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Abstract

The PICOSEC Micromegas detector can time the arrival of Minimum Ion-
izing Particles with a sub-25 ps precision. A very good timing resolution in
detecting single photons is also demonstrated in laser beams. The PICOSEC
timing resolution is determined mainly by the drift field. The arrival time of
the signal and the timing resolution vary with the size of the pulse amplitude.

Detailed simulations based on GARFIELD++ reproduce the experimental
PICOSEC timing characteristics. This agreement is exploited to identify the mi-
croscopic physical variables, which determine the observed timing properties. In
these studies, several counter-intuitive observations are made for the behavior of
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such microscopic variables. In order to gain insight on the main physical mech-
anisms causing the observed behavior, a phenomenological model is constructed
and presented. The model is based on a simple mechanism of “time-gain per
interaction” and it employs a statistical description of the avalanche evolution.
It describes quantitatively the dynamical and statistical properties of the mi-
croscopic quantities, which determine the PICOSEC timing characteristics, in
excellent agreement with the simulations. In parallel, it offers phenomenologi-
cal explanations for the behavior of these microscopic variables. The formulae
expressing this model can be used as a tool for fast and reliable predictions,
provided that the input parameter values (e.g. drift velocities) are known for
the considered operating conditions.

Keywords: gaseous detectors, Micromegas, modeling, timing resolution

1. Introduction

The PICOSEC Micromegas detection concept is realized by a two-stage Mi-
gromegas detector [1] coupled to a front window that acts as Cherenkov radiator
coated with a photocathode. The drift region is very thin (∼ 200 μm) mini-
mizing the probability of direct gas ionization as well as diffusion effects on
the signal timing. Due to the high electric field, photoelectrons undergo pre-
amplification in the drift region. The readout is a bulk Micromegas [2], which
consists of a woven mesh and an anode plane separated by a gap of ∼ 128 μm,
mechanically defined by pillars. A relativistic charged particle traversing the
radiator produces UV photons, which are simultaneously (RMS less than 10 ps)
converted into primary photoelectrons at the photocathode. These primary pho-
toelectrons produce pre-amplification avalanches in the drift region (hereafter
called pre-amplification region). A fraction of the pre-amplification electrons
(∼ 25%) traverse the mesh and are finally amplified in the amplification region.
The main detector components along with a schematic representation of the
relevant microscopic processes producing the signal are shown in Fig. 1.

The arrival of the amplified electrons at the anode produces a fast signal com-
ponent (with a rise-time of ∼ 0.5 ns) referred to as the electron-peak (“e-peak”),
while the movement of the ions produced in the amplification gap generates a
slower (∼ 100 ns) ion-tail component. This type of detector operated with Neon
or CF4 based gas mixtures can reach high enough gains to detect single photo-
electrons. The PICOSEC Micromegas detector (hereafter PICOSEC) has the
potential to time the arrival of Minimum Ionizing Particles (MIPs) with a sub-
25 ps precision [3]. Extensive tests with laser beams also demonstrated [4] very
good timing resolution in detecting single photons. These laser beam data are
also used for detector calibration purposes, and are referred to as “calibration
data” in the following.

It is not surprising that the PICOSEC approach to charged particle timing,
results in a significant improvement over the time jitter obtained when using a
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Figure 1: Illustration of the main PICOSEC detector components (dimensions are only in-
dicative): the radiator of typical thickness ≈ 3 mm, the photocathode, the pre-amplification
(drift) region of depth D (200 μm), the mesh, the amplification region (128 μm) and the an-
ode. A photoelectron, after drifting a length D-L, produces a pre-amplification avalanche, of
length L, ending on the upper surface of the mesh (on the mesh). A fraction of the avalanche
electrons traverses the lower surface of the mesh (after the mesh) and produces avalanches in
the amplification region.

gaseous detector sensitive to ionization produced by traversing charged particles
in the gas volume. With multiple ionization and without pre-amplification in
the drift region the timing resolution in a gaseous detector is of the order of a
few nanoseconds [5]. With the above modifications to the design of a typical
Micromegas, PICOSEC accomplishes a far better precision in timing for two
reasons: i) the photoelectrons enter the drift region simultaneously and ii) the
pre-amplification in the very thin drift region allows for time-averaging of the
electrons arriving in the amplification region through the mesh structure.

The purpose of this paper is to give a full phenomenological description of the
PICOSEC performance and to provide a detailed model to be used for further
optimization of this device as a mature, robust detector. With this model in
hand we are then able to address questions such as the following: a) What is the
relative importance of the Drift stage and Amplification stage in the jitter of
the PICOSEC Signal Arrival Time (SAT)? b) How does the SAT generated by a
given photoelectron depend on the fluctuating distance to where it initiates the
avalanche in the drift region? c) How the SAT jitter (i.e. the timing resolution)
depends on the properties of the gas mixture that fills the detector, and on the
voltage settings? d) What is the effect of transmission through the mesh on
time jitter? e) Which is the optimal structure?

As will become obvious, a detailed microscopic description of the physics
principles underlying the PICOSEC detector is a prerequisite to answering these
questions.

3



Figure 2: Distributions of the e-peak charge induced by a single photoelectron, for several
drift voltage settings (300 V, 325 V, 350 V, 375 V, 400 V and 425 V). The black points rep-
resent calibration data published in [3] while the red triangles correspond to GARFIELD++
simulated PICOSEC e-peak waveforms treated the same way as the experimental data, as
described in [4]. The data distributions are affected, at low e-peak charge values, by the
amplitude threshold applied for data collection.

Naturally, the PICOSEC timing resolution depends on the drift and anode
operating voltages. In the laser-beam tests, where the anode voltage was high
(>400 V), it was found that the single-photoelectron timing resolution is deter-
mined mainly by the drift field. It was also observed that the PICOSEC signal
arrival time (SAT) and the timing resolution vary as functions of the size of the
e-peak, i.e. the e-peak voltage amplitude or the respective e-peak charge. These
functional forms were found to be practically the same for drift voltages in the
range of 300 V - 425 V. It should be emphasized that the above dependencies
have been found [3, 4] not to be systematic artifacts of the experimental tim-
ing technique but they stem from the physics determining the signal production.

Detailed simulations, based on the GARFIELD++ [6] package, including the
simulation of the electronic response of the detector and the noise contribution,
were used to reproduce [4] the observed PICOSEC performance characteristics,
when detecting single photons. Comparison of simulation predictions with the
laser-beam calibration data resulted in estimating the Penning transfer rate
(Ptr) [7] of the used COMPASS gas3. The e-peak charge distribution of the
simulated waveforms is in a good agreement with the calibration data, as it is
illustrated in Fig. 2. Furthermore, as shown in Fig. 3, the SAT and the timing
resolution of the simulated waveforms depend on the e-peak size in exactly the
same way as observed in the data.

The agreement between simulation and experimental data is further ex-

3The term “COMPASS gas” refers to the mixture 80% Ne, 10% C2H6, 10% CF4, as used by
the COMPASS Collaboration. The Ptr for this gas was estimated in [4] to be ∼ 50%.
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Figure 3: (left) Mean SAT as a function of the electron peak charge. (right) Time resolution
as a function of the electron peak charge. In both figures black points represent experimental
measurements [3] while colored symbols correspond to simulations [4]. The gas used is the
COMPASS gas with an anode voltage of 450 V and for drift voltages of (red) 300 V, (light
green) 325 V, (blue) 350 V, (cyan) 375 V, (magenta) 400 V and (dark green) 425 V.

ploited in order to identify the microscopic physical variables that determine
the observed timing characteristics. Specifically, GARFIELD++ simulations
show that the number of pre-amplification electrons traversing the mesh and
initiating avalanches in the amplification region (a microscopic variable here-
after called “electron multiplicity after the mesh”) determines the size of the
PICOSEC e-peak (a macroscopic, observed quantity), as seen in the left plot of
Fig. 4.

In the simulation, one has the ability, for each pre-amplification electron
traversing the mesh, to determine the time it enters the anode region, mea-
suring time from the instant of the photoelectron emission. The average of
these times, for all pre-amplification electrons, defines the microscopic variable
hereafter called “total-time after the mesh”. This microscopic variable has the
same properties as the measured arrival time of the PICOSEC signal4. Indeed,
as shown in the right plot of Fig. 4, for simulated single photoelectron events
with the same e-peak size, the spread (RMS) of the microscopic “total-time
after the mesh” values is found to be equal to the spread of the corresponding
signal arrival times, i.e. to the macroscopic PICOSEC timing resolution. Fur-
thermore, the mean values of the “total-time after the mesh” differ only by a
constant time-offset from the respective mean values of the PICOSEC signal
arrival times, as demonstrated in the middle plot of Fig. 4. This offset is inde-
pendent of the e-peak size and it is due to the fact that the SAT also includes:
a) the propagation time of the amplification avalanches and b) the rise-time of
the signal up to the 20% of the e-peak amplitude.

Having identified the relevant microscopic variables that determine the PI-
COSEC timing characteristics, the detailed GARFIELD++ simulation is fur-
ther used in this work to study the dynamical evolution of the PICOSEC signal

4The arrival time of the PICOSEC signal is defined at a constant fraction (20%) of the
e-peak amplitude, as described in [3].
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Figure 4: (left) The mean e-peak charge of simulated PICOSEC signals versus the respec-
tive “electron multiplicity after the mesh”. The middle and right plots demonstrate that
the macroscopically determined PICOSEC SAT has the same properties as the microscopic
variable “total-time after the mesh”, as it is described in the text.

in terms of the electron multiplicities and other important variables, such as
the primary photoelectron drift path and the length of the pre-amplification
avalanches. Moreover, in order to gain insight on the physical mechanisms
causing: a) the dependence of the PICOSEC timing characteristics on the sig-
nal size and b) the weak influence of the mesh transparency on the timing
resolution, a stochastic model is constructed. The model is based on a simple
concept of “time-gain per interaction” and reproduces the PICOSEC timing
characteristics equally well as the detailed GARFIELD++ simulation. In addi-
tion, the model offers a phenomenological interpretation of a number of peculiar
statistical properties found in the GARFIELD++ results.

An overview of this article is given in Section 2 while the remaining sections
contain a detailed description of the stochastic modeling of all relevant processes
and demonstrate the model performance. The article finishes with concluding
remarks in Section 10.

2. An Overview

In this work, the GARFIELD++ package5 is used to describe microscopi-
cally the PICOSEC timing properties by simulating in detail all the relevant
processes. Interpreting the simulation predictions statistically leads to several
counter-intuitive observations, e.g. a) the primary photoelectron drift velocity
seems to depend on Ptr (Penning transfer rate), b) the avalanche electrons drift
faster than the primary photoelectron, c) the average speed of the avalanche
as a whole is larger than the drift velocity of its constituent electrons, d) the
longitudinal diffusion of the avalanche is almost independent on its length and
e) the 25% transparency of the mesh has only a minor effect on the PICOSEC
timing resolution. Furthermore, it is found that the PICOSEC timing resolution
is mainly determined by the drift path of the primary photoelectron; however,

5GARFIELD++ version: https://gitlab.cern.ch/garfield/garfieldpp, commit e018bcca (8
May 2017)
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when expressing the timing resolution as a function of the number of electrons
passing through the mesh (i.e. the e-peak size), the related photoelectron and
avalanche contributions to the resolution were found to be heavily correlated.

In order to identify the main physical processes causing the observed be-
haviour, a simple phenomenological model is developed and presented in this
paper. The model is based on a simple mechanism of “time-gain per inter-
action” and it employs a statistical description of the avalanche evolution. It
describes well the above-mentioned phenomena in excellent agreement with the
GARFIELD++ simulation results, as demonstrated in the following sections.

The input parameters of the model (i.e. drift velocities, ionization prob-
abilities per unit length, multiplication and diffusion coefficients, mean value
and variance of the “time-gain per interaction”, average mesh transparency and
longitudinal diffusion around the mesh, etc.) are commonly used statistical
variables with values that depend on the PICOSEC gas filling and the operat-
ing voltage settings. The values of these parameters have been estimated from
GARFIELD++ simulations, for the COMPASS gas mixture, assuming several
values of Ptr (Penning transfer rates: 0%, 50%, 100%), anode voltage fixed to
450 V, and various drift voltages, i.e. 300 V, 325 V, 350 V, 375 V, 400 V and 425
V. A compilation of these input parameter values can be found in Appendix A.
The model predictions were compared with the GARFIELD++ results for all
the above operating conditions (hereafter called “considered operating condi-
tions”). If the PICOSEC operating conditions are not specifically stated, the
following default values are implied: Ptr of 50%, anode voltage of 450 V, and
drift voltage of 425 V.

The model is based on the observation [8] that an electron, drifting in an ho-
mogeneous electric field and only undergoing elastic scatterings, drifts along the
field with less average velocity than an electron suffering energy losses through
its interactions. In Section 3, the above concept is quantified in terms of a
“time-gain per interaction”. It is used to explain the different drift velocities
between a photoelectron prior to ionization and of an avalanche electron. It also
explains the effect that the Ptr seems to have on the drift velocities.

Section 4 to Section 6 describe the modelling of microscopic processes up to
the mesh. At this stage, the important microscopic variables are: i) the number
of pre-amplification electrons arriving on the mesh (hereafter called “electron
multiplicity on the mesh”), and ii) the average of the arrival times of the indi-
vidual pre-amplification electrons on the mesh (hereafter called “total-time on
the mesh”). The transfer of the pre-amplification electrons through the mesh is
modelled in Section 8.
Specifically, the average avalanche velocity is a statistical outcome of several
dynamical effects, including those that determine the avalanche growth. Sec-
tion 4 examines the properties of GARFIELD++ simulated pre-amplification
avalanches including the statistical distribution of the avalanche electron mul-
tiplicity before and after the mesh. The mean mesh transparency to pre-
amplification electrons is found to be constant and independent of the avalanche
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characteristics, for all the considered operating conditions. This implies that the
signal size is determined effectively by “the electron multiplicity on the mesh”.
The simultaneous drift and growth of the pre-amplification avalanche is also
modelled in Section 4 and the “avalanche transmission time”6 is expressed in
terms of its length and its electron multiplicity. The model explains quantita-
tively the GARFIELD++ prediction that the avalanche, as a whole, runs faster
than its constituent electrons.
In Section 5, by integrating properly the results of Section 4, the model pre-
dicts the dependence of the “total time on the mesh” on the number of pre-
amplification electrons.
The arrival times of the avalanche electrons on a plane are mutually correlated,
due to the sharing of common parent electrons. This correlation is quantified in
Section 6. By evaluating the avalanche contribution to the statistical spread of
the “total-time on the mesh”, the model predicts that it is almost independent of
the avalanche length. The longitudinal diffusion of the primary photoelectron,
along its drift path before the first ionization, is the major factor determining
the PICOSEC timing resolution. However, due to the fact that the photoelec-
tron drift path and the avalanche length sum up to the pre-amplification region
depth, the timing resolution indirectly depends on the avalanche length.
Although the length of the avalanche is an important physical parameter, it
is not an experimental observable. In Section 7, the statistical spread of the
“total time on the mesh” is expressed as a function of the pre-amplification
electron multiplicity, by modelling the dynamical growth of the avalanche. The
influence of the mesh on the PICOSEC timing properties is quantified in Sec-
tion 8 in terms of the mesh transparency, the number of the pre-amplification
electrons reaching the mesh and an extra time-spread term, due to the electron
drift through the non-homogeneous electric field around the mesh.
Finally in Section 9, limitations of the model to describe accurately the PI-
COSEC timing characteristics in the case of very small electron multiplicity on
(and after) the mesh are discussed. In the same Section, the model extension to
predict the complete probability density functions, which determine the timing
properties of the PICOSEC signal, is also presented.
The Section 10 comprises a summary of the model success to describe the PI-
COSEC timing characteristics along with remarks on potential applications for
studying related phenomena.

3. Electron Drift Velocities and the Basic Model Assumptions

Forward moving electrons lose more time when back-scattered elastically,
before the electric field or another collision sets them back to forward motion,
compared to electrons losing energy to interactions and also profit from longer

6The “avalanche transmission time” is defined as the average of the arrival times of the
avalanche electrons on the mesh, starting from the instant of the first ionization which initiated
the avalanche.
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Figure 5: On the left, the plots show the distributions of the “total time on the mesh”
(top), the “avalanche transmission time” (middle) and the “photoelectron transmission time”
(bottom), in the case that the length of the simulated avalanche (L) is between 144.45 and
144.75 μm. The solid lines represent fits with the Wald distribution function. The right plot
presents the mean values of the above times, as well as the mean of the “total time after the
mesh”, versus the length of the respective pre-amplification avalanche. It is worth noticing
that the total time after the mesh differs only by a constant time-offset from the respective
total time on the mesh, at all considered avalanche lengths.

mean-free paths at low energies due to the small scattering cross section (Ram-
sauer minimum). The fact that an electron gains in transmission time every
time it loses energy is used to explain the different drift velocities predicted by
the detailed GARFIELD++ simulation.
In a PICOSEC pre-amplification region of a certain depthD, let L be the length

of a pre-amplification avalanche and D−L the corresponding drift length of the
photoelectron before the first ionization initiating the avalanche. Let Tp(L) be
the time taken from the instant of the photoelectron emission to its first ioniza-
tion (hereafter called “photoelectron transmission time” or just “photoelectron
time”). Measuring time from the instant of the first ionization, let T (L) be
the average time that the avalanche electrons take to reach the mesh (hereafter
called “avalanche transmission time” or just “avalanche time”). Apparently
the “total-time on the mesh”, Ttot(L) equals the sum of the photoeletron and
avalanche transmission times, i.e. Ttot(L) = Tp(L) + T (L). All the above time-
variables behave statistically as random variables following probability distri-
butions that are well approximated by Inverse Gaussians (Wald) functions, as
demonstrated in Fig. 5 (left) using GARFIEL++ simulations. The simulations
also show that the mean values of the above time distributions depend linearly
on the avalanche length (see the right plot of Fig. 5). Similarly, the mean
value of the time Tea (x), which is the time taken by an avalanche electron to
cover a distance x along the drift field, was found also to depend linearly on x.
The slopes of the aforementioned linear dependencies define the inverse of the
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Figure 6: Distributions of the photoelectron drift path length, before the initiation of an
avalanche, produced by GARFIELD++ simulations with 425 V drift voltage and Ptr equal to
100% (black circles) and 0% (red squares).The solid lines represent the results of exponential
fits.

respective drift velocities.
Hereafter, Vp stands for the “photoelectron drift velocity”, Va denotes the

“avalanche drift velocity” and Vea is the “drift velocity of an avalanche-electron”
assuming that every avalanche electron drifts with the same velocity. Estimated
values of the above drift velocities are compiled in Table A.1, for three different
Ptr (Penning transfer rate) values and default high voltage settings, and in Ta-
ble A.8 for 50% Ptr, 450 V anode and several drift voltage settings. The listed
Vp, Va and Vea values have been estimated by linear fits7 to the Tp(L) versus L,
T (L) versus L and Tea (x) versus x dependencies, observed in GARFIELD++
simulations, respectively. Apparently, all the above drift velocities increase with
the drift voltage; however, the photoelectron drift velocity is smaller than the
avalanche-electron drift velocity, which is in turn smaller than the drift velocity
of the avalanche as a whole. Furthermore, as a function of Ptr, the photoelectron
drift velocity decreases, the drift velocity of the avalanche as a whole increases,
while the avalanche-electron drift velocity remains constant.

Our model attributes the different values of the above drift velocities to time-
gains per inelastic interaction. The frequency of such interactions is related to
the probability per unit length that an existing electron provides enough energy

7The small, non-zero constant terms found in these linear fits were attributed to the fact
that the stochastic description of the electron drift and the avalanche development starts to
be valid after statistical equilibrium is reached.
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for the production (by direct or indirect ionization) of a new, free electron in
the gas. This probability per unit length (that is the first Townsend coefficient,
hereafter denoted by “α”), is estimated by an exponential fit to the distribution
of the photoelectron (longitudinal) drift path length, up to the point of the
ionization initiating the avalanche, as shown in Fig. 6. Values of the parameter
α, estimated with GARFIELD++ simulations, for different Ptr and drift voltage
settings, are compiled in Tables A.2 and A.8

The ionization probability per unit length depends on the Ptr value, r, as:
α (r) = α (0) + r · β; where β = α (1) − α (0) is the increase of the ionization
probability per unit length due to the Penning effect for r = 1 (100%) transfer
rate. Indeed, the values of the first Townsend Coefficient in Table A.2 exhibit
such a linear dependence on r and a linear fit results to α (0) = 0.0519 ±
0.0003 μm−1 and β = 0.0366± 0.0007 μm−1.

An electron drifting in a noble gas mixture loses energy with probability
β per unit length, due to the excitation of the noble atoms, independently of
the Ptr value. However, when the first ionization occurs there is a probability

r · β
α (0) + r · β

that the ionization was caused by the Penning effect.

Let us consider a photoelectron, before the first ionization, drifting by ∆x
during a time interval ∆t. On average it undergoes (1− r) · β · ∆x inelastic
interactions, exciting noble atoms and providing enough energy for indirect
ionization but without such an ionization to take place. If the photoelectron
does not lose any energy this way, it would drift with a velocity, V0. However,
assuming that the photoelectron gains on average a time, τ , after each of such
energy loss, the following relation holds:

∆t =
∆x

V0
− (1− r) · β · τ ·∆x , or

1

Veff (r)
=

∆t

∆x
=

1

V0
− (1− r) · β · τ (1)

where Veff (r) is the observed, effective drift velocity for Ptr equal to r. Obvi-
ously, V0 is the effective drift velocity for r = 1, V0 = Veff (1). Eq. 1 indicates
that by increasing the Ptr value, the effective drift velocity of the photoelec-
tron decreases, in accordance with the GARFIELD++ results. Indeed, Eq.
1 fits well the drift velocity values of Table A.1 resulting in an estimate of
V0 = 142.6 ± 0.6 μm/ns and a value for the mean time-gain per interaction of
τ = 17.9 · 10−3 ± 1.2 · 10−3 ns.

After the photoelectron has initiated an avalanche, its effective drift velocity
is determined by the time-gains every time it looses energy, i.e. either due to
excitation of noble atoms or due to direct ionization. However, the energy loss
effect on the drift velocity is independent of whether noble atom excitations re-
sult or not in subsequent ionizations via the Penning effect. Consequently, it is
expected that the effective drift velocity of an avalanche electron is independent
of the Ptr, in agreement with the GARFIELD++ results, shown in Table A.1.

By definition, a photoelectron undergoes only non-new-electron-producing
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interactions before it initiates an avalanche. An avalanche electron undergoes
the same number of such interactions per unit length but in addition ionizes di-
rectly atoms and molecules. Following the argument that more frequent energy
losses result in a larger drift velocity, it is expected that the avalanche electrons
drift faster than the photoelectron before the first ionization, for any Ptr value,
in accordance with the GARFIELD++ results shown in Table A.1.

The drift velocity of the avalanche as a whole is determined by the combina-
tion of the “time-gain per interaction” and the electron multiplication processes
during the avalanche evolution, as described in the following Section.

4. Drift and Development of the Pre-Amplification Avalanche

Following the model assumption, every time an electron in the avalanche
ionizes, it gains a time ξI relative to an electron that undergoes elastic scat-
tering only. Any new electron produced by ionization starts with low energy.
At the start of its path, it suffers less delay due to elastic back-scattering com-
pared to its parent. Therefore, the model assumes that such a newly produced
electron will gain, relative to its parent, a time-gain ρI . The parameters ξI
and ρI in principle should follow a joint probability distribution determined by
the physical process of ionization and the respective properties of interacting
molecules. As discussed in Section 3, the collective effect of time-gains ξI is a
change in drift velocity from Vp, which is the photoelectron drift velocity before
ionization, to an effective drift velocity Vea, which is the drift velocity of an
ionizing electron in the avalanche. By taking Vea to be the drift velocity of
any electron in the avalanche, the energy-loss effect on the drift of the parent
electron has been taken into account. On the other hand, the time gain ρI of
a newly produced electron is assumed to follow a distribution with mean value
ρ and variance w2. From that moment onwards, this new electron propagates
with drift velocity Vea, as any other existing electron in the avalanche. Notice
that this way, the model approximates the time gains of the parent and daugh-
ter electrons as uncorrelated variables.

Let us consider an avalanche, which has been developed up to a length
x − ∆x and let n (x−∆x) be the number of electrons reaching the plane at
x−∆x. Let ∆n be the number of electrons produced by ionization in the next
development step, of length ∆x. Without loss of generality, the production of
the new electrons (shown in red in Fig. 7) is assumed to take place on the plane
at x−∆x.

The average arrival time of the n (x) electrons at a plane on x is expressed

12



Figure 7: Schematic representation of the change in the electron multiplicity in two stages of
the avalanche evolution, depicted as a plane at x−∆x and a plane at x.

as:

T0 (x, n (x)) =
1

n (x)

n(x)∑
k=1

tk (x)

=
1

n (x)

[
n(x−∆x)∑
k=1

(tk (x−∆x) + ∆tk) +
∆n∑
j=1

(
tfj (x−∆x) + ∆τj

)]

=
1

n (x)

[
n(x−∆x)∑
k=1

tk (x−∆x) +
∆n∑
j=1

tfj (x−∆x) +
n(x−∆x)∑
k=1

∆tk +
∆n∑
j=1

∆τj

]
(2)

where all the times are measured from the instant of the first ionization that ini-
tiated the avalanche; tk (x) and tk (x−∆x) are the times when the kth electron

reaches the planes on x and x −∆x respectively; tfj (x−∆x) is the time that
the “father” of the jth newly produced electron reaches the plane on x − ∆x
(obviously tfj (x−∆x) is one of the tk (x−∆x), (k = 1, 2, 3, ..., n (x−∆x));
∆tk is the time spent by the kth electron that reached the plane on x−∆x to
arrive at the plane on x; ∆τj is the time spent by the jth electron produced at
x−∆x to arrive at the plane on x.

Due to the fact that a newly produced electron gains a certain time, ρi,(i =

1,∆n) relative to the parent electron, each ∆τj can be expressed as ∆tfj−ρj . No-

tice that: a) since the set
{
tf1 (x−∆x) , tf2 (x−∆x) , tf3 (x−∆x) , ..., tf∆n (x−∆x)

}
can be any size-∆n subset of

{
t1 (x−∆x) , t2 (x−∆x) , t3 (x−∆x) , ..., tn(x−∆x) (x−∆x)

}
,

any of the n (x−∆x) pre-existing electrons has the same probability, ∆n/n (x−∆x),

to produce a new electron, and b) any one of the ∆tfj , j = 1, 2, 3, ...,∆n coin-
cides with one of the ∆tk, k = 1, 2, 3, . . . , n (x−∆x). Therefore, by averaging
Eq. 2 for all the possible configurations of ∆n newly produced electrons, one
gets T1 (x, n (x)) ≡ 〈T0 (x, n (x))〉∆n, which is:

T1 (x, n (x)) =
1

n (x−∆x)

n(x−∆x)∑
k=1

tk (x−∆x) +
1

n (x−∆x)

n(x−∆x)∑
k=1

∆tk −
1

n (x)

∆n∑
j=1

ρj

(3)
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Furthermore, averaging Eq. 3 over the possible values of ∆tk, the mean
time that an avalanche drifts in order to reach a plane on x, T (x, n (x)) ≡
〈T1 (x, n (x))〉∆t follows the differential relation:

T (x, n (x)) = T (x−∆x, n (x−∆x)) + 〈∆tk〉 −
∆n

n (x)
ρ (4)

where T (x−∆x, n (x−∆x)) =
1

n (x−∆x)

n(x−∆x)∑
k=1

tk (x−∆x) and ρ = 〈ρ〉 is

the mean value of the time-gains.
Finally, using the definition Vea = 〈∆x/∆tk〉, taking the limit for infinites-

imal ∆x and integrating up to an avalanche length L, the following result is
obtained:

dT (x, n (x)) =
dx

Vea
− dn

n (x)
ρ⇒ T (L,NL) =

L

Vea
− ρ · ln (NL) + C (5)

where NL is the number of the avalanche electrons reaching a plane on L, and
C is an integration constant, which is approximated as independent of L for
reasons that will be discussed later in this Section. Eq. 5 predicts that the
avalanche transmission time depends linearly on the drift length, L, like it is
the case for any individual avalanche electron, but it also depends logarith-
mically on the electron multiplicity of the avalanche. However, the quantity
∆T (NL) = T (L,NL) − L/Vea does not depend explicitly on the avalanche
length. Consequently, the average residual time 〈∆T (NL)〉L, for all avalanches
with NL electrons arriving on the mesh, depends only on the electron multiplic-
ity, NL. Indeed, symbolizing by G (L|NL) dL the conditional probability of an
avalanche with NL electrons reaching the mesh to have a length in the region
[L,L+ dL], the average residual time is:

〈∆T (NL)〉L =
∞∫
0

[−ρ ln (NL) + C] ·G (L|NL) dL = −ρ ln (NL) + C (6)

Eq. 6 expresses the mean deviation of the avalanche time from the time ex-
pected in case the avalanche speed is equal to the drift velocity of its constituent
electrons. GARFIELD++ simulations show that this mean time-deviation is
described well, for all considered operating parameters, by the logarithmic ex-
pression given in Eq. 6, as shown in Fig. 8. The mean value of the time-gain ρ
and the constant term C, were estimated by fitting such GARFIELD++ sim-
ulation results with Eq. 6. The estimated values of the above parameters are
compiled in Tables A.3 and A.8 for a variety of Ptr values and drift voltages,
respectively.

The newly produced electrons would gain in average the same time, at the
beginning of their path, independently of their production mechanism, i.e. via
direct ionization or Penning transfer. Consequently the estimated values of the
parameter ρ should be independent of the Ptr value, as indeed it was found
by fitting GARFIELD++ simulation results (see Table A.3). Moreover, as
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Figure 8: Mean deviation (〈∆T 〉) of the avalanche transmission time from the naively expected
time (see text) versus the respective avalanche electron-multiplicity. The points represent
results of GARFIELD++ simulations, assuming 50% Ptr, anode voltage 450 V and drift
voltage 375 V. The line represents a fit using Eq. 6.

the newly produced electrons accelerate and reach equilibrium faster at higher
rather than at lower drift fields, it is expected that the value of the time-gain
parameter, ρ, should decrease as the drift voltage increases, in agreement with
the estimated values shown in Table A.8.

Eq. 5 has been derived by treating the simultaneous drift and growth of
the avalanche differentially. Thus, the integration constant, C, depends on a
minimum avalanche length, after which the growth of the mean avalanche elec-
tron multiplicity allows for a differential treatment. Such a minimum avalanche
length depends on the avalanche electron multiplication that, in turn, depends
on the Ptr and the drift voltage, as it can be seen in Tables A.3 and A.8.

The avalanche drift velocity is determined by expressing the mean avalanche
transmission time, 〈T (L)〉, as a function of the avalanche length, L, i.e. by
averaging Eq. 5 over all possible values of the avalanche electron multiplicity,

〈T (L)〉 =
L∫
0

T (L,NL) ·Π (NL|L) dNL (7)

where Π (NL|L) denotes the conditional probability density function (p.d.f.)
of the number of electrons, NL, produced in an avalanche, given the length of
the avalanche, L.

As deduced from GARFIELD++, Π (NL|L) is well approximated by the
Gamma distribution function, P (NL; q(L), θ), with q(L) being the mean value,
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Figure 9: The points represent GARFIELD++ simulation results. (top-left) Distribution of
the number of electrons arriving on the mesh, produced in avalanches with length between
144.45 and 144.75 μm. The solid line represents a Gamma distribution function fitted to the
simulation results. (top-right) The mean value of the avalanche electron multiplicity on the
mesh versus the length of the respective avalanche. The solid line represents exponential fit to
the simulation results, as described in the text. For completeness, GARFIELD++ simulation
results, related to the electron multiplicity after the mesh, are also presented in the bottom-row
plots.

and θ the shape parameter. This successful approximation is demonstrated in
the top-left plot of Fig. 9.
While the shape parameter is found to be independent of the avalanche length,
the mean value depends exponentially on the the length of the avalanche, i.e.
q (L; aeff ) = 2 · eaeffL, as shown in the right plot of Fig. 9. The exponential
slope aeff (hereafter called “multiplication factor”) is the probability per unit
length for the net production of a new electron. Estimated values of aeff and θ,
using GARFIELD++ simulations with different values of Ptr and drift voltage,
are compiled in Tables A.4, A.5 and A.8.

It should also be noticed that, as the left-bottom plot of Fig. 9 demonstrates,
the electron multiplicity after the mesh also follows a Gamma distribution func-
tion with the same θ value as the corresponding distribution of the electron
multiplicity on the mesh (see also Table A.5). The mean electron multiplicity
after the mesh depends exponentially on the avalanche length, as it is shown
in the bottom-right plot of Fig. 9. Moreover, the exponential slope is found to
be equal to the multiplication factor, aeff , which implies that the mesh trans-
parency is independent of the avalanche length. Furthermore, as it is deduced
from GARFIELD++ simulations for all considered operating conditions, the
mean electron multipliplicity after the mesh is consistently 25% of the num-
ber of the avalanche electrons arriving on the mesh, (see Tables A.4 and A.8).
Taking into account that the PICOSEC e-peak signal size was found (see Fig.
4) to depend linearly on the electron multiplicity after the mesh, the constant
mesh transparency also implies that the observed signal size is determined by
the electron multiplicity on the mesh.
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Having expressed the term Π (NL|L) of Eq. 7 as a Gamma distribution
function, P

(
NL; q(L) = 2eaeffL, θ

)
, and substituting T (L,NL) from Eq. 5, the

average time taken by an avalanche to drift along a length L, for any avalanche
electron multiplicity, NL, is written as:

〈T (L)〉 =
L

Vea
− ρ ·

L∫
0

ln (NL)P
(
NL; q(L) = 2eaeffL, θ

)
dNL + C (8)

Using the properties of the Gamma distribution function, Eq. 8 becomes:

〈T (L)〉 = L

[
1

Vea
− ρ · aeff

]
+ [−ρ ln 2 + C + ρ ln (θ + 1)− ρψ (θ + 1)] (9)

where ψ (x) denotes the digamma function.

Eq. 9 relates linearly the mean value of the avalanche transmission time to
the avalanche length. As it is easily verified by using numerical values for the
model parameters (ρ, θ, aeff , Vea and C) from Appendix A, the constant term,
[−ρ ln 2 + C + ρ ln (θ + 1)− ρψ (θ + 1)], takes very small values for all consid-
ered drift voltages and Ptr values. Therefore, the effective avalanche drift ve-

locity is determined by the inverse of the term

[
1

Vea
− ρ · aeff

]
. Since both ρ

and aeff are positive-value parameters, the model predicts that the avalanche,
as a whole, drifts with higher velocity than the velocity Vea of its constituent
electrons, as it was also found using GARFIELD++ simulations. Furthermore,
the GARFIELD++ simulation results are found to be in a good quantitative
agreement with the model predictions expressed by Eq. 9, as demonstrated in
Fig. 10. The same agreement holds for all considered operating conditions.

5. Transmission Times vs the Avalanche Electron Multiplicity

In Section 1 it was shown that the total time after the mesh determines
the PICOSEC signal arrival time (SAT). Nevertheless, as it will be discussed
in detail in Section 8, the total time after the mesh differs from the respective
total time on the mesh by a constant interval, which is independent of electron
multiplicities and drift lengths. Moreover, in Section 4 it was shown that the
mean electron multiplicity after the mesh, which determines the signal size, is
a constant fraction (25%) of the electron multiplicity on the mesh. Thus, the
expression of the mean total time as a function of the electron multiplicity on the
mesh, by properly integrating Eq. 5, will provide the microscopic description of
the PICOSEC SAT dependence on the signal size (shown in Fig. 3).

By employing Bayes’ theorem, the conditional p.d.f., G (L|N), that an avalanche
with N electrons reaching the mesh has a length in the region [L,L+ dL], is
expressed as:

G (L|N) =
p (N |L)R (L)

p (N)
(10)
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Figure 10: The average time needed by an avalanche, of a certain length, to arrive on the
mesh (the avalanche transmission time) as a function of the length of the avalanche. The
points are GARFIELD++ simulation results for 50% Ptr and a drift voltage of 425 V. The
solid line represents the model prediction, expressed by Eq. 9.

Here R (L) is the p.d.f. of any avalanche to have a length L; p (N |L) is the
conditional p.d.f. that an avalanche produced N electrons reaching the mesh,
given that its length equals L. The normalizing term p (N), defined as p (N) =
x2∫
x1

p (N |L)R (L) dL, expresses the p.d.f. that an avalanche has N electrons

reaching the mesh and any length within the region x1 ≤ L ≤ x2
8.

In this model, p (N |L) is approximated by the the Gamma distribution func-
tion P

(
N ; q = 2eaeffL, θ

)
, as discussed in Section 4. R (L) is expressed in terms

of the first Townsend coefficient, a, as:

R (L) = R (L; a) = a · exp [a · L]

exp [a · x2]− exp [a · x1]
(11)

Then, the conditional p.d.f. G (L|N) takes the form:

G (L|N) =
P
(
N ; q = 2eaeffL, θ

)
R (L; a)

x2∫
x1

P (N ; q = 2eaeffL, θ)R (L; a) dL

(12)

8The lower integration limit is x1 = 0. However, as the GARFIELD++ simulations indi-
cate, the maximum avalanche length, x2, does not reach the full depth of the pre-amplification
region, D, because the initial photoelectron takes a minimum distance before it gains enough
energy to start an avalanche. Naturally, this limit depends on the drift voltage, as shown in
Table A.8.
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Using Eq. 5, the average transmission time, 〈T (N)〉 =
x2∫
x1

T (N,L)G (L|N) dL

is written as follows:

〈T (N)〉 =
〈L (N)〉
Vea

− ρ lnN + C (13)

where 〈L (N)〉 =
x2∫
x1

L ·G (L|N) dL is the average length of all avalanches result-

ing to N electrons on the mesh.

As discussed in Section 3, the mean transmission time of the photoelectron
before it ionizes, depends linearly on its drift path, D-L, as:

Tp (L) =
D − L
Vp

+ doff (14)

where the constant term, doff , is attributed to the fact that the drift velocity
is a statistical variable, which characterizes the drift of an electron after it has
undergone enough scatterings9 in order to be described statistically. The mean
transmission time, from the emission up to the first ionization, of a photoelectron
that initiates an avalanche with N electrons on the mesh, is given as:

〈Tp (N)〉 =

x2∫
x1

Tρ (L)G (L|N) dL =
D − 〈L (N)〉

Vp
+ doff (15)

The total time on the mesh, 〈Ttot (N)〉, is the sum of the two terms given
by Eq. 13 and 15:

〈Ttot (N)〉 = 〈Tp (N)〉+〈T (N)〉 = 〈L (N)〉
[

1

Vea
− 1

Vp

]
−ρ lnN+

[
D

Vp
+ C + doff

]
(16)

The third term in the right hand side of Eq. 16 represents the total time on
the mesh in absence of any “time gain” caused by interactions. In such a case
the SAT should be constant (' D/Vp), determined only by the photoelectron
drift velocity (Vp) and independent of the signal size. However, due to time
gains because of inelastic interactions, the avalanche electrons drift faster than
the photoelectron. Thus, the first term represents the total time gain by a
collection of electrons drifting with Vea relative to a photoelectron drifting the
same distance. Finally, the second term represents an extra time gain, due to
the fact that each newly produced electron in the avalanche gains on average a
time ρ relative to its parent. Taking also into account that the average avalanche
length is a positive, increasing function of N, both the above time gain terms

9That is after an initial stage of 3.6 - 4.7 μm along the drift field, as indicated by the
GARFIELD++ simulations for the drift voltages considered in this work.
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Figure 11: The points represent GARFIELD++ simulation results related to the mean trans-
mission times versus the respective multiplicity of the avalanche electrons arriving on the
mesh, for 50% Ptr; 425 V and 450 V drift and anode voltages respectively: (red) the trans-
mission time of the photoelectron before the first ionization, (blue) the transmission time of
the avalanche from its beginning until the mesh and (golden) the transmission time of the
whole process, from the photoelectron emission until the avalanche reaches the mesh. The
solid lines represent the predictions of Eq. 13, 15, 16 respectively. The inset plot details the
dependence of the total time on the mesh on the number of electrons arriving on the mesh.

increase in absolute value as N increases. Equivalently, Eq. 16 predicts that, due
to the time gain concepts employed by our model, large size PICOSEC signals
should arrive earlier than smaller pulses in accordance with the experimental
observations and the GARFIELD++ simulation results.

Furthermore, the model predicts, as demonstrated in Fig. 11, that the pho-
toelectron (Eq. 15), the avalanche (Eq. 13), and the total (Eq. 16) trans-
mission times and their dependence on the electron multiplicity on the mesh
are in good agreement with the GARFIELD++ simulation results. Moreover,
setting appropriate values to the model-parameters, e.g. from Table A.8, the
model successfully reproduces the respective GARFIELD++ results for all the
considered PICOSEC operating conditions.

6. Timing Resolution as a function of the Avalanche Length.

As it was shown in Fig. 4, the PICOSEC timing resolution is determined by
the spread of the total-time after the mesh. However, the processes occurring in
the pre-amplification region influence the statistical SAT fluctuations in a much
stronger way than the passage of the pre-amplification electrons through the
mesh, as shown in Section 8. This Section focuses on describing stochastically
the spread of the total-time on the mesh as a function of the avalanche length.
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The longitudinal diffusion of the primary photoelectron and the spread of the
avalanche transmission time are the sources of this spread. The latter emerges
as the combination of: a) the individual avalanche electrons diffusion, b) the
electron multiplicity increase as the avalanche grows, and c) the statistical cor-
relation between the drift times of the individual electrons. Also notice that
the avalanche length (L or its residual D-L) is the natural parameter to express
the photoelectron diffusion, as well as the avalanche growth and the correlation
between its electrons.

Figure 12: The points represent GARFIELD++ simulation results. (left) The variance of
the photoelectron transmission time at the point of the first ionization versus the respective
drift length. (right) The variance of the time taken by an avalanche electron to drift a certain
length versus the respective length. The solid curves represent linear fits to the points.

In GARFIELD++ simulations the variance of the photoelectron transmis-
sion time V [Tp (L)], and the variance of the drift time of an avalanche electron
V [Tea (x)] , depend linearly on the respective drift lengths:

V [Tp (L)] = (D − L) · σ2
ρ + Φ (17)

V [Tea (x)] = σ2
0 · x+ φ (18)

The slopes (σ2
p, σ2

0) and the constant terms (Φ, φ) in the above relations are
evaluated by linear fits to GARFIELD++ simulation results10. Estimated val-
ues of these parameters, for all considered PICOSEC operating conditions, are
compiled in Tables A.6, A.7 and A.8.
In all above estimations, the variable Φ acquires negative values. This is due
to the fact that the photoelectron motion at its initial part has not yet reached
statistical equilibrium, as it is apparent in the left plot of Fig. 12. On the other
hand, only positive values were found for φ, as it is demonstrated with the right

10The “simulation results” are the variances of the respective time distributions, estimated
by fits with a Wald function, as described in Section 3, Fig. 5
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plot of Fig. 12. A positive φ value implies that an avalanche electron inherits
time spread before it starts drifting which is, however, consistent with the phe-
nomenological model advocated in this study. Indeed, all the terms expressing
time-gains in this model are random variables, with variances contributing to
the variance of the respective drift times. Thus, the constant term φ corre-
sponds to the variance of the time gained by the first avalanche electron when
it initiates the avalanche. Nevertheless, the contribution of the constant term,
φ, in Eq. 18 is much smaller than the part which is proportional to the drift
length11 and it will be ignored in the following.

For an avalanche of length L, initiated by a photoelectron after drifting a
length D − L, the avalanche time T (L) and the photoelectron time Tp (L) are
statistically, mutually uncorrelated. Therefore, the total time on the mesh,
Ttot (L), and its variance, V [Ttot (L)], are expressed as:

Ttot (L) = Tp (L) + T (L)
V [Ttot (L)] = V [Tp (L)] + V [T (L)]

(19)

where V [Tp (L)] is given by Eq. 17.

The term V [T (L)] will be evaluated by considering the evolution of the
avalanche between two planes, on x −∆x and on x, as presented in Section 3
and depicted in Fig. 7. The average of the electron arrival times at a plane on
x, expressed by Eq. 2, is factorized as the sum of five terms (A, B, C, D and
E), as follows:

T0 (x, n (x)) =

1

n (x)


n(x−∆x)∑
k=1

tk (x−∆x)︸ ︷︷ ︸
A

+

∆n∑
j=1

tfj (x−∆x)︸ ︷︷ ︸
B

+

n(x−∆x)∑
k=1

∆tk︸ ︷︷ ︸
C

+

∆n∑
j=1

∆tfj︸ ︷︷ ︸
D

+

∆n∑
j=1

ρj︸ ︷︷ ︸
E


(20)

As in Section 3, the model treats the times ∆tk (k = 1, 2, 3, ..., n (x−∆x)) as
mutually uncorrelated and independent of the history of pre-existing electrons.
Recall that the times ∆τ , taken by the newly produced electrons to drift be-
tween the planes on x − ∆x and x, is the difference of two random variables:
∆τj = ∆tfj − ρj (j = 1, 2, ...,∆n). The first variable ∆tfj has the same statis-
tical properties as the times ∆tk of the pre-existing electrons. The time-gains
acquired by the new electrons ρj (j = 1, ...,∆n) are mutually uncorrelated, and
they are also uncorrelated with anyone of the ∆tk’s.

As in Section 3, the model assigns a probability ∆n/n (x−∆x) to each of
the pre-existing electrons at the plane on x −∆x to ionize and produce a new

11According to GARFIELD++ simulations, at all voltage settings considered in this study,
the vast majority of the avalanches have lengths greater than 100 μm, even in the case of 0%
Ptr. For a 100 μm long avalanche, the time variance of an avalanche electron that arrives on
the mesh, is more than 70 times larger than the contribution of the constant term φ.
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electron. Under these assumption, the terms B and D in Eq. 20, when averaged
for all possible configurations of ∆n newly produced electrons, are transformed
to:

B1 = 〈
∆n∑
j=1

tfj (x−∆x)〉∆n =
∆n

n (x−∆x)

n(x−∆x)∑
k=1

tk (x−∆x)

D1 = 〈
∆n∑
j=1

∆tfj 〉∆n =
∆n

n (x−∆x)

n(x−∆x)∑
k=1

∆tk

(21)

Considering the aforementioned correlation relations between the individual
drift times and time gains, the covariances cov[A,B1] and cov[C,D1] are non-
zero, while all the other term combinations have zero covariances. Consequently,
the variance of T1 (x, n (x)) = 〈T0 (x, n (x))〉∆n is expressed as:

V [T1 (x, n (x))] =
1

n2 (x)
(V [A] + V [B1] + V [C] + V [D1] + V [E] + 2cov [A,B1] + 2cov [C,D1])

(22)
where

V [A] =
n(x−∆x)∑
k=1

(
E
[
t2k (x−∆x)

]
− E2 [tk (x−∆x)]

)︸ ︷︷ ︸
σ2
k(x−∆x)

+
n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

(E [tk (x−∆x) tl (x−∆x)]− E [tk (x−∆x)]E [tl (x−∆x)])︸ ︷︷ ︸
ckl

=
n(x−∆x)∑
k=1

σ2
k (x−∆x) +

n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

ckl

(23)

V [B1] =

(
∆n

n (x−∆x)

)2

·

(
n(x−∆x)∑
k=1

σ2
k (x−∆x) +

n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

ckl

)
=(

∆n

n (x−∆x)

)2

· V [A]

(24)

V [C] =

n(x−∆x)∑
k=1

(
E
[
(∆tk)

2
]
− E2 [∆tk]

)
︸ ︷︷ ︸

δ2k

=

n(x−∆x)∑
k=1

δ2
k (25)

V [D1] =

(
∆n

n (x−∆x)

)2 n(x−∆x)∑
k=1

δ2
k =

(
∆n

n (x−∆x)

)2

V [C] (26)
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V [E] =

∆n∑
j=1

(
E
[
(ρj)

2
]
− E2 [ρj ]

)
︸ ︷︷ ︸

d2j

=

∆n∑
j=1

d2
j (27)

Similarly, the covariance terms are expressed as:

cov [A,B1] =
∆n

n (x−∆x)
V [A] (28)

cov [C,D1] =
∆n

n (x−∆x)
V [C] (29)

Substituting Eq. 23 − 29 into Eq. 22, the variance becomes:

V [T1 (x, n (x))] =
1

n2 (x−∆x)

(
n(x−∆x)∑
k=1

σ2
k (x−∆x) +

n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

ckl

)
+

1

n2 (x−∆x)

n(x−∆x)∑
k=1

δ2
k +

1

n2 (x)

∆n∑
j=1

d2
j

(30)

Taking into account that all ∆tk follow the same distribution with a variance
(δ2) proportional to the corresponding drift distance (∆x), i.e. δ2 = σ2

0 ·∆x , and
that the time-gains ρj (j = 1, 2, 3, ...,∆n) follow a distribution with a variance
w2, the two last terms in Eq. 30 are written as:

1

n2 (x−∆x)

n(x−∆x)∑
k=1

δ2
k =

σ2
0 ·∆x

n (x−∆x)
and

1

n2 (x)

∆n∑
j=1

d2
j =

∆n

n2 (x)
w2 (31)

In addition, the total avalanche time variance at the plane on x−∆x is:

V [T1 (x−∆x, n (x−∆x))] =
1

n2 (x−∆x)

n(x−∆x)∑
k=1

σ2
k (x−∆x) +

n(x−∆x)∑
k=1

n(x−∆x)∑
l=1,k 6=l

ckl


(32)

Then, substituting Eqs. 31, Eq. 32, and the approximation n2(x) ' n(x) ·n(x−
∆x) into Eq. 30, one gets:

V [T1 (x, n (x))]− V [T1 (x−∆x, n (x−∆x))]

' σ2
0 ·∆x

n (x−∆x)
− w2

(
1

n (x)
− 1

n (x−∆x)

)
(33)

which expresses the increase of the avalanche-time variance as the avalanche
grows between two planes, on x−∆x and on x, given that n (x−∆x) electrons
reach the first plane and ∆n more electrons reach the second plane.
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For all the avalanches evolving up to a length x, the variance of the avalanche-
time can be obtained by averaging Eq. 33 for all possible values of n (x−∆x)
and ∆n. Specifically:

〈V [T1 (x, n (x))]− V [T1 (x−∆x, n (x−∆x))]〉n,∆n
∆x

= σ2
0〈

1

n (x−∆x)
〉n,∆n −

w2

∆x
〈 1

n (x)
− 1

n (x−∆x)
〉n,∆n

(34)

Assuming that n (x) follows the Gamma distribution function, the mean
value of the inverse multiplicity, 1/n (x), is given by the formula:

〈 1

n (x)
〉n =

(θ + 1)

2θ
exp (−aeff · x) (35)

which describes well the GARFIELD++ simulation results, as it is shown in
Fig. 13.

Figure 13: Each point represents the mean value of the inverse avalanche-electron multiplicity
for simulated avalanches of a certain length. The GARFIELD++ simulation package has been
used, assuming 50% Ptr, a drift voltage of 425 V and anode voltage of 450 V. The solid curve
represents graphically Eq. 35 with the proper values for the physical parameters, from Table
A.8.

Substituting Eq. 35 in Eq. 34, the differential increase of the variance is
expressed as:

〈V [T1 (x)]− V [T1 (x−∆x)]〉n,∆n
∆x

= σ2
0

(θ + 1)

2θ
exp (−aeff · x) · exp (aeff ·∆x)

− w
2

∆x

(θ + 1)

2θ
exp (−aeff · x) · (1− exp (aeff ·∆x))

(36)
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Expanding the right hand side of Eq. 36 with respect to ∆x, keeping up to
first order terms, and letting ∆x going to zero, the differential equation that
expresses the evolution of the avalanche-time variance is deduced to:

dV [T (x)]

dx
=

(θ + 1)

2θ
exp(−aeff · x)

[
σ2

0 + w2aeff
]

(37)

Then, by integrating up to an avalanche-length L, the variance of the avalanche-
time at avalanche-length L is:

V
[
T (L)

]
=

(θ + 1)

2θ
[σ2

0 + w2aeff]
1− exp(−aeff · L)

aeff
(38)

Therefore, the variance of the total time on the mesh, according to Eq. 19,
is:

V
[
Ttot(L)

]
= V

[
T (L)

]
+ V

[
TP (L)

]
= (θ+1)

2θ [σ2
0 + w2aeff] 1−exp(−aeff·L)

aeff
+ (D − L) · σ2

P + Φ
(39)

which is expected to describe the GARFIELD++ simulations for photoelec-
tron drift lengths long enough to guarantee statistical equilibrium (typically
(D − L) > 10 μm.

Model predictions for the time spreads, expressed by Eqs. 17, 38 and 39, are
shown in Fig. 14 to be in good agreement with the GARFIELD++ simulation
results. The same good agreement is found for all Ptr values and drift voltages
considered in this work.

While the mean value of the time-gain parameter ρ has been evaluated from
GARFIELD++ simulations (see Fig. 8), there is no similar, straightforward
way to estimate the value of its variance (w2 = V [ρ]). As an alternative, the
double lines in Fig. 14 represent the predictions of Eqs. 38 and 39 for w = 0
and w = ρ, i.e. either assuming that the time-gain per newly produced electron
is a constant or that it follows a very broad physical distribution with an RMS
equal to 100% of its mean value. Apparently, by imposing a 100% spread on ρ,
only a small change is induced to the model predictions.

As Fig. 14 indicates, signals produced by long avalanches achieve good
resolution because they are associated with short drifting photoelectrons, which
suffer small longitudinal diffusion. The model predicts that the contribution of
short avalanches to the timing resolution depends on their length. However, as
the avalanche length grows, the variance of the avalanche time reaches a plateau.
At the operational parameter settings considered in this study, the vast majority
of the GARFIELD++ simulated avalanches in the PICOSEC pre-amplification
region are too long to reveal the increase of the avalanche time spread. In order
to check the model prediction in detail, special GARFIELD++ simulations
of shorter pre-amplification avalanches were performed. Two groups of such
simulation results are also shown, as bright green points in the same Figure,
demonstrating the success of the model in predicting the avalanche time spread
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Figure 14: The points show results of GARFIELD++ simulations assuming 50% Ptr, 425 V
drift and 450 V anode voltages, versus the respective length of the avalanche. The golden
points depict the spread of the total time on the mesh. The red and blue (plus bright green)
points represent spreads of the primary photoelectron time and of the avalanche time, respec-
tively. The corresponding model predictions, for the two w values discussed in the text, are
presented as solid lines.

at all avalanche lengths. Nevertheless, the predicted spread of the photoelectron
time seems to deviate from the GARFIELD++ points at very large avalanche
lengths (short photoelectron drift paths), due to the inadequacy of Eq. 17 to
describe the photoelectron longitudinal dispersion at the beginning of its drift
path, i.e. before it reaches statistical equilibrium through multiple scatterings.
However, this small deviation appears in the region of very large avalanche
lengths, where the timing resolution is practically determined by the avalanche
time spread.

7. Timing Resolution versus Electron Multiplicity on the Mesh

GARFIELD++ simulations showed that the electron multiplicity on the
mesh determines the PICOSEC signal size (see Sections 1 and 4). To get in-
sight on the dependence of the timing resolution on the signal amplitude, the
effects of the photoelectron drift and the pre-amplification avalanche develop-
ment are expressed as functions of the electron multiplicity on the mesh. The
other, weaker effect on the timing resolution, i.e. the passage of the avalanche
electrons through the mesh, is discussed in Section 8.

The variance of the avalanche time can be evaluated as a function of the
electron multiplicity on the mesh, NL, by averaging Eq. 33 over n (x), under
the condition that at the end of the avalanche development, i.e. at x = L,
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the observed electron multiplicity, n (L), should equal NL. Measuring from the
point of the first ionization, the conditional p.d.f., Π (n (x) |n (L) = NL), that
an avalanche has n (x) electrons at a plane on x given that it has NL electrons
at a plane on L (L > x), can be expressed as:

Π
(
n(x)|n(L) = NL

)
=

Π
(
n(L) = NL|n(x)

)
·Π
(
n(x)

)
Π
(
n(L) = NL

) (40)

The term Π (n (x)) denotes the p.d.f. that an avalanche has n (x) electrons at a
plane on x. It is approximated (see Fig. 9) by the Gamma distribution function,
i.e. Π (n (x)) = P (n(x); q = 2eaeffx, θ).

The other term in the numerator of Eq. 40, Π (n (L) = NL|n (x)), is the
conditional p.d.f. that an avalanche has NL electrons at a plane on L, given
that it has n (x) electrons at a plane on x. Assuming that each of the n (x)
electrons will initiate an independent avalanche and each avalanche will evolve
until it reaches the plane on L, there will be n (x) statistically identical and
independent avalanches, each of length L − x. Then, Π (n (L) = NL|n (x)) can
be approximated by the convolution of n (x) Gamma distributions, resulting in
the expression:

Π
(
n(L) = NL|n(x)

)
=

n(x)times︷ ︸︸ ︷
P1(n)⊗ P1(n)⊗ · · · ⊗ P1(n)

= 1

q
(
L−x

) (θ+1)n(x)(θ+1)

Γ
(
n(x)·(θ+1)

) ·( NL

q
(
L−x

))n(x)(θ+1)−1

· exp

[
− (θ + 1) NL

q
(
L−x

)]
(41)

where, q (L− x) is the mean multiplicity of a single avalanche of length L− x.
The mean value and the variance of the above p.d.f. are n (x) · q (L− x) and

n (x) · q
2 (L− x)

θ + 1
, respectively. A drawback in expressing Π (n (L) = NL|n (x))

as in Eq. 41 is that n (x) should be treated as an integer while NL as a real
number. Alternatively, by invoking the Central Limit Theorem, a Gaussian
distribution can be used, in case that n (x) is a large number, i.e.

Π
(
n(L) = NL|n(x)

)
=

1√
2π · n(x) · σ2(L− x)

exp

[
−
(
n(x) · q

(
L− x

)
−NL

)2
2 · n(x) · σ2

(
L− x

) ]
(42)

where σ2 (L− x) is the variance of a single avalanche of length L−x. The p.d.f.
expressed by Eq. 42 has the same mean value and variance as the p.d.f. of Eq.
41. It should be emphasized that Eq. 42 is strictly valid only in case that n (x)
is an integer parameter. However, in order to simplify numerical calculations,
n (x) is treated as a continuous variable.

The normalizing term, Π
(
n(L) = NL

)
, in the denominator of Eq. 40 is
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defined as:

Π
(
n(L) = NL

)
=
∞∑
n=0

Π
(
n(L) = NL|n

)
·Π(n) '

∞∫
0

Π
(
n(L) = NL|n(x)

)
·Π
(
n(x)

)
dn(x)

(43)
Then, having determined the functional form of Π (n (x) |n (L) = NL), it is

straightforward to properly average Eq. 33 by imposing the condition that the
electron multiplicity at an avalanche length L equals NL.

Using Eq. 33 and the following definitions:

〈
V (x)

〉
n(L)=NL

≡
∞∫

0

V
[
T1

(
x, n(x)

)]
· P
(
n(x)|n(L) = NL

)
dn(x)〈

V (x−∆x)
〉
n(L)=NL

≡
∞∫

0

V
[
T1(x−∆x, n(x−∆x)

)]
· P
(
n(x−∆x)|n(L) = NL

)
dn(x−∆x)

〈
1

n(x)

〉
n(L)=NL

≡
∞∫

0

1

n(x)
· P
(
n(x)|n(L) = NL

)
dn(x)

(44)

the average increase of the avalanche time variance, between the planes on x−∆x
and x, under the condition that at x = L the electron multiplicity equals NL,
is written as:

〈V (x)〉n(L)=NL − 〈V (x−∆x)〉n(L)=NL

= σ2
0 ·∆x〈

1

n (x−∆x)
〉n(L)=NL − w2

(
〈 1

n (x)
〉n(L)=NL − 〈

1

n (x−∆x)
〉n(L)=NL

)
(45)

Notice that the imposed condition, n (L) = NL, has forced the averages,
〈1/n (x)〉n(L)=NL and 〈V (x)〉n(L)=NL , to be also function of NL. Hereafter,
terms symbolized as 〈• (x)〉n(L)=NL must be considered as functions of both x
and NL.

A recursive summation of Eq. 45, starting at x = L and stopping at x = 0,
in steps of size ∆x, results to:〈
V (L)

〉
n(L)=NL

−
〈
V (0)

〉
n(L)=NL

= σ2
0 ·∆x

L/∆x∑
i−1

〈
1

n(L−i·∆x)

〉
n(L)=NL

− w2

(〈
1

n(L)

〉
n(L)=NL

−

〈
1

n(0)

〉
n(L)=NL

)
(46)

At the limit of ∆x going to zero and using that〈
V (0)

〉
n(L)=NL

= 0,

〈
1

n(0)

〉
n(L)=NL

=
1

2
,

〈
1

n(L)

〉
n(L)=NL

=
1

NL
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Eq. 46 becomes

〈
V (L)

〉
n(L)=NL

= σ2
0 ·

L∫
0

〈 1

n(x)

〉
n(L)=NL

dx− w2
( 1

NL
− 1

2

)
(47)

expressing the variance of the avalanche time, when the electron multiplicity on
the mesh is NL and given that the avalanche length equals L.

The first term in the above equation is a double integral, which is easily
evaluated by numerical integration, for any L and NL values, using Eq. 44 with
the definition expressed by either Eq. 42 or Eq. 43, as well as setting appro-
priate values to the relevant model parameters (σ0, θ, and aeff ) from Table A.8.

In order to express the variance of the avalanche time as a function of only
the electron multiplicity on the mesh, N, Eq. 47 should be integrated consid-
ering the contribution of any avalanche, of any length L, which produces N
electrons arriving on the mesh (NL = N). Naturally, each such contribution
should be weighted by the likelihood that such an avalanche is produced, which
is given by the p.d.f. G(L|N) defined by Eq. 12.

Let us consider a sample of avalanches with N electrons on the mesh. Schemat-
ically, this sample comprises many (infinite) sets, each set consisting of avalanches
with a certain length, L, having a population proportional toG(L|N). The mean
avalanche time in a set is T (N,L) and the respective variance is

〈
V (L)

〉
n(L)=N

.

In the hypothetical case that all the above subsets had the same mean avalanche
time, the time variance of the whole sample will be given simply by the weighted
sum of the respective variances of the subsets. However, due to the fact that the
mean avalanche time varies among the sets, the variance of the avalanche time
considering all avalanches in the sample should be evaluated according to Eq.
B.5 (see Appendix B). Thus, the variance of the avalanche time, V [T (N)], when
the electron multiplicity on the mesh is N, is given by the following expression:

V [T (N)] =

x2∫
x1

〈
V (L)

〉
n(L)=N

·G(L|N)dL+

x2∫
x1

T (N,L)2 ·G(L|N)dL−

[ x2∫
x1

T (N,L) ·G(L,N)dL

]2 (48)

Physically, the variance of the photoelectron time, V [Tp(L)], depends only
on its drift length, D-L, as expressed in Eq. 17. Since the photoelectron drift
length D-L is the residual of the respective avalanche length L, which in turn
determines the mean multiplicity of the avalanche electrons, the variance of the
photoelectron time is indirectly related to the electron multiplicity on the mesh,
N.
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Figure 15: The points represent the transmission time spread evaluated using GARFIELD++
simulations, with 50% Penning Transfer Rate, 425 V drift and 450 V anode voltage. The
double lines present model predictions for w = 0 and w = ρ as discussed in Section 6.
The top-left (blue), the top-right (red) and the bottom (golden) plots show the avalanche
time spread, the photoelectron time spread and the spread of the total time on the mesh,
respectively, versus the number of pre-amplification electrons arriving on the mesh.

The variance of the photoelectron time, V [Tp(N)], is expressed in Eq. 49 as
a function of N, by weighting Eqs. 14 and 17 with G(L|N), integrating over the
avalanche length and applying Eq. B.5 as before.

V [Tp(N)] =

x2∫
x1

V [Tp(L)]·G(L|N)dL+

x2∫
x1

T 2
p (L)·G(L|N)dL−

[ x2∫
x1

Tp(L)·G(L|N)dL

]2

(49)

Finally, the variance of the total time on the mesh is expressed in accordance
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to Eq. B.5 as:

V [Ttot(N)] =

x2∫
x1

[
V [Tp(L)] +

〈
V (L)

〉
n(L)=N

]
·G(L|N)dL

+

x2∫
x1

[
T (N,L) + Tp(L)

]2
·G(L|N)dL−

[ x2∫
x1

[
T (N,L) + Tp(L)

]
·G(L|N)dL

]2

(50)
Notice that Eq. 50 is not simply the sum of Eq. 48 and Eq. 49, as it would be

the case if the photoelectron and avalanche contributions to the total-time, ex-
pressed as functions of the electron multiplicity on the mesh, were uncorrelated.
This correlation is also apparent in the GARFIELD++ simulations shown in
Fig. 15 and it is caused by the fact that the same number of pre-amplification
electrons arriving on the mesh can be produced by avalanches of different length,
while the mean avalanche time depends on the avalanche length.

The predictions of Eqs. 48 - 50 are in good agreement with the correspond-
ing GARFIELD++ simulation results, as shown in Fig. 15. Moreover, the
model reproduces successfully the related GARFIELD++ simulation results at
all operational conditions considered in this study.

However, for small values of electron multiplicity on the mesh, the time-
spreads predicted by our model are systematically smaller than the related
GARFIELD++ simulation results. This underestimation stems from the inad-
equacy of the p.d.f.’s employed to approximate the avalanche statistical prop-
erties at its very beginning (i.e. at small avalanche length and low electron
multiplicity) and it is discussed in Section 9.

8. Effects related to electrons traversing the mesh

GARFIELD++ simulations have shown that, for all PICOSEC operational
conditions considered in this study, the transport of the pre-amplification elec-
trons through the mesh reduces their multiplicity by a factor of four that is
independent of the avalanche length and of the electron multiplicity on the
mesh (see Fig. 9 and related comments in Section 4).
As expected the passage of the electrons through the mesh adds a delay to the
signal arrival time. Simulations show that the added delay depends only on
the applied drift voltage, being independent of the pre-amplification avalanche
length and the electron multiplicity on the mesh, as it is shown in Fig. 16. How-
ever, the spread of the total time after the mesh is found to increase relative to
the spread of the total time on the mesh, i.e. the process of electrons traversing
the mesh deteriorates the PICOSEC timing resolution. This effect depends on
the applied drift field, as well as on the avalanche characteristics, as it is shown
in Fig. 17 and Fig. 18. Although the mesh transparency (≈ 25%) is found to be
insensitive to the considered drift voltages, this reduction of the number of elec-
trons influences the timing resolution in a drift-voltage dependent way. This
fact signifies the importance of the correlation between the individual arrival
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times of the pre-amplification electrons (on and after the mesh) in determining
the mesh effect on the timing resolution.

Figure 16: The points represent GARFIELD++ simulation results, assuming 50% Ptr, 450
V and 350 V drift and anode voltage, respectively. The time to pass through the mesh (i.e.
〈∆t〉 is the difference between the total time after the mesh and the total time on the mesh)
is shown versus the respective avalanche length (left plot) and the electron multiplicity on the
mesh (right plot). The solid curves represent fits by a constant function.

Consider a pre-amplification avalanche of length L with N electrons arriving
on the mesh, and let Ttot be the total time on the mesh and V [Ttot] be its
variance. Then,

Ttot(L,N) = T (L,N) + Tp(L) =
1

N

N∑
k=1

tk + Tp(L) (51)

where Tp is the photoelectron transmission time, depending only on its drift
length (D-L) as in Eq. 14, and tk(k = 1, 2, ..., N) are the pre-amplification elec-
tron arrival times on the mesh, starting from the instant of the first ionization.
According to Eq. 5, the avalanche arrival time (and consequently the total time
on the mesh) is a function of both L and N.

Since Tp is uncorrelated with every one of the tk’s, the variance, V [Ttot], is
expressed as:

V [Ttot(L,N)] = V

[
1
N

N∑
k=1

tk

]
+ V [Tp(L)] = V

[
1
N

N∑
k=1

tk

]
+ σ2

p · (D − L) + Φ︸ ︷︷ ︸
V [Tp(L)]

(52)
where V [Tp(L)] = σ2

p · (D−L) + Φ is, according to Eq. 17, the time variance of
the photoelectron at the point of the first ionization. As discussed in Section 5,
the arrival times of the pre-amplification electrons are heavily inter-correlated.
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The first term in Eq. 52 is expressed analytically as:

V

[
1
N

N∑
k=1

tk

]
=
σ2

0 · L
N

+
1

N2

N∑
i=1

N∑
j=1,j 6=i

Cij (53)

where σ2
0 is defined in Section 5 as the variance per unit length of a single electron

in the avalanche, and Cij symbolizes the covariance between the arrival times
of the ith and jth avalanche electrons.

Ignoring any new electron production while traversing the mesh, let M be
the number of electrons entering the amplification region, Tm be the total arrival
time after passing the mesh (i.e. the average of the M arrival times on a plane
just after the mesh) and V [Tm] be the corresponding variance. Then,

Tm(L,N) = 1
M

M∑
k=1

tk + 1
M

M∑
k=1

∆tk + Tp(L) (54)

where ∆tk is the extra time needed by the kth electron to arrive at the plane
just after the mesh. Assuming that each of the N electrons arriving on the mesh
has the same probability, M/N, to pass through the mesh12, Eq. 54 is written
as:

Tm(L,N) = 1
M

M
N

N∑
k=1

tk + 1
M

M
N

N∑
k=1

∆tk + Tp(L) = Ttot(L,N)+ < ∆t >

(55)
where < ∆t > is the mean time needed by an electron to pass through the
mesh. Eq. 55 predicts that the total arrival time after the mesh is the total
arrival time on the mesh delayed by a constant time, which is independent of
the avalanche characteristics, as observed in the detailed GARFIELD++ sim-
ulation. Naturally < ∆t >, being the drift time of an electron traversing the
mesh, depends on the electric field around the mesh.

Due to the fact that the terms, 1
M

M∑
k=1

tk, 1
M

M∑
k=1

∆tk and Tp, in Eq. 54, are

mutually uncorrelated, the variance of the total time after the mesh is expressed
as:

V [Tm(L,N)] = V

[
1

M

M∑
k=1

tk

]
+ V

[
1

M

M∑
k=1

∆tk

]
+ V [Tp

[
(L
)
] (56)

The first term in Eq. 56 is written, in analogy to Eq. 53, as:

V

[
1

M

M∑
k=1

tk

]
=
σ2

0 · L
M

+
1

M2

M∑
i=1

M∑
j=1,j 6=i

Cij (57)

12Indeed, the passage of an electron through the mesh is determined by the position of
its impact point on the mesh; consequently, if the same avalanche is shifted parallel to its
longitudinal axis, a different subset of the N arriving electrons will pass through the mesh.
This is equivalent to giving the same probability, M/N, to each of the N arriving electrons to
pass through the mesh.
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where Cij are defined in Eq. 53.
Eq. 57 can be simplified by exploring further the observation that any one of
the pre-amplification electrons has the same probability to traverse the mesh.

Then, noticing that the covariance term,
M∑
i=1

M∑
j=1,j 6=i

Cij , in Eq. 57 comprises

M(M − 1) Cij terms while the corresponding term in Eq. 53 is the sum of
N(N − 1) Cij terms, Eq. 57 can be approximated as:

V

[
1

M

M∑
k=1

tk

]
=
σ2

0 · L
M

+
1

M2

M(M − 1)

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

Cij

' σ2
0 · L
M

+
1

N2

N∑
i=1

N∑
j=1,j 6=i

Cij

(58)

Due to the fact that the times ∆tk are mutually uncorrelated, the second term
in Eq. 56, is written as:

V

[
1

M

M∑
k=1

∆tk

]
=
δ2

M
(59)

where δ2 is the variance of the time taken by an electron to pass through the
mesh. Substituting Eq. 58 and 59 into Eq. 56, the variance of the total time
after the mesh is expressed as:

V [Tm(L,N)] =
σ2

0 · L
M

+
1

N2

N∑
i=1

N∑
j=1,j 6=i

Cij +
δ2

M
+ V [Tp(L)] (60)

Subsequently, Eq. 53 is used to eliminate the double sum of the covariance terms
and the variance of the total time after the mesh is expressed by the following
formula:

V [Tm(L,N)] = σ2
0 · L

( 1

M
− 1

N

)
+
δ2

M
+ V [Ttot(L,N)] (61)

The average ratio M/N expresses the electron transparency, tr, of the mesh,
which retains the same mean value at all the operational conditions considered
in this work. Using the mesh transparency to eliminate M, Eq. 61 is simplified
to:

V [Tm
(
L,N

)
] =

1

N

[
σ2

0 · L
( 1

tr
− 1
)

+
δ2

tr

]
+ V [Ttot

(
L,N

)
] (62)

Eq. 62 predicts an increase of the total time variance, V [Tm(L,N)]−V [Ttot(L,N)],
which depends on the electron multiplicity, N, on the electron transparency of
the mesh, tr, and on the avalanche length L.

35



By averaging properly Eq. 62 over all possible N, i.e. following the procedure
described in Section 6, the variance of the total time after the mesh is expressed
as a function of the avalanche length as:

V [Tm(L)] =
〈
V [Tm(L,N)]

〉
N

=
θ + 1

2θ
exp

[
−aeffL

]
·

[
σ2

0 ·L
( 1

tr
−1
)
+
δ2

tr

]
+V
[
Ttot(L)

]
(63)

where the Gamma distribution property
〈

1
N

〉
= θ+1

θ<N> = θ+1
2θ exp[−aeffL] is

used, and the last term, V [Ttot(L)] =< V [Ttot(L,N)] >N , is given by Eq. 39.
Consequently, the mesh contribution to the total time variance, which deter-
mines the PICOSEC timing resolution, is given in terms of the avalanche length
as:

∆V (L) = V [Tm(L)]− V [Ttot(L)] =
θ + 1

2θ
exp[−aeffL] ·

[
σ2

0 · L
( 1

tr
− 1
)

+
δ2

tr

]
(64)

The variance of the total time after the mesh can be also expressed as a
function of the electron multiplicity on the mesh, having properly averaged Eq.
62 over all possible avalanche lengths, as:

V
[
Tm(N)
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〈
V [Tm(L,N)]

〉
L
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1

N

[
σ2
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〈
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tr
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δ2
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]
+ V [Ttot(N)]

(65)
where the last term, V [Ttot(N)] =

〈
V [Ttot(L,N)]

〉
L

, is given by Eq. 50 and the

averaged length
〈
L(N)

〉
= (

x2∫
x1

L ·G(L|N)dL) is defined in Section 4. Then, the

mesh contribution to the PICOSEC resolution is expressed as function of N, as:

∆V (N) = V [Tm(N)]− V [Ttot(N)] =
1

N

[
σ2

0 ·
〈
L(N)

〉( 1

tr
− 1
)

+
δ2

tr

]
(66)

Eq. 65 and Eq. 66 can be easily reformulated as functions of the number, M,
of the electrons that pass through the mesh, by using the transformation M =
tr · N ; recall that the PICOSEC e-peak amplitude was found [4] proportional
to M (see also Fig. 4).

In the above description of the electron transport through the mesh two
sources contribute to the increase of the time variance: i) an extra time spread
due to the electron drift in the inhomogeneous electric field around the mesh,
and ii) the statistical effect caused by the depletion of the number of mutually-
correlated avalanche electrons. The first contribution is expressed by the term
proportional to δ2 in Eq. 62 or equivalently in Eq. 64 and Eq. 66. The time-
spread δ depends on the PICOSEC operational conditions and it is treated
as an input parameter in this model. Values of δ, which are evaluated using
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Figure 17: The points represent GARFIELD++ simulation results concerning the spread of
the total time on the mesh (golden points) and the spread of the total time after the mesh
(black points) versus the avalanche length. The solid lines represent predictions based on Eq.
63. The double lines indicate the systematic uncertainty due to the value of the w parameter,
discussed in Section 6. The voltage settings considered in these comparisons are: 450 V at
the anode and drift voltage of 325 V (left plot), 350 V (center plot), and 400 V (right plot).

GARFIELD++ simulations, assuming several drift voltages, are compiled in
Table A.8, exhibiting a decreasing functional dependence on the drift voltage.
However, the terms proportional to δ2 contribute to the increase of the time
variance (e.g. in Eqs. 62, Eq. 64 and Eq. 66) much weaker than the other
terms, which are related to statistical correlations.
Due to correlation terms, the variance of the total-time after the mesh (Eq. 61)
is not proportional to the variance of the total time on the mesh. The mesh adds
to the variance of the total time on the mesh a term which is almost proportional
to L · exp[−aeffL] when expressed as a function of L (see Eq. 64), or almost

proportional to <L(N)>
N (see Eq. 66) when expressed as a function of N. As the

drift voltage increases and the electron multiplication factor, aeff , increases,
both the above terms13 decrease for all L and N. Thus, the mesh influence on
the timing resolution weakens as the drift field increases, as the GARFIELD++
simulations demonstrate.
The model is also in good agreement with the GARFIELD++ simulations in
describing quantitatively the mesh effect on the timing resolution, for all the
PICOSEC operational conditions considered in this work, as it is demonstrated
in Figs. 17 and 18.

9. Discussion

A weak but systematic deviation of the model predictions from the GARFIE-
LD++ results has been observed at low electron multiplicities on the mesh.
Indeed, as shown in Fig. 11 and 15, the model predictions of the mean value
and the spread of avalanche time deviate from the GARFIELD++ points at
avalanche electron multiplicities less than 300, for 50% Ptr, 425 V drift and 450

13In case that the electron multiplication factor increases, the average length of the
avalanches that produce N pre-amplification electrons, < L(N) >, decreases.
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Figure 18: The points represent GARFIELD++ simulation results. The left column plots
show the spread of the total time on the mesh (golden points) and after the mesh (black
points) versus the electron multiplicity on the mesh. The right column plots display the mesh
contribution (i.e. the square root of the difference between the variance of the total time
after and on the mesh) versus the electron multiplicity on the mesh. The solid lines represent
predictions of Eq. 65 and Eq. 66. The double lines represent the systematic uncertainty due
to the unknown value of the w model-parameter. The voltage settings considered in these
comparisons are 450 V at the anode and drift voltages of 325 V (top row), 350 V (middle
row), and 400 V (bottom row).
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Figure 19: Distributions of the avalanche length, produced by GARFIELD++ simulations
(assuming 50% Ptr, 425 V and 450 V drift and anode voltage, respectively) in the case that
the multiplicity of pre-amplification electrons is less than 120 (left plot), between 400 and 440
(center plot) and 1230 and 1300 (right plot). The solid lines represent the related predictions
of the distribution function G(L|N) defined by Eq. 12.

V anode voltages. As already stated, such deviations result from the inadequacy
of the employed p.d.f.’s to approximate accurately the avalanche statistical prop-
erties at its very beginning (small avalanche length, low electron multiplicity).
As an example, the model predictions of both the mean value and the variance
of the avalanche time, i.e. Eq. 13 and Eq. 48, utilize the function G(L|N).
Recall that this conditional p.d.f., defined in Section 4 by Eq. 12, expresses the
distribution of the length of an avalanche given that the avalanche electron mul-
tiplicity is N. Predictions of Eq. 12 are compared to the respective distributions
produced by GARFIELD++, in Fig. 19. Apparently, Eq. 12 approximates
poorly the GARFIELD++ distributions at low N but successfully describes
the detailed-simulation results for higher values of electron multiplicity. There-
fore, the predictions of Eq. 13 and 48 suffer from the poor success of G(L|N)
to describe the GARFIELD++ results at low electron multiplicities.

However, for practical reasons, PICOSEC data are collected with non-zero
experimental, amplitude thresholds. The data points shown in Fig 3, in compar-
ison with results based on simulated PICOSEC pulses, were collected [3] with
thresholds corresponding to e-peak charge greater than 3-4 pC, which translate
(for 425 V drift and 450 V anode voltages, and 50% Ptr) to 400− 500 electron
multiplicity on the mesh. At this region of pre-amplification electron multiplic-
ities, the model predictions are in an excellent agreement with the results of
GARFIELD++ simulations, as shown in Fig. 11 and 15.

Up to this point, the model has been used to provide information on the
mean value and the variance (i.e. to evaluate the first and second moments) of
transmission time distributions. However, it can also be used for more general
statistical predictions, e.g. the complete probability density functions of the
above time variables. As an example, Fig. 20 shows the distributions, pro-
duced by GARFIELD++ simulations (black points), of the photoelectron, the
avalanche and the total time (on and after the mesh), without any restriction
on the avalanche length or on the electron multiplicity on the mesh. The appar-
ent left-right asymmetry and the long tails in these distributions are partially
caused by the dependence of the mean transmission times on the length of the

39



avalanche (or equivalently, on the length of the photoelectron drift-path, before
the first ionization). Nevertheless, the dependence of the respective variances on
the length of the avalanche also contributes to the asymmetry and the tails. In
order to predict the functional form of the above asymmetric distributions, the
model is complemented with the extra assumption that the related transmission
times, corresponding to a certain avalanche length, follow an Inverse Gaussian
distribution (Wald) function, which is expressed as:

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

[
−λ(x− µ)2

2µ2x

]
(67)

with the parameter µ to be the mean value and the shape parameter λ to be
related with the variance of the distribution as V [x] = µ3/λ. In general, the
convolution of two Wald distributions is not a Wald distribution. Consequently,
even if the photoelectron and avalanche transmission times are described by
Wald distributions, it is not necessarily true that the total-times are distributed
according to the same functional form. However, GARFIELD++ simulation
results indicate, see also Fig. 5, that the distributions of the total-times, on and
after the mesh, are very well approximated by Wald functions.

Hereafter, the model assumes that the statistical properties of the photo-
electron transmission time, Tp, and the avalanche transmission time, T, are
described by Wald distributions as follows:
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2πT 3
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(
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2π · T 3
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· exp
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)2
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] (68)

where

µp(L) =
D − L
Vp

+ doff , according to Eq.14

λp(L) =
µ3
p(L)

(D − L) · σ2
p + Φ

. according to Eq. 17

Similarly µ(L) =< T (L) > where < T (L) > is given by Eq. 9

λ(L) =
µ3(L)

V
[
T (L)

] and V
[
T (L)

]
is given by Eq. 38.

Using the probability density R(L; a), i.e. the p.d.f. to observe an avalanche
of length L (defined by Eq. 11) the distributions of Tp and T for any possible
value of L are given by:

Fp(Tp) =
x2∫
x1

fp
(
Tp;µp(L), λp(L)

)
·R(L; a)dL

F (T ) =
x2∫
x1

f
(
T ;µ(L), λ(L)

)
·R(L; a)dL

(69)
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Figure 20: Transmission time distributions for all events at 350 V and 450 V drift and anode
voltage respectively and 50% Ptr: (top-left) Total time on the mesh, (top-right) total-time
after the mesh, (bottom-left) avalanche transmission time and (bottom-right) photoelectron
transmission time. The points are results of GARFIELD++ simulations whilst the red lines
represent the respective model predictions, as it is described in the text.

The solid lines in the bottom-row plots of Fig. 20 represent graphically the
model predictions expressed by the respective p.d.f.s of Eq. 69. The model pre-
dictions are in excellent agreement with the GARFIELD++ simulation results.

Similarly, it is assumed that the total-time distributions, on and after the
mesh (Ttot and Tm, respectively) for a certain avalanche length, L, can be well
approximated by Wald functions, as:

ftot
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)
=

(
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2πT 3
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)1/2

· exp
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· exp

[
−λm(L)

(
Tm − µm(L)

)2
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(70)

where
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µtot(L) =
D − L
Vp

+ doff +
〈
T (L)

〉
, according to Eq. 9 and 14

λtot(L) =
µ3
tot(L)

V
[
Ttot(L)]

. according to Eq. 39

Also µm(L) = µtot(L)+ < ∆t > according to Eq. 55, and

λm(L) =
µ3
m(L)

V [Tm(L)]
where V [Tm(L)] is given by Eq. 63.

The predictions of Eq. 70 are shown in the top-row plots of Fig. 20 to be also
in excellent agreement with the GARFIELD++ simulation results. It addition
it has been verified that the model predicts successfully the transmission time
distributions at all drift voltage settings considered in this study.

10. Summary

This work employs the comparison of experimental data with detailed sim-
ulations, based on the GARFIELD++ package, complemented with a statis-
tical description of the electronic signal formation, to identify the microscopic
quantities that determine the PICOSEC timing characteristics. Subsequently,
a stochastic model is developed that describes the properties of the above quan-
tities, offering a phenomenological, microscopic interpretation of the observed
timing properties of the detector.
The model is based on: i) the fact that an electron drifting in a gas under the
influence of an homogeneous electric field achieves higher drift velocity when,
in addition to elastic scattering, undergoes inelastic interactions, and ii) the as-
sumption that a newly produced electron through ionization acquires a certain
time-gain relative to its parent and subsequently drifts with the same veloc-
ity as the parent electron. The input parameters, compiled in Table A.8, are
commonly used statistical variables14, which have been evaluated by analyzing
GARFIELD++ simulation results.

The quantitative predictions of the model have been compared extensively
with the related GARFIELD++ simulation results and found in very good
agreement at all operating PICOSEC conditions considered in this study, demon-
strating the success of this stochastic interpretation.

As demonstrated through this work, the developed model is very success-
ful in providing insights for the major microscopic mechanisms, which deter-
mine the timing characteristics of the detector, and in explaining coherently the
unexpected behavior of microscopic quantities, predicted by GARFIELD++
simulations. Due to the very good agreement of the model predictions with
GARFIELD++, the formulae developed in this work can be used easily as a
tool for fast predictions, provided that the values of the model input-parameters,

14With the only exception of the time-gain parameter ρ, which has been introduced in this
work.
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i.e. the parameters shown in Table A.8, are known for the considered operat-
ing conditions. This necessity, obviously limits the application of the developed
model as a stand-alone tool. However, having available sets of input param-
eter values for certain operational settings, it is possible to derive empirical
parametrizations of the input parameters, which can be used to provide input
to the model for a broader region of operational settings covered by the above
parameterization.
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Appendix A.

Ptr 0% Ptr 50% Ptr 100%
Photoelectron Drift Velocity (μm/ns) 156.8± 0.4 150.5± 0.8 142.2± 1.0

Avalanche Drift Velocity (μm/ns) 181.4± 0.5 184.8± 0.8 188.2± 0.9

Avalanche-Electron Drift Velocity (μm/ns) 169.9± 0.2 170.4± 0.2 170.0± 0.2

Table A.1: The values of: the photoelectron drift velocity Vp, the avalanche drift velocity
Va and the drift velocity Vea, of an avalanche-electron, for three different values of Ptr and
default high voltage settings.

Ptr 0% Ptr 50% Ptr 100%
First Townsend Coeff. (μm−1) 0.0520± 0.0003 0.0695± 0.0005 0.0893± 0.0008

Table A.2: The first Townsend coefficient, estimated from GARFIELD++ simulations, for
different Ptr values and the default drift voltage settings.

Ptr 0% Ptr 50% Ptr 100%
Mean time-gain, ρ (ns) 17.40 · 10−3 ± 0.3 · 10−3 17.25 · 10−3 ± 0.42 · 10−3 17.72 · 10−3 ± 0.48 · 10−3

Time Constant, C (ns) 53.50 · 10−3 ± 3.0 · 10−3 60.0 · 10−3 ± 4.0 · 10−3 68.0 · 10−3 ± 5 · 10−3

Table A.3: Mean values of the time-gain ρ and values of the constant term C (see Eq. 6),
estimated for three Ptr values and the default drift voltage settings.

Appendix B.

Let y(L) be a measurement (random variable) of a physical variable Y, which
depends on another physical variable, L, as Y = f(L). Let also the statistical
properties of y depend on L, such that:〈

y(L)
〉

=
∫

Ωy

y ·H(y, L)dy = f(L)〈
y2(L)

〉
−
〈
y(L)

〉2
=
∫

Ωy

[
y −

〈
y(L)

〉]2 ·H(y, L)dy = u(L)
(B.1)

where Ωy is the set of all possible values of y and H(y,L) is the p.d.f. describing
the measurement process, which explicitly depends on the physical variable L,
resulting to mean values and variances dependent on L as shown in Eq. B.1.
Furthermore, the physical variable L is distributed, for physics reasons, accord-
ing to the p.d.f. g(L). Suppose an experiment in which several measurements y
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Number of Electrons on the Mesh
Ptr 0% Ptr 50% Ptr 100%

Constant Term 2 (fixed) 2 (fixed) 2 (fixed)

Multiplication Coeff., aeff (μm−1) 32.47 · 10−3 ± 0.01 · 10−3 39.12 · 10−3 ± 0.01 · 10−3 45.30 · 10−3 ± 0.02 · 10−3

Number of Electrons after the Mesh
Ptr 0% Ptr 50% Ptr 100%

Constant Term 0.53± 0.01 0.50± 0.02 0.57± 0.02

Exponential Slope 32.80 · 10−3 ± 0.3 · 10−3 39.40 · 10−3 ± 0.2 · 10−3 45.00 · 10−3 ± 0.2 · 10−3

Table A.4: The exponential slopes and the constant terms that determine the number of
electrons on and after the mesh, as estimated by GARFIELD++ simulations. (top) The
exponential slope aeff is the avalanche multiplication coefficient. The mean number of elec-
trons on the mesh (q), is given as a function of the avalanche length (L) by the expression
q
(
L; aeff

)
= q0 · eaeffL, where the constant term (q0) is set to q0=2, because the avalanche

starts with two electrons. (bottom) The number of electrons passing through the mesh, is
also expressed exponentially as a function of L. The passage through the mesh does not affect
the exponential slope. However the constant term is found to be ' 0.5, which translates to
∼ 25% mesh transparency.

Ptr 0% Ptr 50% Ptr 100%
On the Mesh 0.510± 0.005 0.464± 0.005 0.422± 0.005

After the Mesh 0.530± 0.01 0.475± 0.005 0.430± 0.005

Table A.5: Ratio of the RMS over the mean value of the number of electrons in any given
avalanche length. Notice that this ratio equals to

(
1/(1+θ)1/2

)
, where θ is the shape parameter

of the Gamma distribution function.

Ptr 0% Ptr 50% Ptr 100%
Time Variance per unit length (ns2/μm) 11.65 · 10−5 ± 0.05 · 10−5 11.75 · 10−5 ± 0.05 · 10−5 11.67 · 10−5 ± 0.05 · 10−5

Constant Term (ns2) 16.55 · 10−5 ± 1.50 · 10−5 16.78 · 10−5 ± 1.62 · 10−5 17.03 · 10−5 ± 0.80 · 10−5

Table A.6: Diffusion properties of the avalanche electron.

Ptr 0% Ptr 50% Ptr 100%
Time Variance per unit length (ns2/μm) 13.27 · 10−5 ± 0.3 · 10−5 13.80 · 10−5 ± 0.3 · 10−5 13.30 · 10−5 ± 0.6 · 10−5

Constant Term (ns2) −47.27 · 10−5 ± 6.80 · 10−5 −56.22 · 10−5 ± 6.8 · 10−5 −67.64 · 10−5 ± 13.4 · 10−5

Table A.7: Diffusion properties of a photoelectron before it initiates an avalanche.

of the physical variable Y are performed but there is not any experimental way
to know the corresponding value of L. In the following the expected variance of
the measurements, y, for any possible L, is expressed in terms of f(L), u(L) and
g(L). A possible outcome of a measurement in the above experiment will follow
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Penning Transfer Rate 50%
Anode Voltage 450 V
Drift Voltage 325 V 350 V 375 V 400 V 425 V
a (10−2

μm−1) 3.607± 0.018 4.400± 0.020 5.208± 0.027 6.069± 0.027 6.950± 0.032

aeff (10−2
μm−1) 2.215± 0.001 2.629± 0.001 3.055± 0.001 3.484± 0.001 3.912± 0.001

θ 2.698± 0.142 2.906± 0.154 3.037± 0.162 3.313± 0.179 3.645± 0.191

V −1
ea (10−3ns/μm) 7.311± 0.003 6.877± 0.003 6.509± 0.002 6.173± 0.002 5.866± 0.004

V −1
p (10−3ns/μm 8.065± 0.026 7.678± 0.026 7.266± 0.028 6.923± 0.028 6.643± 0.031

doff (10−2ns) −3.831± 0.084 −3.437± 0.082 −2.883± 0.075 −2.678± 0.068 −2.364± 0.079

ρ (10−2ns) 3.570± 0.054 2.919± 0.027 2.489± 0.030 2.185± 0.028 1.725± 0.045

C (10−2ns) 7.555± 0.218 7.511± 0.117 7.668± 0.166 7.778± 0.196 7.001± 0.516

σ2
p (10−4ns2/μm) 2.137± 0.054 1.908± 0.046 1.662± 0.073 1.554± 0.050 1.380± 0.063

Φ(10−4ns2) −9.967± 2.417 −7.936± 1.395 −6.40± 1.650 −7.525± 1.343 −5.622± 1.284

σ2
0 (10−4ns2/μm) 2.094± 0.005 1.778± 0.003 1.543± 0.004 1.341± 0.003 1.175± 0.004

tr 0.244± 0.009 0.248± 0.044 0.238± 0.011 0.251± 0.009 0.247± 0.009

δ(10−2ns) 7.217± 0.034 6.871± 0.032 6.607± 0.031 6.305± 0.030 5.938± 0.040

∆tmesh(10−1ns) 1.521± 0.005 1.455± 0.005 1.400± 0.004 1.344± 0.003 1.303± 0.004
Control Parameters

x1 (μm) 0 0 0 0 0

x2 (μm) 164 167 174 174 172

w/ρ 1 1 1 1 1

D (μm) 182 182 182 182 182

Nmax 350 500 1250 1750 3500

Table A.8: Parameter values used in the model.

the p.d.f. h(y) given as

h(y) =

∫
ΩL

H(y, L) · g(L)dL (B.2)

with ΩL standing for the set of all possible values of L. The mean value of the
measurements y, for any possible value of L, will be

< y >=

∫
Ωy

∫
ΩL

y ·H(y, L) · g(L)dLdy =

∫
ΩL

f(L) · g(L)dL (B.3)

The second moment of y is expressed in the same way as:

< y2 >=

∫
Ωy

∫
ΩL

y2 ·H(y, L) · g(L)dLdy =

∫
ΩL

[
u(L) + f2(L)

]
· g(L)dL (B.4)
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where the definition of u(L) from Eq. B.1 has been used. Combining Eq. B.3
with Eq. B.4 the variance of y for any possible L is given by:

V [y] =< y2 > − < y >2

=
∫

ΩL

[
u(L) + f2(L)

]
· g(L)dL−

[ ∫
ΩL

f(L) · g(L)dL

]2

=
∫

ΩL

u(L) · g(L)dL+

 ∫ΩL f2(L) · g(L)dL−

[ ∫
ΩL

f(L) · g(L)dL

]2


(B.5)

where the first term expresses the proper averaging of the y variances each
defined at specific L. However, the fact that the mean value of y depends on L
results to an additional term. This second term expresses the variance of f(L)
while L is distributed according to g(L).
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