3-brane wrapping a curve C0 of type (3.27).

4.2.1 F-theory on P1 fibrations

To gain some intuition, we first assume that the base on the F-theory side is the blowup of a P1-
fibration over B2 along various curves Γa ⊂ B2. For notational simplicity, suppose furthermore
that the F-theory elliptic fibration has only one extra section S, leading to a single abelian
gauge group associated with the U(1) flux G = F ◦ σ(S) with F = π−1(F b) for some F b in
H1,1(B3).

According to our discussion of the previous section, this type of geometries has a heterotic
dual defined on an elliptic fibration Z3 over the same base space B2, and we are therefore
facing the question which modular properties the elliptic genus for the fundamental heterotic
string of this theory has. From the classic analysis of [61] follows that the elliptic genus of
a heterotic string is modular whenever the string has a perturbative worldsheet formulation,
which is defined entirely at the level of conformal field theory. In particular, in the four-
dimensional effective theory defined by this heterotic string theory, the only axion participating
in the Green-Schwarz anomaly cancellation mechanism is the universal axion, which is dual to
the heterotic 2-form field. Given the close correlation between anomaly cancellation and the
modular properties of the elliptic genus revealed in [61, 96, 124], our conjecture is that this
is indeed the characteristic property which is responsible for modularity of the string, also in
situations where the theory is defined as a geometric compactification rather than directly at
the level of conformal field theory. In other words, we expect that the elliptic genus is fully
modular whenever the anomaly cancellation mechanism receives contributions only from the
universal axion in the heterotic duality frame, and thus is independent of the axionic partners
of the Kähler moduli of the base space B2, as well as of those of the NS5-brane moduli, λa.

Under F-theory-heterotic duality, the axions paired with the Kähler moduli of B2 arise from
the expansion of the M-theory 3-form C3 with respect to the divisor classes Dα = p∗(Cα), where
Cα are curves on B2. The F-theory dual of the NS5-brane axions arise by expanding C3 in terms
of the blowup divisor classes Ea. The condition for these not to participate in the anomaly
cancellation mechanism is equivalent to the condition that their non-axionic partners do not
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enter the flux-induced D-term (3.19), i.e.

F b · b · p∗(Cα) = 0 ∀ Cα ∈ H2(B2)

F b · b · Ea = 0 ∀ Ea .
(4.9)

Under these conditions, the elliptic genus of the string associated with C0 is expected to be
modular, and we refer to U(1) fluxes, G = F ◦ σ(S), with this property as modular fluxes.

From experience with the six-dimensional heterotic string we know [13] that any involvement
of the NS5-brane axions in the anomaly-cancellation mechanism leads to a quasi-modular, as
opposed to a modular, elliptic genus. This suggests that flux which satisfies

F b · b · p∗(Cα) = 0 ∀ Cα ∈ H2(B2)

F b · b · Ea 6= 0 for some Ea
(4.10)

leads only to a quasi-modular elliptic genus. The underlying fluxes are thus called quasi-modular
fluxes.

Finally, giving up even on this constraint, the elliptic genus will in general have much less
distinguished modular properties. Such generic fluxes will be called non-modular. They have
the property that

F b · b · p∗(Cα) 6= 0 for some p∗(Cα) . (4.11)

The conditions (4.9) and (4.10) can be equivalently characterised as follows: If the flux
obeys the condition (4.9), then the D-term (3.19) vanishes identically in the weak coupling
limit (3.28), in which vol(C0) = 0. To see this, we expand the Kähler form of B3 in terms of
the Kähler cone generators Ji as J = tiJi, where each Ji can be written as a linear combination
of the basis of divisors

{DI} = {D0 , Dα = p∗(Cα), Ea} . (4.12)

Here D0 a section of the P1-fibration B3 and Cα is a basis of H2(B2). Altogether the Kähler
form becomes

J = tiJi = ti aiJ DJ . (4.13)

The flux induced D-term (3.19) follows as

ζ = tiaiJDJ · F b · b = ti ai0 (D0 · F b · b) , (4.14)

where we have made use of (4.9). To compare this to the volume of C0, note that p∗(Cα)·C0 = 0
because C0 is a fiber of p∗(Cα), and Ea · C0 = 0 because the fiber of the blow-up divisor Ea is
contained in C0, while C0 ·D0 = 1. As a result,

vol(C0) = C0 · J = C0 · tiaiJDJ = ti ai0 , (4.15)

and so
ζ|vol(C0)=0 ≡ 0 for flux of type (4.9). (4.16)

By similar reasoning, for a flux obeying (4.10), the D-term vanishes identically as a function
of the moduli, only when we set vol(C0) = 0 and also vol(Ca) = 0 for all fibers Ca of the
blow-up divisors Ea over Γa. In order words:

ζ|vol(C0)=0
vol(Ca)=0 ∀Ca

≡ 0 , but ζ|vol(C0)=0 /≡ 0 for flux of type (4.10) . (4.17)

To avoid potential confusion, we emphasize that the alternative characterization (4.16)
and (4.17) of modular and quasi-modular fluxes, respectively, are based only on the functional
form of the flux-induced D-term in the Kähler moduli. In other words, although vol(C0) = 0
guarantees that vol(Ca) = 0 for all Ca due to the Kähler geometry, the criteria (4.16) and (4.17)
should be understood without imposing that the moduli lie in the Kähler cone.
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4.2.2 Interpretation via D3-brane/non-critical worldsheet instantons

Before widening the scope of this discussion, let us point out that the conditions (4.9) and
(4.10) have an interesting interpretation in F-theory in terms of D3-brane instantons wrapping
the respective divisors p∗(Cα) and Ea. In presence of gauge flux, G = F ◦ σ(S), a D3-brane
instanton along a general divisor Dinst can carry a net U(1) charge [112, 113, 125, 126]. At the
microscopic level, this is due to charged zero-modes localised on the intersection curve of the
D3-brane instanton and the 7-brane divisor. For a U(1) gauge group, the role of the 7-brane
divisor is played by the height-pairing b. The net instanton charge is proportional to the chiral
index of charged zero modes on b ∩ Dinst, which for vanishing instanton flux [127] takes the
form

QDinst
=

∫
b∩Dinst

F b = b ·Dinst · F b . (4.18)

If QDinst
6= 0, the instanton generates couplings that violate the U(1) selection rule by an

amount of QDinst
.

Such a violation of the U(1) symmetry by instantons along the divisors p∗(Cα) and Ea is
particularly drastic in the weak coupling limit: As it turns out, in this limit the volume of
these divisors vanishes and the resulting instanton effects are unsuppressed. We can therefore
rephrase the conditions for (quasi-)modularity of the elliptic genus by saying that this must
not happen. More precisely, a flux is quasi-modular if

QDinst
= 0 for all Dinst ∈ {p∗(Cα)} , (4.19)

QDinst
6= 0 for some Dinst ∈ {Ea} ,

and modular if

QDinst
= 0 for all Dinst ∈ {p∗(Cα), Ea} . (4.20)

To understand the significance of these two conditions on the dual heterotic side, note that
the F-theory U(1) symmetry maps, in general, to a linear combination of several abelian gauge

group factors if the heterotic model involves several sub-bundles V
(i)
j with non-zero c1(V

(i)
j ).

All other linear combinations of abelian gauge group factors can only dualize to so-called
geometrically massive U(1) factors [128] on the F-theory side. We can therefore discard these
combinations for the purpose of our analysis and parameterize the relevant linear combination
of abelian gauge factors as

U(1) =
∑
j

aj U(1)
(1)
j +

∑
j

bj U(1)
(2)
j . (4.21)

This U(1) is the commutant within E
(1)
8 × E

(2)
8 of the structure group of the bundle V with

c1(V ) = c1(V (1)) + c1(V (2)) (4.22)

=
∑
j

aj c1(V
(1)
j ) +

∑
j

bj c1(V
(2)
j ) . (4.23)

In order for this bundle to map to an F-theory background, it must satisfy the condition∫
Eτ ′
c1(V ) = 0 . (4.24)
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One way to understand this well-known constraint is that otherwise the NS5-branes along the
fiber Eτ ′ would participate in the Green-Schwarz cancellation mechanism. This is not possible,
however, since the NS5-branes along the elliptic fiber of Z3 dualize to D3-branes. Indeed, on the
F-theory side, D3-branes do not participate in the anomaly cancellation mechanism of 7-brane
gauge group factors. Since by assumption we are dealing with a situation with two independent
sections on both the F-theory and the heterotic side, (4.24) implies that

c1(V ) = x(S ′ − S ′0) + ρ∗c1(N) , (4.25)

where c1(N) ∈ H1,1(B2) and x is a suitably quantized parameter. This ansatz is easily seen to
obey the constraint (4.24) because

∫
Eτ ′
ρ∗c1(N) = 0 and

∫
Eτ ′
S ′ = 1 =

∫
Eτ ′
S ′0.

A D3-instanton on p∗(Cα) maps to a heterotic world-sheet instanton on Cα, which can
likewise carry U(1) charge given by

QWSinst
=

∫
Cα

c1(V ) . (4.26)

We hence conclude that for the elliptic genus to be at least quasi-modular, we must impose
that ∫

Cα

c1(V ) = 0 ∀ Cα ⊂ B2 . (4.27)

This is the heterotic dual of the condition (4.19). If the parameter x in (4.25) vanishes, this
requires c1(N) = 0 and hence c1(V ) = 0. In such a case the U(1) gauge theory is non-anomalous
and the resulting elliptic genus vanishes identically. For non-zero x, on the other hand, a non-
trivial result is possible.

As reviewed in Section 4.1, the worldsheet of a heterotic string over a curve Γa splits
into two non-critical E-string worldsheets, each of which couples to a different E

(i)
8 factor.

Correspondingly, the D3-brane instanton on p∗(Γa) thus maps to the sum of two non-critical
E-string instantons on the heterotic side. The analogue of the modularity condition (4.20) is
therefore that in addition to (4.27), each individual E-string instanton over all curves Γa must
be uncharged, rather than only their sum. In other words we must have∫

Γa

c1(V (1)) = 0 =

∫
Γa

c1(V (2)) ∀ Γa , (4.28)

in order to maintain modularity. Note that the conditions for modularity and quasi-modularity
only differ provided the U(1) arises as a non-trivial combination of abelian gauge groups from
both E8 factors.

4.2.3 Generalisation

We now propose a generalisation of the two criteria (4.19) and (4.20) to situations where the
F-theory base B3 is not simply the blowup of a P1-fibration over some base curves Γa. On a
general base B3 that contains a curve C0 of type (3.27), we can still investigate the criterion
(4.16) for modular flux, by checking if the flux-induced D-term vanishes identically in the limit
of vanishing vol(C0). Furthermore, the analogue of the blowup fiber classes Ca appearing in
(4.17) are all curves into which C0 can split as it moves along its moduli space in B3.

This motivates the following
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Conjecture Consider F-theory on an elliptic fibration over base B3 with gauge group U(1),
height-pairing b as in (3.12) and U(1) flux G = F ◦ σ(S). Assume that B3 contains a rational
curve C0 of type (3.27). Denote by Ca all curve classes into which C0 can split as it sweeps out
its moduli space on B3. If there exists a geometric limit which takes vol(C0)→ 0 while keeping
the volume of B3 finite, a D3-brane wrapped on C0 gives rise to a quasi-perturbative, critical
heterotic string. The elliptic genus of this string is

quasi-modular: if J · b · F b|vol(C0)=0
vol(Ca)=0∀Ca

≡ 0 , but J · b · F b|vol(C0)=0 /≡ 0

modular: if J · b · F b|vol(C0)=0 ≡ 0 .

5 Example of a (quasi-)modular flux compactification

In this section we will present, as an explicit example, a four-dimensional, N = 1 supersym-
metric F-theory compactification on a definite four-fold Y4, with a single U(1) gauge group.9 In
particular we will confirm our criteria on the flux to obtain a modular or quasi-modular elliptic
genus, as proposed in the previous section.

The elliptic four-fold, Y4, is constructed by fibering elliptic curves over a base three-fold,
B3. For better readability, we have relegated the definition of Y4 and B3 as well as a detailed
presentation of their toric data to Appendix B.

The data given there are sufficient for computing, to any given order, the Gromov-Witten
invariants, NC0;G(n, r), of the curve classes (3.31)

ΓC0(n, r) = C0 + nEτ + r Cf
r=1 , (5.1)

in the presence of some U(1) flux G. Here, the fibral curves classes Eτ and Cf
r=1 correspond to

the full fiber and the U(1) fibral curve, respectively. They are uniquely determined by their
intersection properties

S0 ◦ Eτ = 1 , S ◦ Eτ = 1 =⇒ σ(S) ◦ Eτ = 0 , (5.2)

S0 ◦ Cf
r=1 = 0 , S ◦ Cf

r=1 = 1 =⇒ σ(S) ◦ Cf
r=1 = 1 .

Written in terms of the Mori cone generators l(1), ..., l(5) defined in (B.17), the classes Eτ and
Cf
r=1 take the form

Eτ = 3l(3) + 2l(5) , (5.3)

Cf
r=1 = l(3) + l(5) .

On B3 there exists a curve class C0 = J0 · J0 with the properties (3.27), which admits a limit
(3.28). Its lift C0 to a curve class in H2(Y4,Z) can be expressed as

C0 = l(2) + l(4) + l(5) . (5.4)

This, together with (5.3), leads to

ΓC0(n, r) = l(2) + (3n+ r)l(3) + l(4) + (2n+ r + 1)l(5) . (5.5)

9We have computed a number of further examples with analogous results; thus it suffices to present just a
representative one here.
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As a last ingredient we need to specify a basis Gj of U(1) fluxes, which we take to be

Gj = π−1(Dj) ◦ σ(S) ∈ H̃2,2
vert,U(1)(Y4) . (5.6)

Here Dj denote the basis elements (B.15) of H1,1(B3,Z). In this basis, the intersection form

on H̃2,2
vert,U(1)(Y4) can be computed as

η =

 12 0 −6
0 16 −18
−6 −18 12

 . (5.7)

This corresponds to the right-most non-vanishing block in the full intersection metric (2.5).
With these data, we can apply standard methods of mirror symmetry [129] for four-folds

[71,72,87–89] and compute the expansion of the generating functions (3.39),

F (j)
C0

(q, ξ) ≡
∑
n≥0

∑
r

N
(j)
C0

(n, r)qnξr , (5.8)

to some given order as follows:

F (1)
C0

(q, ξ) = 12q
(
ξ±2 + ξ±1

)
+ 18q2

(
51ξ±4 + 910ξ±3 + 3216ξ±2 + 3894ξ±1

)
+ 12q3

(
14ξ±6 + 2181ξ±5 + 31464ξ±4 + 152648ξ±3 + 339150ξ±2 + 336111ξ±1

)
+O(q4) ,

F (2)
C0

(q, ξ) = 12q
(
ξ±2 + 11ξ±1

)
+ 6q2

(
51ξ±4 + 942ξ±3 + 2960ξ±2 + 4310ξ±1

)
(5.9)

+ 12q3
(
4ξ±6 + 711ξ±5 + 10488ξ±4 + 51496ξ±3 + 110748ξ±2 + 114885ξ±1

)
+O(q4) ,

F (3)
C0

(q, ξ) = 48q
(
ξ±2 + ξ±1

)
+ 18q2

(
51ξ±4 + 868ξ±3 + 3312ξ±2 + 3828ξ±1

)
+ 12q3

(
11ξ±6 + 2244ξ±5 + 31464ξ±4 + 151628ξ±3 + 341751ξ±2 + 333672ξ±1

)
+O(q4) .

The appearance of ξ±r ≡ ξr − ξ−r reflects that the generating functions are parity-odd in the
U(1) fugacity z.

As a first consistency check we confirm that the pieces with q-degree n = 1 correctly
reproduce the chiral indices of the zero modes in F-theory with respect to each of the basis
fluxes. Recall from the discussion at the end of Section 3.3 that these chiral indices are given by
the invariants N

(j)
0 (n, r) for the purely fibral curve classes nEτ + rCf

r=1. We explicitly confirm
for n = 1, . . . , 5 that the only non-vanishing invariants are

N
(1)
0 (n,±2) = ±12 , N

(1)
0 (n,±1) = ±12 ,

N
(2)
0 (n,±2) = ±12 , N

(2)
0 (n,±1) = ±132 , (5.10)

N
(3)
0 (n,±2) = ±48 , N

(3)
0 (n,±1) = ±48 .

These match the degeneracies at order q1 in (5.9), precisely as predicted in (3.45).

We now assemble the generating functions F (j)
C0

for the elliptic genus by specifying the
four-flux in terms of the basis (5.6) as

G =
3∑
j=1

cj Gj . (5.11)
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The integrality properties of cj are constrained by the flux quantization condition (3.20); in
terms of a minimal integral basis of H4(Y4) the coefficients must be integral or half-integral, but
finding such a minimal integral basis is not needed for our discussion. We therefore continue
with the basis (5.6) and the understanding that the expansion coefficients must be chosen
well-quantized.

The generalized elliptic genus, Z(q, ξ, c), associated to the flux G is then the corresponding

linear combination of the generating functions F (i)
C0

(q, ξ) in (5.9):

Z(q, ξ, cj) = q−1

3∑
j=1

cj F (j)
C0

(q, ξ) =:
1

η24(q)
Φ−11(q, ξ, cj) . (5.12)

Upon inspection, we do not observe any obvious modular properties of Z(q, ξ, cj) for generic
cj, other than that the expansion coefficients in odd powers of z appear to be quasi-modular
forms:

(ξ∂ξ)Φ
−
11(q, ξ, cj)

∣∣
ξ=1

=
1

72
E4

3(48c1 + 28c2 + 57c3) +
1

72
E6

2(57c1 + 7c2 + 48c3)

− 1

72
(3c1 + c2 + 3c3)E2

(
E2E4

2 − 34E4E6

)
, (5.13)

(ξ∂ξ)
3Φ−11(q, ξ, cj)

∣∣
ξ=1

=
1

72
E2

(
E4

3(219c1 + 89c2 + 246c3) + E6
2(195c1 + 49c2 + 168c3)

)
− 1

36
(3c1 + c2 + 3c3)

(
E2

3E4
2 + 33E2

2E4E6 + 35E4
2E6

)
,

and so on. Despite this property, Φ−11(τ, z, cj) cannot be expanded - for general cj - in terms of
the generators (2.13) of weak Jacobi forms, even if the quasi-modular form E2(τ) is included.
Equivalently, it does not have a theta expansion (2.14) of definite index m. Functions whose
expansion is (quasi)-modular order-by-order in a formal power series in z, but which fail to
have standard periodicity properties in z are called Jacobi-like forms [98, 130, 131], and this is
what we seem to encounter here.10 Indeed we have argued in Section 4.2 that generic fluxes
would be in tension with standard modular or quasi-modular transformation properties, and
this observation confirms our expectations. On the other hand, if we restrict the flux such
as to obey the constraints (4.9) and (4.10), we will momentarily show that Z(q, ξ, cj) has the
expected, well-defined modular or quasi-modular properties.

To this end, we first determine the divisors of B3 of the form p∗(Cα) and the exceptional
divisors Ea. In the geometry under consideration, these sets of divisors are generated by

〈p∗(Cα)〉 = 〈dy1〉 ≡ 〈j1〉 , (5.14)

〈Ea〉 = 〈de〉 ≡ 〈j1 + j3 − j2〉 . (5.15)

Here dy1 and de refer to the toric divisors in Table B.1, and ji are the Kähler cone generat-
ors (B.6) of the base, with triple intersection numbers (B.7).

To check for quasi-modular fluxes, we require eq. (4.10) to hold, i.e.

0
!

= dy1 · F b · b =
3∑
j=1

cjdy1 ·Dj · b = 6c1 + 2c2 + 6c3 . (5.16)

10In fact [131], Jacobi-like forms are a natural next step in the sequence of liftings: modular→ quasi-modular
→ Jacobi-like. This suggests that good modular properties might be recovered once we attribute suitable
transformation properties to the fluxes as well.
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Before identifying the elliptic genus on this sub-family of fluxes as a modular or quasi-
modular Jacobi form, we first need to determine the fugacity index m from the geometry of Y4.
In the basis (B.15), the divisor of the height pairing takes the form

b = 6K̄ − 2β (5.17)

= (12− 2x)D1 + (24− 2y)D2 + (30− 2z)D3 ,

with (x, y, z) = (2, 2, 4) in this example. The U(1) fugacity index of the heterotic elliptic genus
is therefore computed as

m =
1

2
b · C0 = 6− x = 4 , (5.18)

where we used C0 = J0 · J0 and J0 = j1 as per Appendix B.
After eliminating c3 via (5.16), it is now easy to verify that the elliptic genus (5.12) is

indeed quasi-modular of weight w = −1 and index m = 4. By matching a sufficient number
of Gromov-Witten invariants to a general ansatz in terms of the generating functions (2.13)
augmented by E2(τ), we find that the denominator η24 cancels out as expected, and obtain the
following quasi-modular expansion into weak Jacobi forms:

Z(q, ξ, c1, c2, c3 = −c1 −
c2

3
) = q−1

(
c1F (1)(q, ξ) + c2F (2)(q, ξ)− (c1 +

c2

3
)F (3)(q, ξ)

)
= ϕ−1,2

(
3

4
(c2 − c1)ϕ0,1

2 +
1

12
E4 (27c1 + 13c2)ϕ−2,1

2

−1

6
E2 (9c1 + 11c2)ϕ−2,1ϕ0,1

)
. (5.19)

In addition we can impose the extra condition (4.9) to decouple the NS5-brane axions from the
Green-Schwarz mechanism,

0
!

= de · F b · b = c1 + 3c2 − 2c3 . (5.20)

When combined with (5.16), this yields

9c1 + 11c2 = 0 . (5.21)

Precisely this combination makes the quasi-modular piece proportional to E2 disappear, ren-
dering the elliptic genus into a genuine weak Jacobi form of weight w = −1 and index m = 4:

Z(q, ξ, c1 = −11

9
c2, c2, c3 =

8

9
c2) =

5

3
c2 ϕ−1,2 (ϕ0,1

2 − E4ϕ−2,1
2) . (5.22)

The first terms of its expansion are

Z(q, ξ, c1 = −11

9
c2, c2, c3 =

8

9
c2) = 40c2

(
4ξ±1 + ξ±2

)
+ 480c2 q

(
3ξ±1 − ξ±3

)
(5.23)

+ 40c2 q
2
(
204ξ±1 + 3ξ±2 − 88ξ±3 + 12ξ±5 − ξ±6

)
+O(q3).

Here, as anticipated purely based on modularity in Section 2.2, we observe a gap at charge level
q = ±m = ±4.

The charge pattern encoded in (5.22) over an extended range of excitation levels n is depicted
in Figure 1. We clearly see charge gaps at q = mk, k ∈ Z, which follow already on general
grounds from the theta expansion (2.14) of the elliptic genus. Note that for a perturbative
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Figure 1: Shown is the charge-mass spectrum encoded in the fully modular elliptic genus (5.22).
The fat red dots indicate super-extremal states, which lie above the solid blue line encoding the
charge-to-mass ratio of classical extremal black holes as discussed in Section 6.3. Note the gaps
at charges q = 4Z; in particular the open dots, which would correspond to the possible maximal
super-extremal states and which would form a charge sublattice by themselves, are not populated.
Qualitatively this picture does not only apply to the present example, but to the generic situation
with modular fluxes. We will come back to it in the next section in the context of Weak Gravity
Conjectures.

heterotic string we can identify the excitation level n − 1 with the mass M2 of the physical
states associated with the excitations, more precisely M2/(8πT ) = n− 1, where T denotes the
string tension. The solid blue curve is defined by q2/(M2/8πT ) = 4m and characterizes the
charge-to-mass ratio of extremal dilatonic black holes which play a role in the context of the
Weak Gravity Conjecture. This will be explained in Section 6.3. The open dots correspond to
the possible, but not populated maximally super-extremal states which would lie on the dashed
red line that corresponds to the leading orbit of ` = 0,m in the theta expansion.

We also have exhibited, as red fat dots, the existence of super-extremal states, whose charges
just barely lie above the blue curve. There are also other gaps in the part of spectrum encoded
in the elliptic genus, for example at (M2/8πT, q) = (5, 6) in Figure 1. It turns out that these
intermediate locations become populated for quasi-modular fluxes leading to (5.19). Moreover,
all gaps are fully populated for the non-modular elliptic genus (5.12) for a generic choice for
the cj. This is what we have shown in Figure 2. Thus, morally speaking, the better behaved
under modular transformations the elliptic genus becomes upon judiciously choosing the flux
configuration, the more non-trivial cancellations occur.

At this point one may worry whether the criterion of completeness of the charge lattice
[18, 132], which is part of the lore of quantum gravity conjectures, may be violated due to
the gaps. And relatedly, whether the sublattice conjecture of the super-extremal states [4] is
violated too, since in general the charges of the super-extremal states do not appear to form
a sublattice. We just note here the obvious fact that the absence of contributions of certain
charges to the elliptic genus does not necessarily imply that the states do not exist, and refer
to the concluding Section 7 for a further discussion.
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Figure 2: Same as Figure 1, except for quasi-modular (5.19), and generic non-modular back-
ground fluxes, for which there are fewer and fewer cancellations in the spectrum. Note that in
the last case, some super-extremal states do appear to form a sublattice, q = 2k. However, for
other models this is generically not the case.

6 Weak Gravity Conjectures in four dimensions

We are now in the position to quantitatively address the Weak Gravity Conjectures for F-
theory, when compactified on an elliptically fibered four-fold Y4 to four dimensions, additionally
equipped with activated gauge fluxes. We assume that an unbroken gauge group G arises from
a stack of 7-branes along some divisor S on the base, B3, of the fibration. As reviewed in
Section 3.1, if G = U(1), this divisor is the height-pairing associated with the U(1) symmetry,
whereas for non-abelian gauge groups S is a component of the discriminant locus of the elliptic
fibration Y4.

We will analyze the Weak Gravity Conjecture in the weak coupling limit of the gauge theory
in the presence of gravity, i.e. in the limit

1

g2
YM

∼ vol(S)→∞ , M2
Pl ∼ vol(B3) finite . (6.1)

To this end, we will show in Section 6.1 quite generally that whenever a limit of the form (6.1)
can be taken, there exists a curve C0 in B3 whose classical volume goes to zero. The string
associated with a D3-brane wrapped on C0 hence becomes tensionless in the limit (6.1).

The crucial question is then which precise type of tensionless string will arise, and this
depends on the specific properties the shrinking curve C0. The analogous problem in six
dimensions allowed for a complete classification of the possibilities [13, 14]: In this case, the
curve C0 on the base B2 of the elliptic threefold Y3 is a rational curve with trivial normal
bundle, i.e. C0 · C0 = 0. A D3-brane wrapped on any such C0 gives rise to an asymptotically
tensionless, weakly coupled heterotic string. Its excitations, as characterized by the elliptic
genus, contain states satisfying the Weak Gravity Conjecture [1] in its sublattice version [4].
A complementary recent study of infinite distance and weak coupling limits in the Kähler
moduli space of Calabi-Yau three-folds, with or without elliptic fibration, has furthermore been
performed in [16].

As we will see, for F-theory on an elliptic four-fold fibration, Y4, there is a considerably
richer set of possibilities to realize the limit (6.1) in the Kähler moduli space of the base B3.
We will identify two types of weak coupling limits: The first type is similar to the situation in
six dimensions in that C0 is guaranteed to be a rational curve with trivial normal bundle, i.e. of
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type (3.27). It therefore leads again to an asymptotically tensionless, weakly coupled heterotic
string. Combining this with the results of the previous sections, we will show in Section 6.3 that
its spectrum contains states that satisfy the original Weak Gravity Conjecture. On the other
hand, we show that the related sub-lattice conjecture, which posits that the super-extremal
states should include a charge sublattice, is in general not satisfied, at least at the level of the
index.

The second type of weak coupling limit, by contrast, corresponds to a qualitatively new
situation with no analogue in six dimensions: Here C0 may give rise to a non-critical string
because C0 is not necessarily of the form (3.27). In this situation an explicit analysis of the
string spectrum remains a particularly exciting challenge for future work.

6.1 Geometry of the weak coupling limit

To describe the limit (6.1), consider the most general ansatz for the Kähler form of B3,

J =
∑
i∈I

tiJi , (6.2)

in terms of the generators Ji of the Kähler cone, with ti ≥ 0 for all i ∈ I. The Kähler
cone generators have the important property that their mutual intersection numbers are non-
negative,

dijk := Ji · Jj · Jk ≥ 0 . (6.3)

Since the Kähler cone generators are nef, they are guaranteed to be pseudo-effective, i.e. they
lie in the closure of the cone of effective divisors. Throughout this paper we are making the
technical assumption11 that all generators Ji are in fact effective and that the generators are
furthermore irreducible.

To take vol(S) → ∞, at least one of the generators, called J0, must have a coefficient t
which scales to infinity. We can hence split the index set I for the Kähler cone generators into

I = I0 ∪ I1 ∪ I2 ∪ I3 , (6.4)

and write
J = tJ0 +

∑
ν∈I1

a′νJν +
∑
µ∈I2

b′µJµ +
∑
r∈I3

crJr . (6.5)

Here J0 is the only Kähler cone generator of type I0. The remaining generators are divided
into sets with the respective properties

J2
0 · Jν 6= 0 , ν ∈ I1 , (6.6)

J2
0 · Jµ = 0 , µ ∈ I2 , and there exists µ′ ∈ I2 : J0 · Jµ · Jµ′ 6= 0 , (6.7)

J2
0 · Jr = 0 , r ∈ I3 , and for all i ∈ I2 ∪ I3 : J0 · Jr · Ji = 0 . (6.8)

In order for

vol(B3) =
1

6
J3 (6.9)

11 The effectiveness of Ji follows if the cone of effective divisors is closed. The latter may fail as illustrated
in an example by Mumford (see e.g. [133]); however this geometry is a surface with b1 6= 0 and can hence not
serve as an F-theory base. While we are not aware of any example with a non-closed cone of effective divisors
which can be the base of an elliptically fibered Calabi-Yau manifold, it would be interesting to investigate this
possibility further.
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to remain finite in the limit t→∞, the generator J0 must obey

J3
0 = 0 . (6.10)

This is because (6.3) makes cancellations among the contributions from the different Kähler
moduli impossible. If no such Kähler cone generator J0 exists, the base B3 does not admit the
limit (6.1). An example of such a geometry without a weak coupling limit is B3 = P3.

The two qualitatively different cases to consider are now distinguished as follows:

Type A : J0 · J0 6= 0 (6.11)

Type B : J0 · J0 = 0 . (6.12)

Depending on the geometry of the base space B3 and the choice of the divisor S on it, the
weak coupling limit (6.1) might be realizable both for an ansatz (6.5) of Type A or of Type B,
each for a different choice of Kähler cone generator J0 in (6.5). An example of this phenomenon
is discussed in detail in Appendix E. For other pairs (B3,S), the ansatz (6.5) may always be of
the same Type A or Type B. Of course, as noted already, (B3,S) might also not admit a weak
coupling limit (6.1) at all.

We will now turn to discussing the two types of weak coupling limits in more detail.

Type A: J0 · J0 6= 0

In Appendix D.1 we prove the following properties of geometries for which the weak coupling
limit (6.1) is realized as in (6.5) with J0 · J0 6= 0:

1. The index set I2 of Kähler cone generators is empty, and the weak coupling limit must
take the form

J = tJ0 +
∑
ν∈I1

aν
t2
Jν +

∑
r∈I3

crJr , (6.13)

where the Kähler parameters aν and cr
t

must be finite as t→∞ in order for the volume
of B3 to remain finite.

2. The non-trivial cycle
C0 = J0 · J0 (6.14)

on B3 is a rational holomorphic curve with trivial normal bundleNC0/B3 = OB3⊕OB3 . The
proof of this makes use of Mori’s cone theorem together with the fact that C0 intersects
the divisor S non-trivially,

m :=
1

2
C0 · S =

1

2
J0 · J0 · S 6= 0 . (6.15)

The fact that m 6= 0 follows from the fact that vol(S) → ∞ as t → ∞. Triviality of the
normal bundle is a consequence of J3

0 = 0, which is a defining property of the Kähler cone
generator J0 responsible for the presence of gravity in the weak coupling limit.

3. In the weak coupling limit (6.1), the classical volume of C0 shrinks as

vol(C0)→ aν
t2
d00ν for t→∞ . (6.16)
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A D3-brane on C0 hence gives rise to an asymptotically tensionless, weakly coupled het-
erotic string as t→∞.

Furthermore,
vol(S) vol(C0) = 2m vol(B3) as t→∞ . (6.17)

This will play a crucial role in our quantitative proof of the Weak Gravity Conjecture in
Section 6.3.

The above results are a direct generalization of the findings for the weak coupling limit in
six-dimensional F-theory models [13]. In that case, the curve C0 supporting a heterotic string
can easily be proven to be the only curve with this property which shrinks in the limit. This
reflects the fact that there exists a unique heterotic duality frame in which the dynamics of the
weak coupling limit is described. On the other hand, for four-dimensional compactifications
with 3-fold base spaces, B3, proving the analogous statement would be more involved because
of the considerably richer structure of the Mori cone of Kähler 3-folds. We are not aware of
a counter-example to the conjecture that also in this case, for limits of Type A, the shrinking
heterotic curve C0 is unique, and in fact illustrate this for the example of Section 5 in Appendix
B.

All statements so far are in the realm of classical geometry. In the context of nearly ten-
sionless strings in four dimensions with N = 1 supersymmetry, one might worry that quantum
corrections modify these findings because the quantum volume of a curve need in general not
vanish even if the classical volume does [71]. However, the classical zero-volume limit of C0

coincides with the limit where the dual heterotic string is weakly coupled, i.e. Shet →∞ with
Shet the heterotic dilaton (see footnote 7). This limit is not expected to be obstructed by
quantum corrections. We therefore advocate that the statements under point 3 above survive
potential quantum corrections, at least to leading order.

Type B: J0 · J0 = 0

Suppose, by contrast, that the weak coupling limit is realized by a Kähler form (6.5) in a setting
where the Kähler cone generator J0 obeys J0 · J0 = 0. As an immediate consequence, the cycle
(6.14) ceases to exist. While one can still show that there is a holomorphic curve C0 which
shrinks in the weak coupling limit, it is no longer guaranteed that it is a rational curve with
trivial normal bundle. Rather its normal bundle in B3 is of the form OC0 ⊕ OC0(d) for some
d ≥ 0. More precisely, we will show in Appendix D.2 that for J0 · J0 = 0, the weak coupling
limit has the following properties:

1. There are no generators of type I1 since J0 · J0 = 0, and furthermore one finds that there
cannot be any generators of type I3. The limit (6.5) hence takes the form

J = tJ0 + b′µJµ , µ ∈ I2 , (6.18)

for suitably constrained parameters b′µ.

2. The fact that vol(S)→∞ implies that there must exist some Kähler cone generators Jµ0 ,
Jν0 with µ0, ν0 ∈ I2 such that d0µ0ν0 6= 0 and

b′ν0 = bν0 t
−1+aν0 (6.19)

b′µ0 = bµ0 t
−aν0−∆µ0 (6.20)

for aν0 > 0 and ∆µ0 ≥ 0. The parameters bν0 and bµ0 stay finite in the limit t→∞.
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3. The cycle Cν0 := J0 · Jν0 is a non-trivial holomorphic curve which classically shrinks in
the limit as

vol(Cν0) → d0ν0µb
′
µ . O(t−aν0 ) as t→∞ . (6.21)

4. The normal bundle of the shrinking curve Cν0 takes the form

NCν0/B3 = OCν0 ⊕OCν0 (dν0) (6.22)

with
dν0 := d0ν0ν0 ≥ 0 . (6.23)

If dν0 = 0, then a D3-brane along Cν0 gives rise to an asymptotically tensionless critical
heterotic string. An example of this type is discussed in Appendix F, where we also verify
the analogue of relation (6.17) for Cν0 .

For non-zero dν0 , the effective string from a D3-brane on Cν0 is a more exotic, non-critical
string. An example where in fact no rational curve class with trivial normal bundle
shrinks in the limit (6.5) with t → ∞ is discussed in Appendix E. The Weak Gravity
Conjecture strongly suggests that a tower of massless states arises also from such strings
in the tensionless limit, but a quantitative proof of this conjecture is beyond the scope of
this article.

Two more comments are in order: First, unlike for limits of Type A, we do know of
examples where several heterotic curves shrink simultaneously in the weak coupling limit. This
is exemplified in Appendix F and represents a striking phenomenon from the perspective of
string duality. In such exotic situations, the dual theory is in a self-dual regime where a
‘fundamental’ and a ‘solitonic’ heterotic string become equally important. Clearly, this impedes
a conclusive quantitative analysis of the spectrum. As stressed already, such complications are
a novelty in four dimensions with no analogue in six-dimensional models.

Second, since for dν0 > 0 the curve Cν0 does not give rise to a critical heterotic string, the
question of quantum corrections modifying its tension becomes even more pressing. From the
perspective of the Swampland Distance conjecture, the appearance of a tensionless string in
the limit of gYM → 0 is a natural expectation: Such a tensionless string would in particular
explain the breakdown of the effective field theory in the infinite distance limit where a global
symmetry emerges in presence of gravity. We take this as suggestive that the limit of vanishing
volume of Cν0 is indeed attained even after taking quantum corrections into account. Note that
Cν0 always has non-negative normal bundle. The string it supports is therefore fundamentally
different from what we would call the four-dimensional analogue of E-strings and their cousins
in six dimensions: The latter are inherently strongly coupled and become tensionless at finite
distance points in moduli space. It is not implausible that the structure of quantum corrections
distinguishes between curves of positive and negative normal bundle, and in particular the
former case of curves is more protected.

6.2 Compatibility of the weak coupling limit with D-terms

In four-dimensional compactifications with N = 1 supersymmetry, the scalar potential can in
principle obstruct a weak coupling limit of the form (6.1) even if it is attainable at the level
of pure geometry. F-term obstructions have recently been discussed from the perspective of
various quantum gravity conjectures in [62]. In our context, even if we ignore the possibility of
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a non-perturbatively generated superpotential, the D-term potential (3.19) induced by gauge
fluxes may not be compatible with the weak coupling limit.

From the general analysis in Section 4.2, we deduce, on the other hand, that both quasi-
modular and modular fluxes are automatically compatible with a vanishing D-term, when
taking the limit (6.1) and hence vol(C0)→ 0.12 Indeed, for modular fluxes the induced D-term
vanishes identically for vol(C0) → 0, and the induced scalar potential dynamically drives the
system to the weak coupling limit. When the flux is only quasi-modular, corresponding to
(4.10), the D-term depends not only on vol(C0), but also on the Kähler moduli of the fibers
Ca of the blow-up divisors; however, to stay within the closure of the Kähler cone of B3, we
must also take their volume to zero whenever vol(C0) → 0, since the blow-up fibers lie inside
the fiber C0 of B3. In this sense, the D-term constraint is again automatically satisfied in the
limit vol(C0)→ 0.

Beyond the realm of (quasi-)modularity, the question of whether or not the D-term is
compatible with taking vol(C0) → 0 depends on the concrete choice of fluxes. As long as the
D-term can be set to zero for a non-zero Kähler form on the boundary of the Kähler cone, the
weak coupling limit is compatible with the choice of flux. For fluxes other than the (quasi-)
modular ones discussed above, this requires h1,1(B3) ≥ 3 because it rests on a cancellation of
the contributions of two or more Kähler moduli different from vol(C0) and vol(Ca).

It is understood from now on that we restrict ourselves to gauge fluxes whose associated
D-term is indeed compatible with taking the weak coupling limit. According to the above
considerations, the most generic such fluxes will not lead to a quasi-modular or modular elliptic
genus for the asymptotically tensionless heterotic string, but may nonetheless define a bona fide
weak coupling limit in F-theory.

6.3 WGC bounds: elliptic genus versus supergravity

We now provide a quantitative proof of the Weak Gravity Conjecture in the weak coupling limit
(6.1), under the assumption that a single curve C0 with the properties (3.27) and (6.17) exists
in the geometry. As one of our main results we will exemplify that a tower of super-extremal
states exists, even though it does in general not form a charge sublattice.

As an initial step, we assume that the gauge flux leads to a modular or quasi-modular
elliptic genus. Despite some important differences, the proof of the Weak Gravity Conjec-
ture is analogous to the analysis in six dimensions [13, 14], and rests on the properties of
the elliptic genus as a Jacobi form, in connection with a shift of the vacuum energy. Let us
first recapitulate the situation in six dimensions. Here the elliptic genus has the generic form
Z(τ, z) = η−24(τ)Φ+

10,m(τ, z), where Φ+
10,m(τ, z) is some weak Jacobi form of weight w = 10.

It is necessarily symmetric under z → −z. Thus there can be a non-vanishing constant term
and in fact there will be always one, namely corresponding to the (unphysical) tachyon of the
heterotic string. Therefore the term with ` = 0 in the theta expansion (2.14) of Φ+

10,m,

h0(τ)Θ+
0,m(τ, z) = (const.+O(q))

∑
k∈Z

q(2mk)2/4mξ2mk , (6.24)

is always present and encodes a lattice orbit of states with qk = 2mk and nk = q2
k/4m, which

trivially satisfy
q2
k = 4mnk . (6.25)

12The discussion of (quasi-) modular fluxes is of course only sensible in limits of Type A, or of Type B for an
asymptotically tensionless rational curve C0 of trivial normal bundle.

36



These “maximally super-extremal” states are always populated and automatically satisfy the
condition q2

k > 4m(nk−1) , which lies at the heart of the proof of the Weak Gravity Conjecture.
Indeed, after identifying the excitation level with the squared mass, nk − 1 ∼ M2

nk
(including

the shift by the vacuum energy), this eventually translates into the bound q2
kg

2
YM > M2

nk
/M4

Pl,
which is what the Weak Gravity Conjecture postulates.

The situation in four dimensions is different in that the elliptic genus has weight w = −1
and thus is of the form Z(τ, z) = η−24(τ)Φ−11,m(τ, z). As we pointed out in Section 2.2, this
means that Φ−11,m(τ, z) is odd under z → −z and so cannot have a constant term. Therefore
Z(τ, z) is not a meromorphic but actually a holomorphic Jacobi form. Moreover, the terms with
` = 0,m cancel in the theta expansion (2.14). This implies that the previously leading terms in
the theta expansion are absent, and that the corresponding orbit of maximally super-extremal
states is missing in the elliptic genus (signified by the open dots in Figure 1 for our example).

On the other hand, massless physical states must necessarily show up at order q1 in the
expansion of Φ−11,m(q, ξ). Therefore, for each pair of massless states with charges q = ±`, the
theta-function expansion (2.14) must contain non-vanishing terms of the form

h`(τ)Θ−`,m(τ, z) =
(
q1−`2/4m (const.+O(q))

)∑
k∈Z

q(2mk+`)2/4mξ2mk+` − (`→ −`)

∼ q1(ξ` − ξ−`) + . . . . (6.26)

The theta function then implies that for each such massless pair there must exist lattice orbits
of states with

qk = 2mk ± ` , nk = k(mk ± `) + 1 , k ∈ Z , (6.27)

which therefore obey
qk

2 = 4m(nk − 1) + `2 . (6.28)

These states are less super-extremal than the ones in (6.25) which arise from the ` = 0 orbit,
which is why we have called the latter maximally super-extremal. Since these do not show up
in the elliptic genus in four dimensions, we need to test the Weak Gravity Bound for the states
with ` 6= 0 that satisfy the weaker equation (6.28). Despite the shift nk → nk−1, which a priori
tends to create tension with the conjectured bound, the day is saved by the extra contribution
of `2; in effect the modification is to trade the loss of the offset by 1 against a gain of `2/4m,
which is still positive for ` 6= 0.

Note that from equation (6.27) it is evident that the super-extremal states do not form a
sublattice of the charge lattice, rather they lie on sublattices ∆q = 2km shifted by ±`. This
has been visualized for our example in Figure 1, where we have depicted some of these super-
extremal states by fat red dots. They belong to the four lattice orbits that originate from the
massless states with q = ±1,±2.

Moreover, as pointed out before, Figure 1 shows charge gaps at qk = mk 13, which generally
follow from the cancellation of the theta functions for ` = 0,m. One can understand this
physically by describing the lattice sector of the world-sheet theory in terms of a free boson,
by writing the U(1) current as JU(1) = −i

√
2m∂H. Then the lattice charge sector labelled

by ` is generated by a vertex operator given by V` = ei`H/
√

2m (the physical vertex operators
contain in general additional holomorphic and anti-holomorphic pieces). On the other hand,
lattice shifts are generated by conserved, holomorphic symmetry currents, V±2m, of conformal

13Figure 1 displays a further Z2 sub-structure of gaps, which arises in an analogous way and which is tied to
the fact that m = 4 is not prime in our example.
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dimensions (m, 0) and charges q = ±2m. These may be viewed as generating a spectral flow
symmetry that links together pairs of states, V±m, which contribute with opposite signs to the
elliptic genus.

Up to now, we have assumed that the U(1) flux is chosen such that it gives rise to a fully
modular or quasi-modular elliptic genus, in line with our considerations of Section 4. As we
have been arguing, more generic choices of U(1) fluxes do not lead to (quasi-)modular Jacobi
forms. Note that such fluxes satisfy the D-term conditions at best on a subspace of the closure
of the Kähler moduli space, even in the weak coupling regime. For such fluxes the elliptic genus
generically does not enjoy a theta expansion of the form discussed above. As a result, the above
charge gaps do not need to occur. Indeed this is what we have demonstrated in our example
in Section 5. We have found that the charge spectrum is nevertheless bounded by the curve
(6.25) and just differs from the (quasi-)modular spectra in that all the gaps become populated.
We do not have a precise understanding of this general situation, given that we have much
less a rigid mathematical structure at our disposal and are lacking a closed expression for the
elliptic genus. However in view of our observations, it seems reasonable to assume that this
pattern holds in general, which would allow us to extend the discussion of the Weak Gravity
Conjecture also to cover these more general situations.

In order to complete the proof of the WGC, we now put the dimensionful quantities back
in order to obtain expressions that are directly relevant for physics. Dropping the subscript k,
we thus obtain

q2 g2
YM = (4m (n− 1) + `2) g2

YM = 4mg2
YM

(
M2

n

8π T
+

`2

4m

)
, (6.29)

where we have traded the excitation number n for the spacetime mass Mn via the standard
relation

M2
n = 8π T (n− 1) , T = 2π vol(C0) . (6.30)

This relation is valid for the critical string associated with the curve C0 at least in the weak
coupling limit. As a consequence of the offset by `2/4m, we have

q2 g2
YM ≥

4mM2
n

8π vol(S)vol(C0)
=

M2
n

4π vol(B3)
=
M2

n

M2
Pl

, (6.31)

where we have used (3.14). The second step crucially depends on the relation (6.17).
The remaining task in testing the Weak Gravity Conjecture is to compare this relation to the

precise bound that takes the contribution of the scalar fields into account [3,8]. The requirement
is that a set of particles must be super-extremal with respect to all non-BPS extremal charged
black holes in the same theory, that is

g2
YM

q2

M2

!

≥ g2
YM

Q2
BH

M2
ADM

. (6.32)

As discussed in detail for six-dimensional theories [13], the relevant black holes in the weak
coupling limit (6.1) are extremal dilatonic Reissner-Nordstrom black holes [3], and the same
logic applies to the situation in d = 4.

It is in fact illuminating to perform the computation for an arbitrary number d of spacetime
dimensions. Consider therefore d-dimensional Einstein-Maxwell-dilaton theory with action

S =

∫
R1,d−1

Md−2
Pl

2

(√
−gR− dφ ∧ ∗dφ

)
− 1

2g2
YM

eαφF ∧ ∗F , (6.33)
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where α ∈ R determines the coupling of the massless dilaton φ to the gauge kinetic term. The
charge-to-mass ratio of an extremal dilatonic Reissner-Nordstrom black hole solution in this
theory is [3, 134]

Q2
BH g

2
YM

M2
ADM

=
1

Md−2
Pl

(
d− 3

d− 2
+
α2

4

)
. (6.34)

The first, d-dependent term is the purely gravitational contribution, while the second term is
due to the scalar charge of the black hole with respect to the massless dilaton φ.

In the present setup, the gauge coupling scales with the volume modulus vol(C0) in the
F-theory duality frame. The situation is, however, most simply described directly in the dual
heterotic frame, which is the physically relevant duality frame in the asymptotic weak coupling
limit (6.1). In the heterotic frame, the inverse gauge coupling square is proportional to the
dilaton field, which in d = 4 dimensions takes the form

Sd=4
het = e−2Φvol(B3) , (6.35)

where Φ is the ten dimensional string frame dilaton. The weak coupling limit hence translates
into the limit

Shet →∞ , MPl finite . (6.36)

The relevant pieces of the dynamics follow by straightforward dimensional reduction of the
10d heterotic string frame action

S10d =

∫
R1,9

1

2κ2
10

(√
−gR + 4 dΦ ∧ ∗dΦ

)
− 1

2g2
YM,10

e−2ΦF ∧ ∗F . (6.37)

The important information for us is the precise normalization of the kinetic term of the dilaton
Φ and how it enters the exponential in the gauge kinetic term. After dimensional reduction
to d dimensions all terms pick up a factor of vol(Z5−d/2), which for the present purpose we
can simply normalize to one. The relevant step consists in the usual Weyl rescaling of the
d-dimensional metric

gMN → e
4
d−2

Φ gMN , M,N = 0, 1, . . . , d− 1 , (6.38)

to remove the Φ-dependence of the Einstein-Hilbert term. After this rescaling we obtain the
action

S =

∫
R1,d−1

M2
Pl

2

√
−g
(
R− 4

d− 2
dΦ ∧ ∗dΦ

)
− 1

2g2
YM

e−
4
d−2

ΦF ∧ ∗F . (6.39)

Comparison with the canonically normalised action (6.33) identifies

φ =

√
4

d− 2
Φ , α = −

√
4

d− 2
. (6.40)

In particular, the charge-to-mass ratio (6.34) of an extremal dilatonic charged black hole is
independent of the number of spacetime dimensions, and universally given by

Q2
BH g

2
YM

M2
ADM

=
1

Md−2
Pl

. (6.41)

This is a result of the interplay between the purely gravitational and the dilaton-dependent [3]
contribution in (6.34). The latter can equivalently be interpreted in terms of the Yukawa
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interactions between the charged particles in the weak coupling limit [8], as further discussed
also in [14].

To conclude, the tower of charged states satisfying the inequality (6.31) are in precise
agreement with the super-extremality condition, as required by the Weak Gravity Conjecture.
Furthermore, the tower of super-extremal states does in general not form a charge sublattice.
To the best of our understanding, such a sublattice of super-extremal states is a sufficient
condition [3,4] for the Weak Gravity Conjecture to be stable under dimensional reduction, and
moreover realized in a number of string theoretic models such as [4,13,56]. That the sublattice
version of the conjecture might in principle be allowed to fail (as long as a suitable tower of
super-extremal states exists) has been pointed in [5], based on consistency arguments for the
effective field theory. Our four-dimensional N = 1 supersymmetric setup provides explicit
examples for this, at least at the level of the index for the unique heterotic string becoming
tensionless in the weak coupling limit.

6.4 Stückelberg masses and the Weak Gravity Conjecture

We now interpret our results on the Weak Gravity Conjecture in four dimensions in light of the
phenomenon that in the presence of gauge fluxes, the U(1) gauge boson generically acquires
a Stückelberg mass. As is well known, this is a consequence of the Green-Schwarz anomaly
cancelling term, which is given by

∫
B∧F in four dimensions and necessarily appears [124,135]

whenever the elliptic genus is nonzero. More generally it arises from the flux-induced gauging
of the shift symmetry of a certain linear combination of axions. That is, if we denote the
specific linear combination of axions participating in the Stückelberg mechanism by a, the
four-dimensional effective action contains a term14

S =

∫
R1,3

1

2
F ∧ ∗F +

1

2
f 2
a (da− gYMA) ∧ ∗(da− gYMA) + . . . , (6.42)

from which one deduces
M2

St = g2
YMf

2
a . (6.43)

At energy scales below MSt, the abelian gauge symmetry is broken to a global U(1) symmetry,
which by itself is in general further broken by instanton effects [112–114] to a discrete symmetry.
Interesting consequences of the Weak Gravity Conjecture for Stückelberg massive U(1)s have
been pointed out in [39].

For generic values of gYM and fa of order one, the mass of the U(1) gauge field sits near the
compactification scale MKK of the theory. However, in the weak coupling limit we consider,
the Stückelberg mass term tends to zero unless at the same time the decay constant fa for the
Stückelberg axion diverges such as to compensate for the vanishing of g2

YM. To determine the
parametric behaviour of M2

St in the weak coupling limit, note that in the Type IIB/F-theory
frame, the Stückelberg axion is a linear combination of the axionic partners of the Kähler
moduli of the base B3. At general points in Kähler moduli space, the mass is given by (up to
numbers of order one which we neglect, see e.g. [136–138])

M2
St = g2

YM GαβΠαΠβ . (6.44)

14To read off the physical Stückelberg mass, we have rescaled the gauge potential compared to the action
(6.39) such as to arrive at a canonically normalised gauge kinetic term.
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Here Gαβ is the inverse of the metric

Gαβ = −3/2

K
Kαβ +

(
3/2

K

)2

KαKβ (6.45)

on the Kähler moduli space of Type IIB compactified on B3 [139, 140]. It is defined in terms
of the Kähler metric J = vαωα in some basis, ωα, of H1,1(B3), with intersection numbers
Kαβγ = ωα · ωβ · ωγ and

Kαβ = Kαβγvγ , (6.46)

Kα = Kαβγvβvγ , (6.47)

K = Kαβγvαvβvγ ≡ 6vol(B3) . (6.48)

The quantity
Πα = ωα · S · F b , (6.49)

on the other hand, is purely topological. Here F b ∈ H1,1(B3) defines the U(1) four-flux G =
π−1(F b) ◦ σ(S), as before.

Even without entering a detailed analysis of the Kähler metric Gαβ, we can deduce the
following parametric behavior of M2

St in the weak coupling limit:

G modular: M2
St ∼ 1

t6
M2

KK

G quasi-modular: M2
St ∼ 1

t3
M2

KK as g2
YM ∼ 1

t2
for t→∞ .

G generic: M2
St ∼M2

KK

To see this, let us identify the basis ωα with the generators of the Kähler cone (or a subset
thereof if the Kähler cone is non-simplicial). Assume first that the flux G is chosen such as to
give rise to a modular elliptic genus. According to the criterion (4.9) this means that the only
non-vanishing contribution to Πα is from the overlap with the direction in Kähler moduli space
that is dual to the heterotic dilaton, Shet. The Stückelberg axion a, which is its axionic partner,
is hence dual to the universal heterotic 2-form field, B2, dB2 = f 2

a ∗ da. The kinetic term of B2

in the four-dimensional Einstein frame follows by dimensional reduction of the ten-dimensional
kinetic term in the string frame:

1

4κ2
10

∫
R1,9

e−2ΦdB2 ∧ ∗dB2 =⇒ vol(B3)

4κ2
10

∫
R1,3

e−4ΦdB2 ∧ ∗dB2 . (6.50)

The extra scale factor of e−2Φ appears in going from the four-dimensional string to Einstein
frame via the Weyl rescaling (6.38). In view of (6.39), we can furthermore identify the dilaton
with the Kähler parameter that implements the weak coupling limit,

t ∼ e−Φ , (6.51)

and conclude f 2
a ∼ 1

t4
.15 This combines with g2

YM ∼ 1
t2

to the parametric behaviour of M2
St ∼

1
t6
M2

KK.
For quasi-modular fluxes, the Stückelberg axion is a linear combination of the universal

axion and the axions dual to the chiral 2-forms Ba
2 associated with the heterotic NS5-branes.

15Note that the kinetic term of the 2-form dual to an axion with kinetic term (6.42) scales as 1
f2
a

∫
R1,3 dB2 ∧

∗dB2.
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The kinetic term of Ba
2 in the four-dimensional Einstein frame follows from the pseudo-action

of the NS5-brane wrapped along a curve ΓH
a , where the index H reminds us that this curve is

viewed as a curve on the base of the heterotic elliptically fibered three-fold Z3. Up to numerical
prefactors, and taking into account again the rescaling to four-dimensional Einstein frame, this
gives: ∫

R1,5

dBa
2 ∧ ∗dBa

2 =⇒ vol(ΓH
a )

∫
R1,3

e−2ΦdBa
2 ∧ ∗dBa

2 . (6.52)

Note that unlike for the universal axion, the six-dimensional kinetic term of Ba
2 carries no

prefactor of e−2Φ. The volume of the curve ΓH
a generically scales like

vol(ΓH
a ) ∼ 1

t
. (6.53)

To see this, consider the corresponding curve in the dual F-theory geometry B3, which we
denote by ΓF

a for clarity. A D3-brane instanton on p∗(ΓF
a ) ⊂ B3 on the F-theory side maps to

a heterotic worldsheet instanton on ΓH
a . Both instanton suppression factors must coincide. On

the F-theory side, SD3 ∼ vol(p∗(ΓF
a )) ∼ t × 1

t2
= 1

t
, where the first factor of t is the volume

of the curve ΓF
a and the second factor comes from the fiber C0. The scaling of vol(ΓF

a ) ∼ t
in turn follows from the scaling of the Kähler cone generators in the weak coupling limit.
On the other hand, the worldsheet instanton action on the heterotic side scales like vol(ΓH

a ),
leading to (6.53).16 Combining (6.53) with (6.52) implies f 2

a ∼ 1
t

for the axions dual to Ba
2,

which dominates over the contribution from the universal axion and results in the following
scaling: M2

St ∼ 1
t3
M2

KK.
The remaining case corresponds to generic, i.e. non-modular fluxes, for which also the

Kähler moduli axions in the dual heterotic frame may mix into the Stückelberg axion. It is
now easier to analyze the system in the Type IIB frame. The generic behaviour of Gαβ can be
deduced by inspection of (6.45) for the weak coupling limit under consideration. The leading
component of its inverse Gαβ turns out to scale as t2. For generic Πα, this leading term in the
axion decay constant together with g2

YM ∼ 1/t2 implies that M2
St ∼ 1

t2
× t2M2

KK ∼M2
KK, which

is in marked contrast as compared to the (quasi-)modular fluxes.
This behaviour is indeed explicity confirmed by direct evaluation of (6.44) for the three

different types of fluxes, in particular for the specific model presented in Section 5.
The suppression pattern of the Stückelberg mass for quasi-modular versus generic fluxes

resonates perfectly with the results of Section 4.2.2: Whenever the Stückelberg mass is para-
metrically vanishing in the weak coupling limit because the fluxes obey the (quasi-)modularity
constraints, all unsuppressed instanton effects respect the U(1) symmetry, as expected for an
intact gauge symmetry.

The parametric behaviour of MSt is particularly interesting in the context of the Weak
Gravity Conjecture. For the special case of (quasi-)modular fluxes, we see that the Stückelberg
mass is parametrically suppressed with respect to the compactification scale MKK, at least in
the weak coupling regime t → ∞ where we are testing the Weak Gravity Conjecture. In this
sense, there exists a broad energy range MSt ∼ 1

ts
MKK ≤ E ≤ MKK (with s = 3 or s = 3/2

for modular or quasi-modular fluxes) where the abelian symmetry effectively acts as a gauge
symmetry, and hence the Weak Gravity Conjecture must clearly hold. This is the type of

16Note that there are no further factors of e2Φ in the heterotic worldsheet instanton action even in the four-
dimensional heterotic string frame, since going from the four-dimensional string to Einstein frame leaves the
metric on Z3 unchanged.
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fluxes for which we are explicitly observing a tower of super-extremal states with the expected
properties, albeit not a charge sublattice.

On the other hand, for more generic non-modular fluxes, the U(1) symmetry behaves like
a global symmetry at all energies below MKK, even in the limit where gYM → 0. One might
wonder if in such a situation the super-extremality bound is actually required to be satisfied
in the four-dimensional effective theory. Our take on this interesting question is that the U(1)
symmetry should be viewed as part of the gauge symmetry in the ultra-violet, in particular at
all energies above MKK. In this regime, the theory becomes higher-dimensional by definition,
and the effective gauge symmetry may enhance from U(1) to a bigger gauge group. Nonetheless
the theory must obey the higher-dimensional super-extremality condition with respect to this
abelian subgroup of the full gauge symmetry. As we have discussed in the previous section,
the quantitative bound is the same across all dimensions. In this sense, the observed super-
extremality may be seen as the four-dimensional shadow of the higher dimensional Weak Gravity
Conjecture.

For non-modular fluxes there is no closed expression for the elliptic genus as a weak Jacobi
form, but in all examples we have studied the predictions of the Weak Gravity Conjecture are
satisfied for a tower of states. More precisely, this statement holds by extrapolation of the
low-excitation spectrum which we are explicitly computing via mirror symmetry. It would be
extremely interesting to understand if there is any deeper meaning to the appearance of gaps
in the tower of super-extremal states for (quasi-) modular fluxes, in view of the special scaling
behaviour of the Stückelberg mass as compared to more generic fluxes.

7 Conclusions and Outlook

In this work we have launched a quantitative analysis of the Weak Gravity Conjecture in
string compactifications to four dimensions with only N = 1 supersymmetry. Despite major
differences compared to six-dimensional compactifications with eight supercharges [13, 14], we
have again been able to confirm, under certain assumptions, the predictions of the Weak Gravity
Conjecture combined with the Swampland Distance Conjecture: Modulo some caveats that were
discussed in Section 6.1, in the vicinity of a weak coupling point of a gauge theory coupled to
gravity (here for gauge group U(1)), a tower of charged states becomes light. It contains, as a
subset, a tower of states whose charge-to-mass ratio exceeds that of certain charged dilatonic
extremal black holes.

We have reached this conclusion in the framework of F-theory compactified on Calabi-Yau
four-folds Y4 with specific four-form fluxes activated. The tower of states forms a subset of the
excitations of a solitonic string that arises from a D3-brane wrapping a distinguished, shrinking
curve C0 on Y4. In favorable situations this string is identified as a critical heterotic string,
which is not necessarily perturbative, and its elliptic genus provides valuable information about
its charged spectrum.

At a technical level, what makes the non-perturbative computation of the elliptic genus
possible is the duality with M-theory/Type IIA theory on the same elliptic fibration. This
is similar to the situation in six dimensions [65–67]. The elliptic genus can be inferred from
the genus-zero free energy of the topological string on Y4, in the presence of the four-flux.
This free energy in turn is computable via standard methods of mirror symmetry on four-
folds [71, 72,87–89].

The new feature that we had to take into account in this work is the flux background, which
lies in a particular component of the primary vertical subspace of H2,2(Y4). The fluxes contained
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in this subspace lift to chirality generating U(1) gauge fluxes in F-theory. Their intersection
form is in agreement with the fact that the induced genus-zero free energy is, under suitable
conditions, a quasi-modular Jacobi form of weight w = −1, in contradistinction with different
types of vertical fluxes which do not lift to gauge fluxes in F-theory [87,88].

More precisely, we have found that only a subset of the a priori possible gauge fluxes
leads to a quasi-modular or fully modular elliptic genus. The quasi-modular and the modular
fluxes are in turn distinguished by whether or not NS5-branes [63, 64] (in the dual heterotic
frame) contribute to anomaly cancellation. In this sense, we have provided a non-perturbative
generalisation of the classical, conformal field theoretical elliptic genus. The behaviour for more
general fluxes is a particularly exciting direction for future research: The elliptic genus is still
anti-symmetric in the U(1) field strength fugacity, albeit not a standard Jacobi form, and it is
tempting to investigate to what extent it obeys distinguished arithmetic properties.

To be more specific, let us recapitulate the meaning of the charge spectrum as encoded in
the elliptic genus. In contrast to its reductions to three or two dimensions, this spectrum is not
BPS saturated. Rather it consists of level-matched pairs of the left-moving tower of charged
states, as encoded in the elliptic genus, with right-moving oscillator excitations of the Ramond
ground states. In the parity-odd sector of the partition function, these states necessarily can-
cel out at massive levels due to world-sheet supersymmetry. Nevertheless, individually these
massive states must exist, at least at weak coupling where the description in terms of conformal
field theory is accurate. Note that these states are protected, at tree level, against deformations
by moduli, due to holomorphic factorization, modularity and their pairing with oscillator ex-
citations. This observation is sufficient for proving, at tree level, the Weak Gravity Conjecture
in the presence of U(1) flux, which posits that at least some states with a charge-to-mass ratio
larger than that of certain extremal black holes exist.

Moreover, we have found that if the elliptic genus is modular or quasi-modular, it contains
gaps in the charge spectrum (see Figure 1). This issue is more drastic for a non-chiral theory
where the elliptic genus vanishes identically, and even in an otherwise chiral four-dimensional
F-theory compactification it necessarily vanishes if the U(1) four-flux vanishes. The question
is whether this jeopardizes some of the Quantum Gravity Conjectures, in particular the Com-
pleteness Conjecture [18, 132] or the sublattice Weak Gravity Conjecture [4].17 All we can
safely say is that these states are not visible in the parity odd, RR sector of the theory, though
they may well appear in the other sectors. Note that those other sectors are not protected by
holomorphic factorization and modularity, and so may in general depend on moduli already
at tree level. In particular the masses of some of these states may become arbitrarily large in
certain regions of the moduli space, so that they effectively decouple from the theory. Thus, for
quantities that are not encoded in the elliptic genus, it is unclear to us how to draw conclusions
about the Weak Gravity Conjecture for N = 1 supersymmetric theories; it would be interesting
to explore the physical implications further, in particular also in light of refs. [5, 62].

A significant distinction between theories with (quasi-)modular fluxes and generic non-
modular fluxes concerns the Stückelberg mass that the U(1) gauge field necessarily acquires
whenever the elliptic genus does not vanish. In the former case, the mass is parametrically
suppressed in the weak coupling regime, and we can consider the gauge field as being massless
as far as the WGC is concerned. On the other hand, for non-(quasi-)modular fluxes, the
Stückelberg mass is generically not suppressed with respect to the compactification scale, even

17At a heuristic level we could say that the gaps occur only for specific choices of flux while they disappear
for generic fluxes, so computing the elliptic genus for a generic background samples the maximal set of possible
string excitations at given charge and mass level.
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in the weak coupling limit. A deeper understanding of this phenomenon, possibly in conjunction
with the presence or absence of the gaps in the spectrum observed for (quasi-)modular fluxes,
is clearly desirable.

As a cautionary remark, we are certainly aware that since we have only four supercharges at
our disposal, our analysis is necessarily less robust as compared to the previously studied models
with more supersymmetries. A priori, many of our statements are strictly valid only in the limit
of weak coupling. On the other hand, we expect the elliptic genus, as geometrically determined
via mirror symmetry from F-theory, to be robust beyond perturbation theory. This should hold
at least as far as charged state counting is concerned, even though these states are not BPS in
four dimensions. An indication for this to be true is that the quasi-modular elliptic genus we
found confirms the expected predictions, despite the fact that it does not correspond to a fully
perturbative heterotic string. This is not to say that numerical charge-to-mass ratios will not
be renormalized as soon as we leave the regime of weak coupling. Subleading corrections both
to the stringy analysis and to the black hole solution are expected to modify our classical results
for the super-extremality condition and its realisation on a tower of states, but an order-one
deviation seems implausible.

Another new feature is that the three-fold base B3 of the elliptic four-fold Y4 enjoys a
considerably richer Kähler geometry, as compared to the base B2 of an elliptic three-fold Y3 that
is relevant for six-dimensional compactifications. For the latter, the behaviour near the weak
coupling region of the F-theory compactification can be determined in full generality [13,14]. In
particular, the weak coupling limit is governed by a single Kähler modulus becoming infinite.

By contrast, for the elliptic four-folds under consideration with three-dimensional bases B3,
we have identified two different classes of weak coupling limits. While in the first class the
appearance of a heterotic string of the type discussed above is ensured, the second type of
limit may only give rise to an asymptotically tensionless non-critical string from a D3-brane
wrapping a vanishing rational curve of positive normal bundle. It would be extremely interesting
to understand the charge spectrum of this type of strings, at a level comparable to the analysis
performed in this paper for the heterotic string.
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A Jacobi forms

For reference we briefly list a few properties and definitions of certain weak Jacobi forms. More
details can be found for instance in [97,98]. Recall that by definition a Jacobi form of weight w
and index m is a holomorphic function from H×C to C, which transforms under the modular
group as follows:

ϕw,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)we2πi mc

cτ+d
z2ϕw,m(τ, z) , (A.1)

ϕw,m (τ, z + λτ + µ) = e−2πim(z2τ+2λz)ϕw,m(τ, z) , λ, µ ∈ Z .
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For integer m, the ring of such Jacobi forms is generated by the elements of R shown in
eq. (2.13). Explicitly we have in terms of the standard theta and eta-functions:

ϕ0,1(τ, z) = 4

(
ϑ2(τ, z)2

ϑ2(τ, 0)2
+
ϑ3(τ, z)2

ϑ3(τ, 0)2
+
ϑ4(τ, z)2

ϑ4(τ, 0)2

)
,

ϕ−1,2(τ, z) =
ϑ1(τ, 2z)

η3(τ)
, (A.2)

ϕ−2,1(τ, z) =
ϑ1(τ, z)2

η6(τ)
.

These generators are not free but satisfy the following relation:

432ϕ2
−1,2 = ϕ−2,1

(
ϕ3

0,1 − 3E4ϕ
2
−2,1ϕ0,1 + 2E6ϕ

3
−2,1

)
. (A.3)

B Details of the four-fold Y4 discussed in Section 5

We start by introducing the geometry of the three-fold base, B3, of the elliptic four-fold, Y4, in
question. Let us first consider a P1-fibered three-fold Ht over P2,

Ht = P(OP2 ⊕OP2(t)) , t ∈ Z , (B.1)

where the parameter t characterises how the P1 fibration is twisted. The two-dimensional
cohomology, H1,1(Ht), is spanned by the pull-back H of the hyperplane class in P2 and the
section S∞ of the rational fibration ‘at infinity,’ with the intersection property

S∞ · S∞ = − t S∞ ·H . (B.2)

Note that Ht can be thought of as a three-fold generalisation of the Hirzebruch surface Fa,
where H is the analogue of the fibral class, and S∞ that of the section class. Altogether (B.2)
leads to the intersection polynomial

I(Ht) = t2 S3
∞ − t S2

∞H + S∞H
2 , (B.3)

and its first Chern class is given by

c1(Ht) = 2S∞ + (3 + t)H . (B.4)

In order to fully explore the different types of fluxes discussed in Section 4, we specialise to
a base B3 which is the blowup of Ht=1 along a hyperplane in the P2, i.e., along S∞ ·H. To be
specific, the toric coordinates of B3 can be described as in Table B.1, in terms of the charges
of a gauged linear sigma model (GLSM). The first two and the next three columns in the table
represent the fiber and the base coordinates of the H1, respectively, while the last column is
introduced as the blow-up divisor.

To characterise the emergent weakly-coupled heterotic string, it is necessary to analyse the
topological and geometrical properties of B3 itself. Given the toric description in Table B.1,
this proceeds via appropriate combinatorial computations, e.g., by making use of PALP [141]
and SAGE [142]. The result of such an analysis is as follows. Firstly, the Mori cone M(B3) is
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νx0 νx1 νy0 νy1 νy2 νe

U(1)S∞ 1 1 0 0 0 0
U(1)H 0 t = 1 1 1 1 0
U(1)E −1 0 −1 0 0 1

Table B.1: GLSM charges of the toric coordinates of the internal manifold B3, obtained by
blowing up the P1-fibered three-fold Ht=1 along a hyperplane curve in its P2 base.

spanned by three generators `(i), which we describe in terms of their intersection numbers with
the 6 base toric divisors dρ := {νρ = 0}, for ρ = x0, x1, y0, y1, y2, and e, as follows:

`(1) = ( −2, 0, 0, 1, 1, 1) ,
`(2) = ( 1, 0, 1, 0, 0, −1) ,
`(3) = ( 0, 1, −1, 0, 0, 1) .

(B.5)

Then, in turn, (the closure of) the Kähler cone K(B3) is spanned by the three divisor classes,

j1 = dy1 ,

j2 = dx1 + dy1 − de , (B.6)

j3 = dx1 ,

where
∫
`(a)

jb = δab for a, b = 1, 2, 3. Note that dy1 is the pullback of a curve class from B2 to
B3. Other relevant topological properties are the triple intersection numbers, which we list in
terms of an intersection polynomial as follows:

I(B3) = j2
1j2 + j2

1j3 + 2j1j
2
2 + 2j1j2j3 + j1j

2
3 + 4j3

2 + 4j2
2j3 + 2j2j

2
3 + j3

3 . (B.7)

As discussed in Section 6.1, a weakly-coupled, nearly tensionless heterotic string is obtained
by wrapping a D3-brane on a curve C0 ⊂ B3 that shrinks asymptotically to zero volume. Recall
that one of the various important properties (6.14) of C0 is that it takes the form18

C0 = J0 · J0 , (B.8)

where J0 is one of the Kähler cone generators with J0 ·J0 6= 0 and J3
0 = 0. From the intersection

polynomial (B.7), we immediately identify it as

J0 = j1(= dy1) , (B.9)

which leads to global limits of Type A defined in Section 6.1. Note that this is the only choice for
J0 and in particular that global limits of Type B are not available for the present base three-fold
B3, given that the other two Kähler cone generators have non-trivial triple self-intersections.

18Furthermore, one can also show that (B.8) is the only curve that can lead to a weakly-coupled tensionless
heterotic string. This can be seen, for example, by writing a most general curve class as a non-negative linear
combination C =

∑3
i=1 ci`

(i) of the Mori cone generators and demanding that K̄ · C = c1 + c2 + c3 = 2. For
C to shrink in the global limit with respect to (B.9), one immediately learns that c1 = 0. Then, the only
possible choices for the other coefficients are (c2, c3) = (2, 0), (1, 1), and (0, 2). However, the first and the third
are shrinkable at a finite distance in the moduli space with J = j1 + εj2 + j3 and j1 + j2 + εj3 (as ε → 0+),
respectively, both of which leave vol(B3) finite, and hence cannot lead to a heterotic string. The second choice
on the other hand can easily be seen to correspond to (B.9).
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Having defined the base B3 of the elliptic fibration, we now turn to the geometry of Y4

itself. To realise a U(1) gauge symmetry, we will take the elliptic fiber over B3 to be a general
hypersurface of degree 4 in Bl1P2

112. Fibrations of this type have a rank–1 Mordell-Weil group
of rational sections [143] and are obtained as a hypersurface of the form

PMP ≡ sw2 + b0s
2u2w + b1suvw + b2v

2w + c0s
3u4 + c1s

2u3v + c2su
2v2 + c3uv

3 = 0 . (B.10)

Here, u, v, w and s are the four homogeneous coordinates of the fibral ambient space Bl1P2
112,

while the coefficients bi and ci are sections of line bundles on the base B3, whose classes are
described in terms of the anti-canonical class K̄ and a class β ∈ H2(B3,Z) as follows:

Coefficients in PMP b0 b1 b2 c0 c1 c2 c3 c4

Classes in H2(B3,Z) β K̄ 2K̄ − β 2β K̄ + β 2K̄ 3K̄ − β 4K̄ − 2β

Given the three-fold base B3 discussed above, one can therefore specify a model via a choice of
β, which necessarily has to lie in the range

0 ≤ β ≤ 2K̄ . (B.11)

The inequalities mean that the difference of two classes is an effective class. Denoting by Lu
and Ls the line bundles for which

u ∈ H0(Y4,Lu) , s ∈ H0(Y4,Ls) , (B.12)

we see that due to (B.10) the other two fibral ambient coordinates must be a section of the
following line bundles

v ∈ H0(Y4,Lu ⊗ Ls ⊗O(β − K̄)) , w ∈ H0(Y4,L2
u ⊗ Ls ⊗O(β)) . (B.13)

The toric coordinates of Y4 can thus be described as in Table B.2, where β has been paramet-
erized as

β = xD1 + yD2 + zD3 . (B.14)

This refers to a basis of H1,1(B3,Z) defined as follows:

D1 = dx0 , D2 = dy0 , D3 = de . (B.15)

The model analyzed in Section 5 is then specified by the choice

x = 2 , y = 2 , z = 4 . (B.16)

Given the toric data in Table B.2, we can perform similar computations as we did for the
three-fold base B3 before. This yields 18 triangulations of the lattice polytope and one of them
turns out to be compatible with a flat elliptic fibration.19 The Mori cone M(Y4) associated
with this phase is generated by the five curves

l(1) = ( −2, 0, 0, 1, 1, 1, 0, −1, 0, 0) ,
l(2) = ( 1, 0, 1, 0, 0, −1, 0, −1, 0, 0) ,
l(3) = ( 0, 0, 0, 0, 0, 0, 1, 0, 1, −1) ,
l(4) = ( 0, 1, −1, 0, 0, 1, −1, 0, 0, 0) ,
l(5) = ( 0, 0, 0, 0, 0, 0, −1, 1, 0, 2) .

(B.17)

19A criterion for a flat elliptic fibration is that a 2×6 sub-block of zeros exists in the 5×10 Mori cone matrix.
This singles out the phase whose properties are listed below.
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νx0 νx1 νy0 νy1 νy2 νe νu νv νw νs

U(1)S∞−E 1 1 0 0 0 0 0 x− 2 x 0
U(1)H−E 0 1 1 1 1 0 0 y − 4 y 0
U(1)E 0 2 0 1 1 1 0 z− 5 z 0
U(1)U 0 0 0 0 0 0 1 2 1 0
U(1)S 0 0 0 0 0 0 0 1 1 1

Table B.2: GLSM charges of the toric coordinates of the four-fold Y4 that is an elliptic fibration
over the base three-fold B3, which by itself is described in Table B.1.

Here, each of the generators is described in terms of its intersection numbers with the 10 toric
divisors dρ := {νρ = 0}, for ρ = x0, · · · , s, where we keep the same ordering as in Table B.2.
The (closure of the) Kähler cone K(Y4) is then spanned by the divisor classes,

J1 = dy1 ,

J2 = dx1 + dy1 − de ,
J3 = dw , (B.18)

J4 = dx1 ,

J5 = dw − dx1 − du ,

where
∫
l(a)

Jb = δab for a, b = 1, . . . , 5. Note that three of the generators J1, J2, and J4 of K(Y4)
are respectively pull-backs of the generators j1, j2, and j3 in (B.6) of K(B3), where, by slight
abuse of notation, the base toric divisors and their pull-backs are denoted by the same symbols.
Finally, the intersection polynomial is given as

I(Y4) = 10J1
2J3

2 + 46J2
2J3

2 + 262J3
4 + 16J3

2J4
2 + 4J1

2J5
2 + 20J2

2J5
2 + 134J3

2J5
2

+ 8J4
2J5

2 + 52J5
4 + 57J3

3J1 + 16J5
3J1 + 117J3

3J2 + 34J5
3J2 + 23J3

2J1J2 (B.19)

+ 10J5
2J1J2 + 12J2

3J3 + 3J4
3J3 + 91J5

3J3 + 6J2
2J1J3 + 3J4

2J1J3 + 28J5
2J1J3

+ 3J1
2J2J3 + 6J4

2J2J3 + 59J5
2J2J3 + 72J3

3J4 + 26J5
3J4 + 16J3

2J1J4 + 8J5
2J1J4

+ 32J3
2J2J4 + 16J5

2J2J4 + 3J1
2J3J4 + 12J2

2J3J4 + 43J5
2J3J4 + 6J1J2J3J4 + 8J2

3J5

+ 190J3
3J5 + 2J4

3J5 + 4J2
2J1J5 + 41J3

2J1J5 + 2J4
2J1J5 + 2J1

2J2J5 + 85J3
2J2J5

+ 4J4
2J2J5 + 7J1

2J3J5 + 34J2
2J3J5 + 13J4

2J3J5 + 17J1J2J3J5 + 2J1
2J4J5 + 8J2

2J4J5

+ 56J3
2J4J5 + 4J1J2J4J5 + 13J1J3J4J5 + 26J2J3J4J5 .

From this the intersection ideal, or principal part of the Picard-Fuchs operators, can be read
off as (θa ≡ za∂a)

3θ2
4 − θ1θ5 − θ2θ5 − θ4θ5 + θ2

5 = 0 ,

3θ2θ4 − 2θ1θ5 − 2θ2θ5 − 2θ4θ5 + 2θ2
5 = 0 ,

3θ1θ4 − θ1θ5 − θ2θ5 − θ4θ5 + θ2
5 = 0 ,

θ2
3 − θ3θ4 − θ3θ5 = 0 ,

θ1θ3 + θ2θ3 − 2θ1θ5 − 2θ2θ5 − θ3θ5 + 2θ2
5 = 0 ,

2θ1θ2 − θ2
2 = 0 ,

48θ3θ4θ5 − 8θ1θ
2
5 − 8θ2θ

2
5 − 30θ3θ

2
5 − 65θ4θ

2
5 + 53θ3

5 = 0 ,
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νx0 νx1 νy0 νy1 νy2 νe

U(1)S∞ 1 1 0 0 0 0
U(1)H 0 1 1 1 1 0
U(1)E 0 0 −1 −1 0 1

Table C.1: GLSM charges of the toric coordinates of the base B3, obtained by blowing up the
P1-fibered three-fold H1 along its fiber P1.

96θ2θ3θ5 − 32θ1θ
2
5 − 176θ2θ

2
5 − 66θ3θ

2
5 + θ4θ

2
5 + 131θ3

5 = 0 ,

3θ2
2θ5 − 4θ1θ

2
5 − 6θ2θ

2
5 + 4θ3

5 = 0 , (B.20)

3θ2
1θ5 − 4θ1θ

2
5 + θ3

5 = 0 ,

144θ2
2θ3 − 416θ1θ

2
5 − 560θ2θ

2
5 − 66θ3θ

2
5 + θ4θ

2
5 + 515θ3

5 = 0 ,

9θ3
2 − 16θ1θ

2
5 − 16θ2θ

2
5 − 4θ4θ

2
5 + 16θ3

5 = 0 ,

θ3
1 = 0 ,

2θ4θ
3
5 − θ4

5 = 0 ,

4θ3θ
3
5 − 7θ4

5 = 0 ,

26θ2θ
3
5 − 17θ4

5 = 0 ,

13θ1θ
3
5 − 4θ4

5 = 0 ,

θ5
5 = 0 .

C Weak coupling limits of Type A for another example

base B3

In this appendix we will analyze global limits of vanishing gauge coupling of Type A, as defined
in Section 6.1, for F-theory on a specific base three-fold, B3. This will serve as an illustrative
example for the base three-folds whose Kähler cone has a more general structure than that
of the main example in Section 5. More specifically, for the global limits of Type A explored
here, both the I1-type and the I3-type (1, 1)-forms, as defined in (6.6) and (6.8), respectively,
will be present amongst the cone generators. In particular, we will verify that the asymptotic
expression (6.17) indeed applies to this example as well.

Like we did in Appendix B, let us first consider a P1-fibered three-fold Ht=1 over P2, with
twist t = 1 in (B.1). Its H1,1 cohomology is spanned by H and S∞ which have the intersection
property (B.2). The base space, B3, of our interest is then constructed by blowing Ht=1 up
along the P1 fiber, i.e., along H ·H. Specifically, the toric coordinates of B3 can be described
as in Table C.1; the first two and the next three columns in the table represent the fiber and
the base coordinates of H1, respectively, while the last column is introduced as the blow-up
divisor.

Given this toric description, the relevant topological and geometrical properties of B3 can
be easily determined. The Mori cone has three generators, which we describe in terms of their
intersections with the 6 base toric divisors dρ := {νρ = 0}, for ρ = x0, x1, y0, y1, y2, and e, as
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follows:
`(1) = ( −1, 0, 0, 0, 1, 1) ,
`(2) = ( 0, 0, 1, 1, 0, −1) ,
`(3) = ( 1, 1, 0, 0, 0, 0) .

(C.1)

The (closure of the) Kähler cone has the three generators,

j1 = dy2 ,

j2 = dy0 , (C.2)

j3 = dx1 ,

which are dual to the Mori cone generators, `(i). Finally, the intersection polynomial is given
by

I(B3) = j2
1j3 + j1j2j3 + j1j

2
3 + j2j

2
3 + j3

3 . (C.3)

Note that two of the generators, j1 and j2, have a vanishing triple self-intersection,

j3
1 = 0 = j3

2 . (C.4)

On the other hand, j2 · j2 turns out to be a trivial element of H2(B3,Z) as j2 · j2 · ji = 0 for all
i = 1, 2, 3. Therefore, the global limits of Type A are obtained via the identification

J0 = j1 . (C.5)

Associated to this is the curve C0 = J0 · J0 whose shrinking leads to the tensionless heterotic
string.

Furthermore, from the intersection polynomial (C.3) we immediately learn that j2 and j3

are generators of type I3 and of type I1, respectively. Therefore, the global limit (6.13) of the
base geometry should take the form

J = t1j1 + t2j2 + t3j3

= tj1 +
a

t2
j3 + cj2 , (C.6)

where t1 = t is the large parameter that determines the global limit, and t3 = a
t2

is a small
parameter for which a is of order one, while t2 = c is yet to be constrained further.

From the Mori cone data shown in Table (C.1), the anti-canonical class can be determined
as

K̄ = j1 + j2 + 2j3 , (C.7)

and for appropriate choices of β = xj1 + yj2 + zj3 we can specify a family of elliptic fibrations
for F-theory models. For these, the divisor of the height pairing takes the form

b = 6K̄ − 2β = (6− 2x)j1 + (6− 2y)j2 + (12− 2z)j3 . (C.8)

The U(1) fugacity index m is then computed as

m =
1

2
C0 · b = 6− z , (C.9)

where z needs to satisfy z ≤ 4 so that m ≥ 2. This follows if we require an F-theory background
that is compatible with anomaly cancellation.
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In terms of the Kähler form (C.6) we then proceed to compute the volumes of B3, b and C0

in turn. First, the volume of the three-fold B3,

vol(B3) =
1

6
J3 =

a

2
+
ac

t
+
a2c

2t4
+
a2

2t3
+
a3

6t6
, (C.10)

must remain finite in the global limit. Given that a is a finite parameter, c must thus be
constrained so that α := c

t
be finite in the limit. The volume is then further simplified as

vol(B3) → (
1

2
+ α)a , (C.11)

with 0 ≤ α <∞. Next, the volumes of b and C0 are computed, respectively, as

vol(b) = m(1 + 2α)t2 + · · · ,
vol(C0) =

a

t2
,

where the ellipsis indicates subleading pieces that vanish in the limit. Therefore, in the global
limit, the product of the two volumes obey

vol(b) vol(C0) = ma(1 + 2α) = 2m vol(B3) , (C.12)

again in precise agreement with (6.17).
It can also be shown easily that no other curve class on B3 contains a rational curve with

trivial normal bundle that shrinks in the limit (C.6). Therefore, the asymptotically tensionless
heterotic string associated with the C0 is unique and leads to a well-defined effective theory in
the weakly-coupled heterotic duality frame.

D General properties of weak coupling limits

As discussed in Section 6.1, for every weak coupling limit (6.1) the Kähler form of the base
space B3 must take the general form

J = tJ0 +
∑
ν∈I1

a′νJν +
∑
µ∈I2

b′µJµ +
∑
r∈I3

crJr , (D.1)

where t is the large parameter that contributes an infinite amount to the volume of S.
In this appendix, we prove some general properties of the global limit that we have an-

nounced in Section 6.1. Our proof relies on the technical assumption that the Kähler cone of
B3 is closed, i.e., that the Kähler cone generators are not merely pseudo-effective, but effective,
as well as that they are irreducible.

As a preparation let us recall the following simple

Lemma 1 On a Kähler surface Σ, suppose two non-trivial cycle classes V, V ′ ∈ H1,1(Σ) satisfy

V · V = 0 , (D.2)

V ′ · V = 0 . (D.3)

Then
V ′ · V ′ ≤ 0 and V ′ · V ′ = 0 iff V = αV ′ . (D.4)
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Proof: Introduce an orthogonal basis {w0, wi} of H1,1(Σ) for which only ω0 · ω0 = 1 and
ωi · ωj = −δij are non-zero. Such a basis always exists because the intersection form has
signature (1, h2(Σ)− 1). Expand V = v0ω0 + viωi and V ′ = v′0ω0 + v′iωi. Then by the assumed
properties of V and V ′,

v2
0 = vivi v0v

′
0 = viv

′
i (D.5)

with v0 6= 0 because V is non-trivial. By the Cauchy-Schwarz inequality therefore

V ′ · V ′ = v′0v
′
0 − v′iv′i =

(viv
′
i)

2

v2
0

− v′iv′i ≤
(vivi)(v

′
iv
′
i)

v2
0

− v′iv′i = 0 (D.6)

and equality holds if and only if vi = αv′i for some α and therefore, since v2
0 = vivi, also

V = αV ′.
We will furthermore make use of

Lemma 2 Any pair of distinct divisors D and D′ that lie in the closure of the Kähler cone of
a Kähler surface Σ must have a non-trivial intersection.

Proof: In the same orthogonal basis {w0, wi} of H1,1(Σ) we expand D = a0ω0 + aiωi and
D′ = a′0ω0 + a′iωi. Since D and D′ are in the closure of the Kähler cone of Σ,

0 ≤ D ·D = a2
0 −

∑
i

a2
i , (D.7)

0 ≤ D′ ·D′ = (a′0)2 −
∑
i

(a′i)
2 , (D.8)

0 ≤ D ·D′ = a0a
′
0 −

∑
i

aia
′
i . (D.9)

By the Cauchy-Schwarz inequality we have

(
∑
i

aia
′
i)

2 ≤ (
∑
i

a2
i )(
∑
i

a′2i ) ≤ (a0a
′
0)2 , (D.10)

where the last inequality uses (D.7) and (D.8). The inequality (D.9) can hence be saturated
only for D = βD′ (and in addition D2 = 0, D′2 = 0). Therefore, two distinct Kähler cone
generators D, D′ must intersect.

We now discuss the two different types of the global limits in turn.

D.1 Type A: J0 · J0 6= 0

We now discuss in detail the global limit for the situation where J0 · J0 6= 0.

Proposition 1 To take the weak coupling limit (6.1), the Kähler form on B3 must be of the
form (D.1), which for J0 · J0 6= 0 reduces further to

J = tJ0 +
∑
ν∈I1

aν
t2
Jν +

∑
r∈I3

crJr . (D.11)
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Proof: It has already been argued that the Kähler form must have an expansion as shown
in (D.1). Furthermore we now show that I2 is empty if J0 · J0 6= 0, i.e. there are no Kähler
generators with the property (6.7): Let S0 ∈ B3 be the irreducible subvariety of B3 with the
class [S0] = J0. Its existence is guaranteed by our technical assumptions on the Kähler cone.
Let

Ci,0 = Ji|S0 ∈ H2(S0) (D.12)

be the two-cycle class obtained by restricting the Kähler cone generator Ji to S0. Then, C0,0

and Cµ,0 are non-trivial since J0 · J0 6= 0 and J0 · Jµ 6= 0 for µ ∈ I2. Furthermore by (6.10) and
(6.7) we have20

C0,0 · C0,0 = J0 · J0 · J0 = 0 , (D.13)

Cµ,0 · C0,0 = J0 · J0 · Jµ = 0 . (D.14)

Lemma 1 then implies that
Cµ,0 · Cµ,0 ≤ 0 , (D.15)

where the equality can only hold if Cµ,0 is proportional to C0. On the other hand, because of
(6.3

Cµ,0 · Cµ,0 = J0 · Jµ · Jµ ≥ 0 (D.16)

the equality must hold and consequently

Cµ,0 = nµC0,0 . (D.17)

However, this indicates for all µ′ ∈ I2 that

J0 · Jµ · Jµ′ = Cµ,0 · Cµ′,0 = nµnµ′C0,0 · C0,0 = 0 , (D.18)

which contradicts the assumption that there exists µ′ ∈ I2 with a nontrivial triple intersection
J0 · Jµ · Jµ′ , i.e. that there are no generators of type I2. Hence, in order for vol(B3) to remain
finite in the limit, the ansatz (6.5) for the asymptotic Kähler form reduces to (D.11), where
a′ν = aν

t2
for some finite aν .

Proposition 2 In the weak coupling limit (D.11) with t→∞,

vol(S) = (
1

2
t2J0 · J0 +

1

2
crcsJr · Js + tcrJ0 · Jr + aν

cr
t2
Jν · Jr) · S + · · · , (D.19)

vol(B3) =
1

6
crcsctdrst +

1

2
aνd00ν + aν

cr
t
d0νr +

1

2
aν
crcs
t2
dνrs +

1

2
aνaν′

cr
t
drνν′ + · · ·(D.20)

where

J0 · Jr = nrJ0 · J0 for nr > 0 (D.21)

Jr · Js = nrsJ0 · J0 for nrs ≥ 0 (D.22)

and
drst = 0 ∀r, s, t ∈ I3. (D.23)

20We use the same symbol for the intersection form on S0 and B3 and trust that this does not lead to any
confusion.
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Finiteness of B3 then requires that

∀r ∈ I3 :
cr
t

finite as t→∞ , (D.24)

and moreover demanding vol(S)→∞ for t→∞ implies

J0 · J0 · S > 0 . (D.25)

Proof: The expressions (D.19) and (D.20) follow by expanding vol(S) = 1
2
J · J · S and

vol(B3) = 1
6
J · J · J , and keeping only those terms which do not obviously vanish in the limit

t→∞.

• To show (D.21) observe first that J0 · Jr is non-trivial for every r. This can be seen by
considering the very ample divisor S with class

[S] = m(J0 +
∑
ν

Jν +
∑
r

Jr) , (D.26)

for an appropriate m ∈ Z. Indeed, the expression in the brackets is a Kähler form and
hence ample, and therefore for m sufficiently large [S] is very ample. By Bertini’s theorem
(see e.g. [133]), S is irreducible and connected. Furthermore, the restrictions

C0 = J0|S , Cr = Jr|S (D.27)

are non-trivial classes on S. This is because [S] is in the interior of the Kähler cone of
B3 and hence (D.27) represents non-vanishing volumes of the effective divisors J0 and Jr
with respect to [S]. Furthermore, Lefschetz’s hyperplane theorem guarantees that C0 and
Cr are distinct classes on [S]. They lie in the closure of the Kähler cone of S because J0

and Jr are in the closure of the Kähler cone of the ambient space B3. By Lemma 2, C0

and Cr must therefore intersect on S, i.e.

0 6= C0 · Cr = [S] · J0 · Jr . (D.28)

It follows that J0 · Jr must be non-trivial on B3.

To arrive at (D.21), we consider again the surface S0 = [J0] and the cycles

C0,0 = J0|S0 (D.29)

Cr,0 = Jr|S0 . (D.30)

Since J0J̇0 6= 0 and J0 ·Jr 6= 0, both are non-trivial cycles. A similar application of Lemma
1 as in the proof of Proposition 1 yields that Cr,0 = nrC0,0 with nr 6= 0 and therefore
nr > 0.

• Likewise we can show that Jrs = nrsJ0 · J0 for nrs ≥ 0. To see this, we first observe that

Jr · Js = n′rsJ0 · Js (D.31)

by applying Lemma 1 to the two-cycles C0,s and Cr,s in Ss = [Js], where C0,s is non-trivial
again thanks to (D.21). Therefore,

Jr · Js = n′rsJ0 · Js = n′rsnsJ0 · J0 =: nrsJ0 · J0 . (D.32)

This implies that
drst = Jr · Js · Jt = nrsJ0 · J0 · Jt = 0 (D.33)

by the defining property (6.8) of the generators Jr.
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• Finally we prove (D.24). Consider the third term in the expression (D.20) for vol(B3).
In order that vol(B3) remain finite in the limit, this expression must be finite. Now, we
have for the intersection number

d0νr = J0 · Jr · Jν = nr J0 · J0 · Jν = nr d00ν ≥ 1, (D.34)

because, by definition of Jν , we know that J0 · J0 · Jν 6= 0 for all ν. Hence in the above
expression for vol(B3), there must exist a contribution not less than aνcr

t
, which must be

finite. Since aν is finite by itself and since for at least one ν, the parameter aν is of order
1 so that vol(B3) is not zero, we conclude that for all r also cr/t must be finite.

These results indeed imply (D.25): In the expression (D.19) the last term vanishes in the
limit t→∞ because cr

t
is finite. The other remaining terms are all proportional to J0 · J0 · S.

In order to obtain vol(S)→∞ as t→∞, we therefore have J0 · J0 · S 6= 0.

Proposition 3 The cycle C0 := J0 · J0 is a rational curve with a trivial normal bundle.

Proof: If C0 is an effective curve, it is clear that the normal bundle is trivial by adjunction
because J0 · J0 · J0 = 0. To establish that it is a rational curve, we make use of the fact
that J0 · J0 · S > 0, as shown above, as well as Mori’s Cone Theorem, which holds for any
smooth projective variety: There are countably many rational curves Ci on B3, satisfying
0 < K̄ · Ci ≤ dim(B3) + 1 = 4, such that the closure of the Mori cone has the structure

NE(B3) = NE(B3)K̄≤0 +
∑

R≥0Ci . (D.35)

Note first that J2
0 ∈ NE(B3). This is the case because J0 is in the closure of the cone of effective

divisors, which implies that J2
0 must lie in the closure of the Mori cone.

If C0 belongs to the second part of the decomposition (D.35) then it is effective. In this
case we may apply the Adjunction formula to compute its Euler number,

2− 2g =

∫
B3

(K̄ − 2J0)J2
0 = K̄ · C0 > 0 , (D.36)

where the last inequality follows from the assumption that C0 lies in the second part of (D.35).
We thus have g = 0 with K̄ · C0 = 2.

Suppose now that C0 belongs to the first part of the decomposition (D.35). If the gauge
symmetry supported on S is non-abelian, we have

12K̄ = S + S′ , (D.37)

where S′ is the remainder of the residual piece of the discriminant, which also has to be effective.
Upon intersecting with C0, we obtain

12K̄ · C0 = S · J2
0 + S′ · J2

0 , (D.38)

where both terms S ·J2
0 and S′ ·J2

0 are non-negative. Since we have shown above that S ·J2
0 > 0,

we conclude
K̄ · C0 > 0 , (D.39)

contradicting that C0 belongs to the first part of (D.35). When S supports a U(1) gauge group
in the sense that it is the height-pairing divisor of a section, it has already been conjectured
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in [13] that there exists an integer n > 0 such that S < n K̄. Morally speaking, the height-
pairing is a linear combination of 7-brane divisors (in Type IIB language), whose total class
is constrained by the 7-brane tadpole condition, and the O7-plane class is proportional to K̄.
The relation S < n K̄ is indeed satisfied for all classes of U(1) models in the literature that we
know of.

Proposition 4 In the weak coupling limit, we have

vol(S) vol(C0) = 2m vol(B3) as t→∞ , (D.40)

where

m =
1

2
C0 · S > 0 . (D.41)

Proof: Let us expand the surface S as

S := h0J0 + hνJν + hrJr , (D.42)

where the parameters are not necessarily positive.
We can now express the volumes of C0, S and B3, up to terms which vanish as t→∞, as

vol(C0) =
aν
t2
d00ν , (D.43)

vol(S) = (
1

2
t2J0 · J0 +

1

2
crcsJr · Js + tcrJ0 · Jr + aν

cr
t2
Jν · Jr) · S + · · · (D.44)

= (
1

2
t2hνd00ν +

1

2
hνcrcsdrsν + thνcrd0rν) + · · · (D.45)

= hνd00ν(
1

2
t2 +

1

2
crcsnrs + tnrcr) + · · · , (D.46)

vol(B3) =
1

6
crcsctdrst +

1

2
aνd00ν + aν

cr
t
d0νr +

1

2
aν
crcs
t2
dνrs +

1

2
aνaν′

cr
t4
drνν′ + · · ·(D.47)

=
1

2
aνd00ν + aν

cr
t
d0νr +

1

2
aν
crcs
t2
dνrs + · · · (D.48)

= aνd00ν(
1

2
+
nrcr
t

+
1

2

nrscrcs
t2

) + · · · , (D.49)

Here we have made use of eqs. (D.21), (D.22) and (D.23). Furthermore,

m =
1

2
S · J0 · J0 =

1

2
hνd00ν . (D.50)

Altogether, we conclude that for t→∞:

vol(S)vol(C0) = (
∑
ν

hνd00ν)(
∑
ν

aνd00ν)(
1

2
+

1

2

crcsnrs
t2

+
nrcr
t

) = 2mvol(B3) . (D.51)

D.2 Type B: J0 · J0 = 0

If J0 · J0 = 0, the weak coupling limit takes a rather different form. Specifically we have the
following
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Proposition 5 There are no generators of type I3 and in the global limit the Kähler form looks

J = tJ0 + b′µJµ , µ ∈ I2 , (D.52)

for suitably constrained parameters b′µ. In particular there exists some ν0 such that

b′ν0 = bν0 t
−1+aν0 for aν0 > 0 (D.53)

with bν0 finite as t→∞ and

∀µ with d0µν0 6= 0 : b′µ = bµ t
−aν0−∆µ ∆µ ≥ 0 (D.54)

for bµ0 finite as t→∞.

Proof: To see that no generators of type I3 can exist, we first note that these generators would
have to satisfy J0 · Jr 6= 0: This follows as in the proof of Proposition 2 by restricting J0 and
Jr to the very ample divisor [S] = m(J0 +

∑
µ Jµ +

∑
r Jr), with µ ∈ I2 and r ∈ I3 (assuming

the latter exist). On the other hand, by definition of I3,

J0 · Jr · J0 = 0 , (D.55)

J0 · Jr · Jµ = 0 ∀µ ∈ I2 , (D.56)

J0 · Jr · Js = 0 ∀s ∈ I3 . (D.57)

Since in the present situation there are no generators of type I1, the class J0 · Jr now vanishes:
J0 · Jr = 0. This contradiction can only be resolved by concluding that no generators of I3

exist.
We now expand S = h0J0 + hµJµ for µ ∈ I2 and observe that

vol(S) =
1

2
hµb

′
νb
′
ρdµνρ + thµb

′
νd0µν , (D.58)

vol(B3) =
1

2
tb′µb

′
νd0µν +

1

6
b′µb
′
νb
′
ρdµνρ . (D.59)

By assumption, in the weak coupling limit where t→∞, vol(S) receives an infinite contribution
from the terms involving a factor of J0 - otherwise we relabel the Kähler cone generators
accordingly. This means that there must exist some subset of ν̃0 ∈ I2 such that

J0 · Jν̃0 · S > 0 , (D.60)

and moreover a further subset {ν0} ⊂ {ν̃0} exists that leads to an infinite contribution to
vol(S):

t b′ν0J0 · Jν0 · S→∞ as t→∞ . (D.61)

This guarantees that for this subset, ν0, the Kähler parameters scale as in (D.53). At the same
time, vol(B3) contains the term

d0µν0b
′
µ b
′
ν0
t = d0µν0b

′
µ bν0 t

aν0 . (D.62)

Thus, in order for vol(B3) to remain finite, we must impose eq. (D.54).
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Proposition 6 There exists a rational curve Cν0 = J0 · Jν0 with normal bundle

NCν0/B3 = OCν0 ⊕OCν0 (dν0) , dν0 := d0ν0ν0 ≥ 0 , (D.63)

whose volume vanishes in the weak coupling limit.

Proof: If the cycle Cν0 = J0 ·Jν0 is a holomorphic curve, its normal bundle must be of the form
(D.63) because J0 · J0 = 0. The proof that Cν0 is a holomorphic rational curve is analogous to
the proof of Proposition 3: This time we use Mori’s cone theorem together with the fact that
Cν0 · S > 0 as established in (D.60). By the same reasoning as in Proposition 3, we conclude
that Cν0 · K̄ cannot vanish and hence by Mori’s cone theorem Cν0 is a rational curve. Note that
the adjunction formula now gives

2 = 2− 2g = (K̄ − J0 − Jν0) · J0 · Jν0 = K̄ · C0 − dν0 , (D.64)

so that altogether

K̄ · C0 = 2 + dν0 , NCν0/B3 = OCν0 ⊕OCν0 (dν0) . (D.65)

Finally, the volume of Cν0 is computed as

vol(C0) = b′µd0ν0µ = bµt
−aν0−∆µd0ν0µ → 0 as t→∞ . (D.66)

It is interesting to note that dν0 = 0 is required if the only way to take the limit is for the
exponent in b′ν0 = bν0 t

aν0 to lie in the regime aν0 >
1
2
: In this case finiteness of vol(B3) requires

that d0ν0ν0 = 0. But we cannot draw this conclusion in full generality, and hence we cannot
exclude situations where the only shrinking curves are rational, while having a non-trivial
normal bundle.

E Example of a base B3 admitting both Type A and

Type B weak coupling limits

We will present in this Appendix a complete analysis of the global limits for F-theory models,
where the base three-fold of the elliptic fibration has the form:

B3 = P1 × P2 . (E.1)

We are interested in this geometry because it supports global limits of both Type A and Type
B, as defined in Section 6.1, in two different regimes of its Kähler moduli space.

The Kähler cone of B3 is generated by the hyperplane classes j0 of P1 and j1 of P2. Since
the weak coupling limit must involve at least one large parameter in the expansion of the
Kähler form in terms of these two generators, there arise two qualitatively different scenarios
by identifying the large-parameter direction, J0, as j0 and j1, respectively. We will analyze
these two cases in turn.
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E.1 Type A: J0 = j1

The choice
J0 = j1., (E.2)

with J0 ·J0 6= 0, realizes the scenario of Type A in the classification of Section 6.1. Our general
discussion hence assures that the WGC is satisfied in the weak coupling limit thanks to the
excitation modes of the emergent tensionless heterotic string. In what follows we illustrate the
geometric underpinnings of this general result by verifying the relation (6.17) explicitly. The
importance of this relation for the WGC is explained in Section 6.3.

To this end, observe that the remaining Kähler cone generator, J ′ = j0, has the following
non-zero triple intersection number: J0 · J0 · J ′ = 1. According to (6.6), it is of type I1. The
global limit must then take the form

J = tJ0 +
a

t2
J ′ , (E.3)

where a is a finite order-one constant such that the base volume,

vol(B3) =
1

2
a , (E.4)

is fixed to be finite in the limit t→∞. The volume of a general gauge divisor

S = h0J0 + hJ ′ (E.5)

can be expressed as

vol(S) =
1

2
t2h+

a

t
h0 →

1

2
t2h as t→∞ . (E.6)

Let us now consider the curve
C0 = J0 · J0 6= 0 , (E.7)

which represents the first factor of the product B3 = P1 × P2. Its volume is

vol(C0) =
a

t2
, (E.8)

and the normal bundle of the curve is

N = OC0 ⊕OC0 , (E.9)

as J3
0 = 0. Therefore, the tensionless string obtained by wrapping a D3 brane on the shrinking

curve C0 must be the heterotic string. Moreover, the U(1) fugacity index of this string is
expressed as

m =
1

2
C0 · S =

h

2
, (E.10)

and this confirms the advertised relation (6.17) between the volumes in the weak coupling limit,

vol(S) vol(C0) =
ah

2
= 2mvol(B3) . (E.11)
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E.2 Type B: J0 = j0

Alternatively, let
J0 = j0 . (E.12)

With J0 · J0 = 0, this case corresponds to a limit of Type B as defined in Section 6.1. As
discussed there, it is not guaranteed that a heterotic string emerges in this case, but we have
shown generally that a tensionless effective string must nevertheless appear, which causes a
breakdown of the effective theory description in the limit. To illustrate this, we now explicitly
identify the asymptotically shrinking holomorphic curve which gives rise to such a tensionless
non-critical string when wrapped by a D3 brane.

The remaining Kähler cone generator, J ′ = j1, satisfies J0 · J ′ · J ′ = 1 and is thus of type I2

according to (6.7). In the global limit the Kähler generator must take the form

J = tJ0 +
b√
t
J ′ , (E.13)

where b is a finite order-one constant such that the base volume,

vol(B3) =
1

2
b2 , (E.14)

is fixed to be finite in the limit. The volume of a gauge divisor

S = h0J0 + hJ ′ (E.15)

is computed as

vol(S) =
√
tbh+

b2

2t
h0 →

√
tbh as t→∞ . (E.16)

Let us now consider the curve
C0 = J0 · J ′ 6= 0 , (E.17)

which represents the hyperplane P1 in the P2 of the product B3 = P1 × P2. Its volume is given
as

vol(C0) =
b√
t
, (E.18)

and hence, the curve shrinks in the limit t→∞. The normal bundle on the other hand is not
trivial but rather

N = OC0 ⊕OC0(1) , (E.19)

because of J2
0 · J ′ = 0 and J0 · J ′2 = 1. Therefore, we expect that the resulting effective string

is non-critical. Interestingly, upon defining the fugacity index m as

m =
1

2
C0 · S =

h

2
, (E.20)

we observe an analogous relationship amongst the volumes in the global limit

vol(S)vol(C0) = b2h = 4mvol(B3) . (E.21)

Notably, this differs by a factor of 2 as compared to the relation (6.17), which has played a
crucial role in our quantitative proof of the WGC for limits of Type A.

No other curve class on B3 exists which would contain a rational curve with trivial nor-
mal bundle, and which shrinks in the limit considered here. Unless the weak coupling limit is
obstructed dynamically, the WGC would imply that the non-critical string has likewise mass-
less excitations that satisfy the super-extremality bound. The numerical discrepancy between
(E.21) and (6.17) could e.g. be compensated by a modified mass-shell condition for the light
excitations. It would be very interesting to investigate this further.
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F Example of an emergent critical string in a Type B

weak coupling limit

While the tensionless string that emerges in weak coupling limits of Type B as defined in
Section 6.1 is not necessarily the heterotic string, this possibility is not excluded either. In this
Appendix we provide an explicit example where such a heterotic string becomes asymptotically
tensionless in a Type B weak coupling limit. As we will see, in special regions in the moduli
space, we can even encounter several of such ‘heterotic string’ curves shrinking at the same
time – a phenomenon which deserves further investigation.

Let us consider the base three-fold B3 = P1
0 × P1

1 × P1
2. The Kähler cone of B3 is generated

by the hyperplane classes ji of the P1
i factors (i = 0, 1, 2), which satisfy

ji · ji = 0 , j0 · j1 · j2 = 1 . (F.1)

Since every generator self-intersects trivially, this geometry only admits a weak coupling of
Type B. Without loss of generality we identify

J0 = j0 , (F.2)

Jµ = jµ , µ = 1, 2 ∈ I2 . (F.3)

In the global limit the Kähler form must then take the form

J = tJ0 +
∑
µ

b′µJµ , (F.4)

where b′µ should be chosen such that the base volume

vol(B3) = tb′1b
′
2 (F.5)

remains finite in the limit t→∞. Denoting the gauge divisor S as

S = h0J0 +
∑
µ

hµJµ , (F.6)

we can express its volume as

vol(S) = b′1b
′
2h0 + t(b′1h2 + b′2h1) → t(b′1h2 + b′2h1) as t→∞ , (F.7)

where the first term is dropped in the limit as the volume (F.5) of B3 is finite.
Let us now consider the two curves

C
(µ)
0 = J0 · Jµ 6= 0 , (F.8)

i.e. the curves P1
2 and P1

1 for µ = 1 and 2, respectively. Their volumes take the form

vol(C
(µ)
0 ) =

{
b′2 for µ = 1
b′1 for µ = 2

(F.9)

and they both have trivial normal bundle,

N (µ) = O
C

(µ)
0
⊕O

C
(µ)
0
, (F.10)
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because J0 · Jµ · Jµ = 0. Therefore, two different types of heterotic strings arise by wrapping a

D3 brane on C
(µ)
0 . Their respective U(1) fugacity indices are given as

m(µ) =
1

2
C

(µ)
0 · S =

{
h2
2

for µ = 1
h1
2

for µ = 2 .
(F.11)

To make the limiting behavior of the various volumes clearer, let us define the two ratios of the
parameters

rb ≡
b′2
b′1
, rh ≡

h2

h1

, (F.12)

and compute the product of the volumes of S and C
(µ)
0 in the limit:

vol(S)vol(C
(µ)
0 ) =

{
t(b′1h2 + b′2h1)b′2 = 2(1 + rb

rh
)m(1)vol(B3) for µ = 1

t(b′1h2 + b′2h1)b′1 = 2(1 + rh
rb

)m(2)vol(B3) for µ = 2 .
(F.13)

Recall from Section 6 that a proof of the WGC relation for the excitation modes of these strings
would require that the RHS takes the form 2m(µ)vol(B3). As we see, our geometric findings so
far differ from this by the respective prefactors

α(µ) =

{
1 + r for µ = 1
1 + 1

r
for µ = 2 ,

(F.14)

where r ≡ rb
rh

is the ratio of rb and rh.
The ratio rh of the two parameters hµ in the divisor class S is some fixed positive number

of order one, since hν are positive integers that are fixed in a given F-theory background.21 On
the other hand, the two parameters b′1 and b′2 are positive numbers constrained only by the
requirement that the product tb′1b

′
2(= vol(B3)) is finite in the limit. In a generic weak coupling

limit, b′1 and b′2 do not scale with the same power of t, and the ratio rb for a generic such limit
therefore satisfies either rb → 0 or rb →∞. Hence in such a generic limit either r or 1

r
vanishes

for t → ∞, and precisely one of the two types of the curves C
(µ)
0 asymptotically satisfies the

relationship
vol(S)vol(C

(µ)
0 ) = 2m(µ)vol(B3) . (F.16)

The heterotic string associated with this curve is the one whose tension vanishes parametrically
faster and which is parametrically more weakly coupled. Furthermore, there exists no other
class of a shrinking rational curve on B3 with trivial normal bundle. Its quantisation thus gives
rise to a required tower of massless particles, supporting the WGC at the quantitative level.

In the light of F-/heterotic duality we interpret the respective curve C
(µ)
0 which vanishes at

the parametrically faster rate as the fiber of a (trivial) P1-fibration over a base B2. The D3-
brane along this fiber dualises to the critical fundamental string in a dual heterotic description.

21Both hµ have to be strictly positive for S to be the divisor of a height pairing, which corresponds to a gauge
group G = U(1), whether or not there exist additional non-abelian gauge group factors. This is because the
height pairing can be written as [144]

S =
1

N2
(2K̄ + 2π∗(div(Ns) · S0)) , (F.15)

where s denotes the section to the elliptic fibration that generates the Mordell-Weil lattice. Morevoer N is a
fixed positive integer determined by the geometry of the F-theory background (note that N = 1 in the absence
of additional non-abelian group factors). Given that the cone of effective divisors is spanned by J0, J1 and J2

and that 2K̄ = 4J0 + 4J1 + 4J2, we immediately learn that h0, h1 and h2 are all larger than or equal to 4
N2 and

hence positive.
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The other vanishing curve then defines a P1 on the base B2. The D3-brane along it dualises to
an NS5-brane on the elliptic fibration over this curve on the heterotic side. Since this surface is
a K3, we indeed recover a string whose worldsheet theory coincides with that of the heterotic
string. However, the ratio of the tensions of the fundamental to this effective string vanishes,
which determines the first to be the string defining the duality frame. In particular, the effective
string is parametrically more strongly coupled than the fundamental string, and we cannot trust
its spectrum. This explains why there is no doubling of e.g. massless modes in this regime in
moduli space. The situation is analogous to the co-existence of a fundamental Type I string
and an effective SO(32) heterotic string in 10d Type I, where the role of the effective heterotic
string is played by the D1-brane.

Interestingly, the moduli space does allow for a non-generic “symmetric” weak coupling
limit where both b′µ take the form,

b′µ =
bµ√
t
, (F.17)

for finite positive numbers bµ. In this situation, r is a finite positive number and hence, none of

the two curves C
(µ)
0 obey the desired relationship (F.16). The dual heterotic model is at a self-

dual point, where the tension and coupling of both the ‘fundamental’ and the ‘effective’ heterotic
string are parametrically comparable and hence no distinction between the two makes sense. It
is clear that due to the appearance of such tensionless strings the effective theory description
must break down, but a quantitative analysis of the WGC relation is not possible with our
present methods. This is why the mismatch between (F.13) and the desired value does not
yet indicate a violation of the WGC. It would be very interesting to further study how such a
non-generic regime in the moduli space has to be interpreted.
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